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52 years of the Hirsch conjecture
(with focus on “partial counterexamples”)
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The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with f facets and dimension d ,

δ(P) ≤ f − d .

Fifty two years later, not only the conjecture is open:

We do not know any polynomial upper bound for δ(P), in terms
of f and d .
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Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
f − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]
Polynomial bound for ν-way transportation polytopes (for
fixed ν) [de Loera-Kim-Onn-S. 2009]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = H(12,5) = H(13,6) = 7 [Bremner et al. >2009].
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A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with f facets:

δ(P) ≤ f log2 d+2.

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity
at most

eO(
√

f log d).
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A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]
For every d-polytope with f facets:

δ(P) ≤ f2d−3.
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Polynomial bounds, under perturbation

Given a linear program with d variables and f restrictions, we
consider a random perturbation of the matrix, within a
parameter ε.

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is
polynomial in d and ε−1, and polylogarithmic in f .
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Why is f − d a “reasonable” bound?

It holds with equality in simplices (f = d + 1, δ = 1) and
cubes (f = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every f ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every f > d , it is easy to construct unbounded
polyhedra where the bound is met.
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Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation
of dimension d − 1.

Regular triangulations of dimension d − 1 with f vertices and
diameter f − d are easy to construct by “stacking” simplices
one after another.
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An unbounded d-polyhedron is polar to a regular triangulation
of dimension d − 1.

Regular triangulations of dimension d − 1 with f vertices and
diameter f − d are easy to construct by “stacking” simplices
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Why is f − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:
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Why is f − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

Assume f = 2d and let u and v be two complementary vertices
(no common facet):

d-step conjecture
It is possible to go from u to v so that at each step we abandon
a facet containing u and we enter a facet containing v .

“d-step conjecture”⇒ Hirsch for f = 2d .
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Why is f − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting conjecture
It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

“non-revisiting conjecture”⇒ Hirsch.
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Why is f − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting.

Proof: Let H(f ,d) = max{δ(P) : P is a d-polytope with f
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·
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· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If f < 2d , because every pair of vertices lie in a common
facet F , which is a polytope with one less dimension and
(at least) one less facet (induction on f and f − d).
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If f > 2d , because every pair of vertices lies away from a
facet F . Let P ′ be the wedge of P over F . Then:

dP(u, v) = dP′(u, v).
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Wedging, a.k.a. one-point-suspension
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Wedging, a.k.a. one-point-suspension
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Three variations of the Hirsch conjecture

The feasible region of a linear program can be an unbounded
polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:
The diameter of any polyhedron P with dimension d and f
facets is at most f − d .

Remark: this was the original conjecture by Hirsch.
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Three variations of the Hirsch conjecture

For the simplex method, we are only interested in monotone, w.
r. t. a certain functional φ.

Monotone version of the Hirsch conjecture:
For any polytope/polyhedron P with dimension d and f facets,
any linear functional φ and any initial vertex v :
There is a monotone path of length at most f − d from v to the
φ-maximal vertex.
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state the conjecture for the polar (simplicial) polytope, which is a
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Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:
For any simplicial sphere of dimension d − 1 with f vertices, the
adjacency graph among d − 1-simplices has diameter at most
f − d .
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples
are only by a linear factor):

There are unbounded polyhedra of dimension 4 with 8
facets and diameter 5 [Klee-Walkup, 1967].
There are polytopes of dimension 4 with 9 facets and
minimal monotone paths of length 5 [Todd 1980].
There are spheres of diameter bigger than Hirsch [Walkup
1978, dimension 27; Mani-Walkup 1980, dimension 11].
Altshuler [1985] proved these examples are not polytopal
spheres.
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The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded
Hirsch conjectures can both be derived from the existence of
a 4-polytope with 9 facets and with diameter 5:
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The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded
Hirsch conjectures can both be derived from the existence of
a 4-polytope with 9 facets and with diameter 5:

H(9, 4) = 5 ⇒ counter-example to unbounded Hirsch
From a bounded (9,4)-polytope you get an unbounded
(8,4)-polytope with (at least) the same diameter, by moving the
“extra facet” to infinity.
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The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded
Hirsch conjectures can both be derived from the existence of
a 4-polytope with 9 facets and with diameter 5:
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The monotone Hirsch conjecture is false

H(9, 4) = 5 ⇒ counter-example to monotone Hirsch
In your bounded (9,4)-polytope you can make monotone paths
from u to v necessarily long via a projective transformation that
makes the “extra facet” be parallel to a supporting hyperplane
of one of your vertices u and v
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The monotone Hirsch conjecture is false

H(9, 4) = 5 ⇒ counter-example to monotone Hirsch
In your bounded (9,4)-polytope you can make monotone paths
from u to v necessarily long via a projective transformation that
makes the “extra facet” be parallel to a supporting hyperplane
of one of your vertices u and v
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The monotone Hirsch conjecture is false
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The Klee-Walkup Hirsch-tight (9,4)-polytope
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The Klee-Walkup Hirsch-tight (9,4)-polytope

The “unbounded trick” is reversible
From an unbounded 4-polyhedron with 8 facets and diameter
five we can get a bounded polytope with 9 facets and sme
diameter:
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The Klee-Walkup Hirsch-tight (9,4)-polytope

And remember that
“The polar of an unbounded 4-polyhedron with nine facets is a
regular triangulation of eight points in R3".
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The Klee-Walkup Hirsch-tight (9,4)-polytope

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices
and diameter 5:
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The Klee-Walkup Hirsch-tight (9,4)-polytope

These are coordinates for it, derived from this description:

a := (−3,3,1,2), e := (3,3,−1,2),
b := (3,−3,1,2), f := (−3,−3,−1,2),
c := (2,−1,1,3), g := (−1,−2,−1,3),
d := (−2,1,1,3), h := (1,2,−1,3),

w := (0,0,0,−2).
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The Mani-Walkup “always revisiting” simplicial
3-sphere

Mani and Walkup constructed a simplicial 3-ball with 20 vertices
and with two tetrahedra abcd and mnop with the property that
any path from abcd to mnop must revisit a vertex previously
abandonded.

The key to the construction is in a subcomplex of two triangu-
lated octagonal bipyramids.
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The Mani-Walkup “always revisiting” simplicial
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Introduction Why f − d? “Partial counter-examples” Hirsch-sharp polytopes Transportation polytopes

Hirsch-sharp polytopes

Hirsch tight
Politopes of dimension d , with f facets and diameter f − d .

For f ≤ 2d they are easy to construct (e.g., products of
simplices).
For d ≤ 3 (and f > 2d): they do not exist.
H(f ,d) ∼ d−1

d (f − d).
H(9,4) = 5 [Klee-Walkup 1967], but “only by chance”:
Out of the 1142 combinatorial types of polytopes with
d = 4 and f = 9 only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].
H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.
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Many Hirsch-sharp polytopes

Theorem:
For the following f and d , Hirsch-sharp polytopes exist:

f ≤ 2d .
f = 9, d = 4,
[Klee-Walkup]

f ≤ 3d − 3,
[Holt-Klee, 98]

d ≥ 14,
[Holt-Klee, 98]

d ≥ 8, [Holt-
Fritzsche, 05]

d ≥ 7,
[Holt, 04]
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Hirsch-sharpness for f ≤ 3d − 3 [Klee-Holt]

When we wedge in a Hirsch-sharp polytope . . .
. . . we get two edges with Hirsch-distant vertices. . .
. . . so we can cut a corner on each side
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Hirsch-sharpness for d ≤ 8 [Klee-Holt-Fritzsche]

(polar view)
When we glue two (simplicially) Hirsch-sharp polytopes along a
facet . . . the new polytope is “Hirsch-sharp-minus-1”. . . unless
before glueing (at least) half of the neighbors of the glued faces
were not part of Hirsch paths.
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(polar view)
When we glue two (simplicially) Hirsch-sharp polytopes along a
facet . . . the new polytope is “Hirsch-sharp-minus-1”. . . unless
before glueing (at least) half of the neighbors of the glued faces
were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we
also create “forbidden neighbors”

Theorem [Holt-Fritzsche ’05]
After wedging 4 times in the KW (9,4)-polytope, we can glue
and preserve Hirsch-sharpness
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Hirsch-sharpness for d = 7 [Holt]

(polar view)
Same idea, but instead of based on forbiden neighbors, based
on gluing along more than one simplex: Wedging three times
on the KW (9,4)-polytope creates two “cliques of four simplices
on eight vertices”. We can glue on those eight vertices.
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Network flow polytopes

Network
Directed graph, with demands (negative numbers) or supplies
(positive numbers) associated to its vertices.

Transportation problem in a network
Minimize a certain linear functional (“cost”) having one variable
for each edge xe and the restrictions:

For each edge e 0 ≤ xe.

For each vertex v , the sum∑
e exits v

xe −
∑

e enters v

xe

equals the supply (positive) or demand (negative) at v .
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Network flow polytopes

The flow polytope (set of feasible flows) in a network with V
vertices and E edges has dimension d ≤ E − V and number of
facets f ≤ E .

Its diamater is polynomial:

Theorem [Cunningham ’79, Goldfarb-Hao ’92, Orlin ’97]
Every network flow polytope has diameter bounded by
O(EV log V ), that is, O(f 2 log f ).

Remark: these are very particular polytopes (e.g., their 2-faces
have at most six sides), but extremely important in optimization.
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Transportation polytopes

Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a ∈ Rm and b ∈ Rn, the matrices (xij) with∑

j

xij = ai ∀i y
∑

i

xij = bj ∀j .

Example
m = 2, n = 3;
a = (10,6), b = (4,5,7).
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given two vectors a ∈ Rm and b ∈ Rn, the matrices (xij) with∑

j

xij = ai ∀i y
∑

i

xij = bj ∀j .

Example
m = 2, n = 3;
a = (10,6), b = (4,5,7).

Example
m = n; a = b = (1, . . . ,1)⇒
Birkhoff polytope.
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Transportation polytopes

Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a ∈ Rm and b ∈ Rn, the matrices (xij) with∑

j

xij = ai ∀i y
∑

i

xij = bj ∀j .

Theorem
Every transportation polytope has linear diameter ≤ 8(f − d).
[Brightwell-van den Heuvel-Stougie, 2006].
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3-way transportation polytopes

We now consider tables
with three dimensions.
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3-way transportation polytopes

Definition
Given a ∈ Rl , b ∈ Rm and c ∈ Rn, the
1-marginal 3-way transportation polytope
associated to them is defined in lmn
non-negative variables xi,j,k ∈ R≥0 with
the l + m + n equations∑

j,k

xi,j,k = ai ∀i ,

∑
i,k

xi,j,k = bj ∀j ,∑
i,j

xi,j,k = ck ∀k .
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2-marginal version
Same definition but with
lm + ln + mn equations.
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Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]
Given any polytope P, defined via equations with rational
coefficients,

There is a 2-marginal 3-way transportation polytope
isomorphic to P.
There is a 1-marginal 3-way transportation polytope with a
face isomorphic to P.
Moreover, both can be computed in polynomial time
starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007]
Every 1-marginal 3-way transportation polytope with f facets
has diameter bounded by 4f 2.
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The end

T H A N K Y O U !
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