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The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with f facets and dimension d,

(P)<f-d.
Fifty two years later, not only the conjecture is open:

We do not know any polynomial upper bound for §(P), in terms
of f and d.



Hirsch conjecture holds for

[
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d < 3: [Klee 1966].
f — d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
0-1 polytopes [Naddef 1989]

Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

Polynomial bound for v-way transportation polytopes (for
fixed v) [de Loera-Kim-Onn-S. 2009]

H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]

H(11,4) = 6 [Schuchert, 1995],

H(12,4) = H(12,5) = H(13,6) = 7 [Bremner et al. >2009].
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Some known cases
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@ f— d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
@ 0-1 polytopes [Naddef 1989]
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@ 0-1 polytopes [Naddef 1989]

@ Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]



Introduction
0e000

Some known cases

Hirsch conjecture holds for
@ d < 3: [Klee 1966].
@ f— d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
@ 0-1 polytopes [Naddef 1989]

@ Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

@ Polynomial bound for v-way transportation polytopes (for
fixed v) [de Loera-Kim-Onn-S. 2009]



Introduction
0e000

Some known cases

Hirsch conjecture holds for
@ d < 3: [Klee 1966].
@ f— d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
@ 0-1 polytopes [Naddef 1989]

@ Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

@ Polynomial bound for v-way transportation polytopes (for
fixed v) [de Loera-Kim-Onn-S. 2009]

@ H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = H(12,5) = H(13,6) = 7 [Bremner et al. >2009].



Theorem [Kalai-Kleitman 1992]
For every d-polytope with f facets:

()(P) < f|092 d+2.
and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity

at most
eO(\/rogd).
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For every d-polytope with f facets:
5(P) < flooed¥2,

and a subexponential simplex algorithm:
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A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with f facets:

5(/3) < fI092 d+2_
and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity

at most
£0(y/flogd)



For every d-polytope with f facets:

§(P) < 2973,



For every d-polytope with f facets:

5(P) < 2973,
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Polynomial bounds, under perturbation

Given a linear program with d variables and f restrictions, we
consider a random perturbation of the matrix, within a
parameter e.
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Polynomial bounds, under perturbation

Given a linear program with d variables and f restrictions, we
consider a random perturbation of the matrix, within a
parameter e.

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected diameter of the perturbed polyhedron is
polynomial in d and ¢~ ', and polylogarithmic in f.



@ It holds with equality in (f=d+1,0=1)and
(f=2d, 6 =d).

@ If P and Q satisfy it, then so does P x Q: 6(P x Q) =
0(P) +0(Q). In particular:

For every f < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these

@ Forevery f > d, it is easy to construct
where the bound is met.



@ It holds with equality in simplices (f=d+ 1,5 =1) and
cubes (f = 2d, 0 = d).
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@ It holds with equality in simplices (f=d+ 1,5 =1) and
cubes (f = 2d, 0 = d).

@ If P and Q satisfy it, then so does P x Q: §(P x Q) =
I(P)+4(Q).
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Why is f — d a “reasonable” bound?

@ It holds with equality in simplices (f=d + 1,6 = 1) and
cubes (f =2d, 6 = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
d(P) +4(Q). In particular:

For every f < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.
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Why is f — d a “reasonable” bound?

@ It holds with equality in simplices (f=d + 1,5 = 1) and
cubes (f =2d, 6 = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
d(P) +4(Q). In particular:

For every f < 2d, there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

@ Forevery f > d, it is easy to construct unbounded
polyhedra where the bound is met.
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An unbounded d-polyhedronis polarto
of dimension d — 1.
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Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation
of dimension d — 1.




Introduction Why f — d? Partial counter-examples Hirsch-sharp polytopes Transportation polytopes

O000C [e] lele]e} 0000000C

Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation
of dimension d — 1.

Regular triangulations of dimension d — 1 with f vertices and
diameter f — d are easy to construct by “stacking” simplices

one after another.



Hirsch conjecture has the following interpretations:

10
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Hirsch conjecture has the following interpretations:

Assume f = 2d and let u and v be two complementary vertices
(no common facet):

10



Introduction Why f — d? Partial counter-examples

O000C [e]e] le]e} 00000000

Why is f — d a “reasonable” bound (2)?

Hirsch-sharp polytopes Transportation polytopes

Hirsch conjecture has the following interpretations:

Assume f = 2d and let u and v be two complementary vertices
(no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon
a facet containing u and we enter a facet containing v.
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Why is f — d a “reasonable” bound (2)?

Hirsch-sharp polytopes Transportation polytopes

Hirsch conjecture has the following interpretations:

Assume f = 2d and let u and v be two complementary vertices
(no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon
a facet containing u and we enter a facet containing v.

“d-step conjecture” = Hirsch for f = 2d.
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Why is f — d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:
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Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.
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Why is f — d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

“non-revisiting conjecture” = Hirsch.



Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{o(P) : Pis a d-polytope with f
facets}. The basic idea is:

< H@Rd—1,d—1) < H2d,d) > H2d +1,d+1) > - -

11
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Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : P is a d-polytope with f
facets}.
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Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : P is a d-polytope with f
facets}. The basic idea is:
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---

@ If f < 2d, because every pair of vertices lie in a common
facet F,
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]

Hirsch < d-step < non-revisiting.
Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---

@ If f < 2d, because every pair of vertices lie in a common
facet F, which is a polytope with one less dimension and
(at least) one less facet
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]

Hirsch < d-step < non-revisiting.
Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---

@ If f < 2d, because every pair of vertices lie in a common
facet F, which is a polytope with one less dimension and
(at least) one less facet (induction on f and f — d).
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---

@ If f > 2d, because every pair of vertices lies away from a
facet F.
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---

@ If f > 2d, because every pair of vertices lies away from a
facet F. Let P’ be the wedge of P over F. Then:
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Why is f — d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting.

Proof: Let H(f,d) = max{J(P) : Pis a d-polytope with f
facets}. The basic idea is:

. <HEd-1,d—1) < H(d,d) > HRd+1,d+1) > ---

@ If f > 2d, because every pair of vertices lies away from a
facet F. Let P’ be the wedge of P over F. Then:

dp(U, V) = dp/(u, V).
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d(u,v)=2
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Three variations of the Hirsch conjecture

The feasible region of a linear program can be an unbounded
polyhedron, instead of a polytope.
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Three variations of the Hirsch conjecture

The feasible region of a linear program can be an unbounded
polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:

The diameter of any polyhedron P with dimension d and f
facets is at most f — d.

Remark: this was the original conjecture by Hirsch.
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For the simplex method, we are only interested in monotone, w.
r. t. a certain functional ¢.

13
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Three variations of the Hirsch conjecture

For the simplex method, we are only interested in monotone, w.
r. t. a certain functional ¢.

Monotone version of the Hirsch conjecture:

For any polytope/polyhedron P with dimension d and f facets,
any linear functional ¢ and any initial vertex v:

There is a monotone path of length at most f — d from v to the
¢-maximal vertex.
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W. I. 0. g. we can assume that our polytope is simple...

13
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Three variations of the Hirsch conjecture

W. I. 0. g. we can assume that our polytope is simple... and
state the conjecture for the polar (simplicial) polytope, which is a
simplicial (d — 1)-sphere.
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Three variations of the Hirsch conjecture

W. I. 0. g. we can assume that our polytope is simple... and
state the conjecture for the polar (simplicial) polytope, which is a
simplicial (d — 1)-sphere.

Once we are there, why not remove polytopality:



“Partial counter-examples”
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Three variations of the Hirsch conjecture

W. I. 0. g. we can assume that our polytope is simple... and
state the conjecture for the polar (simplicial) polytope, which is a
simplicial (d — 1)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

For any simplicial sphere of dimension d — 1 with f vertices, the
adjacency graph among d — 1-simplices has diameter at most
f—d.
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Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

14
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples
are only by a linear factor):
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples
are only by a linear factor):

@ There are unbounded polyhedra of dimension 4 with 8
facets and diameter 5 [Klee-Walkup, 1967].
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples
are only by a linear factor):

@ There are unbounded polyhedra of dimension 4 with 8
facets and diameter 5 [Klee-Walkup, 1967].

@ There are polytopes of dimension 4 with 9 facets and
minimal monotone paths of length 5 [Todd 1980].
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples
are only by a linear factor):

@ There are unbounded polyhedra of dimension 4 with 8
facets and diameter 5 [Klee-Walkup, 1967].

@ There are polytopes of dimension 4 with 9 facets and
minimal monotone paths of length 5 [Todd 1980].

@ There are spheres of diameter bigger than Hirsch [Walkup
1978, dimension 27; Mani-Walkup 1980, dimension 11].
Altshuler [1985] proved these examples are not polytopal
spheres.
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The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded
Hirsch conjectures can both be derived from the existence of
a 4-polytope with 9 facets and with diameter 5:
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The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded
Hirsch conjectures can both be derived from the existence of
a 4-polytope with 9 facets and with diameter 5:

H(9,4) =5 = counter-example to unbounded Hirsch
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The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded
Hirsch conjectures can both be derived from the existence of
a 4-polytope with 9 facets and with diameter 5:

H(9,4) =5 = counter-example to unbounded Hirsch

From a bounded (9,4)-polytope you get an unbounded
(8,4)-polytope with (at least) the same diameter, by moving the
“extra facet” to infinity.
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The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded
Hirsch conjectures can both be derived from the existence of
a 4-polytope with 9 facets and with diameter 5:



In your bounded (9,4)-polytope you can make monotone paths
from u to v necessarily long via a projective transformation that
makes the “extra facet” be parallel to a supporting hyperplane
of one of your vertices u and v



“Partial counter-examples”
00080000

The monotone Hirsch conjecture is false

H(9,4) =5 = counter-example to monotone Hirsch

In your bounded (9,4)-polytope you can make monotone paths
from u to v necessarily long via a projective transformation that
makes the “extra facet” be parallel to a supporting hyperplane
of one of your vertices u and v
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The Klee-Walkup Hirsch-tight (9,4)-polytope

From an unbounded 4-polyhedron with 8 facets and diameter
five we can get a bounded polytope with 9 facets and sme
diameter:
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The Klee-Walkup Hirsch-tight (9,4)-polytope

“The polar of an unbounded 4-polyhedron with nine facets is a
regular triangulation of eight points in R3".
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The Klee-Walkup Hirsch-tight (9,4)-polytope

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices
and diameter 5:
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The Klee-Walkup Hirsch-tight (9,4)-polytope

These are coordinates for it, derived from this description:

a:=(-3,3,1,2), e:=(3,3,-1,2),
b:=(3,-3,1,2), f:=(-8,-3,-1,2),
c:=(2,-1,1,3), g:=(-1,-2,-1,3),
d:=(-2,1,1,3), h:=(1,2,-1,3),

w = (0,0,0, —2).
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The Mani-Walkup “always revisiting” simplicial
3-sphere

Mani and Walkup constructed a simplicial 3-ball with 20 vertices
and with two tetrahedra abcd and mnop with the property that
any path from abcd to mnop must revisit a vertex previously
abandonded.

20
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The Mani-Walkup “always revisiting” simplicial
3-sphere

Mani and Walkup constructed a simplicial 3-ball with 20 vertices
and with two tetrahedra abcd and mnop with the property that
any path from abcd to mnop must revisit a vertex previously
abandonded.

The key to the construction is in a subcomplex of two triangu-
lated octagonal bipyramids.

20
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Politopes of dimension d, with f facets and diameter f — d.

21
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Politopes of dimension d, with f facets and diameter f — d.

@ For f < 2d they are easy to construct (e.g., products of
simplices).

21
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Hirsch-sharp polytopes
Hirsch tight

Politopes of dimension d, with f facets and diameter f — d.

@ For f < 2d they are easy to construct (e.g., products of
simplices).

@ For d < 3 (and f > 2d): they do not exist.
H(f,d) ~ 21 (f - d).
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Hirsch-sharp polytopes

Hirsch tight
Politopes of dimension d, with f facets and diameter f — d.

@ For f < 2d they are easy to construct (e.g., products of
simplices).

@ For d < 3 (and f > 2d): they do not exist.
H(f,d) ~ 21 (f - d).

@ H(9,4) = 5 [Klee-Walkup 1967],
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Hirsch-sharp polytopes

Hirsch tight
Politopes of dimension d, with f facets and diameter f — d.

@ For f < 2d they are easy to construct (e.g., products of
simplices).

@ For d < 3 (and f > 2d): they do not exist.
H(f,d) ~ 21 (f - d).

@ H(9,4) = 5 [Klee-Walkup 1967], but “only by chance”:
Out of the 1142 combinatorial types of polytopes with
d =4 and f = 9 only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].
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Hirsch-sharp polytopes

Hirsch tight
Politopes of dimension d, with f facets and diameter f — d.

@ For f < 2d they are easy to construct (e.g., products of
simplices).

@ For d < 3 (and f > 2d): they do not exist.
H(f,d) ~ 21 (f - d).

@ H(9,4) = 5 [Klee-Walkup 1967], but “only by chance”:
Out of the 1142 combinatorial types of polytopes with
d =4 and f = 9 only one has diameter 5
[Altshuler-Bokowski-Steinberg, 1980].

o H(10,4) =5, H(11,4) = 6, H(12,4) = 7.

21



For the following f and d, Hirsch-sharp polytopes exist:
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Many Hirsch-sharp polytopes

Theorem:
For the following f and d, Hirsch-sharp polytopes exist:
o f<2d. f—d2d 0 1 2 3 4 5 6
® f=9,d=4, 2 = < < < < < <
[Klee-Walkup] 3 — c ¢ < < < < <
of < 3d — 3, 4 = = < < <
[Holt-Klee, 98] 5 = = =
e d> 14, 6 = = > >
[Holt-Klee, 98] 7 > > > > > > > >
@ d > 8, [Holt- 8 >z oz oz oz oz > 2
Fritzsche, 05] : oon b : :
e d>7, >14 1> > > > > > > >

[Holt, 04] H(F, d) versus (f — d).
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Many Hirsch-sharp polytopes

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

e f<2d.
e f=9,d=4,
[Klee-Walkup]
@ f<3d-3,
[Holt-Klee, 98]
o d> 14,
[Holt-Klee, 98]
@ d > 8, [Holt-
Fritzsche, 05]
ed>7,
[Holt, 04]
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When we wedge in a Hirsch-sharp polytope ...
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Hirsch-sharpness for f < 3d — 3 [Klee-Holi]

When we wedge in a Hirsch-sharp polytope ...
... we get two edges with Hirsch-distant vertices. ..

29
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Hirsch-sharpness for f < 3d — 3 [Klee-Holi]

When we wedge in a Hirsch-sharp polytope ...
... we get two edges with Hirsch-distant vertices. ..
...SO we can cut a corner on each side
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Hirsch-sharpness for d < 8 [Klee-Holt-Fritzsche]

(polar view)
When we glue two (simplicially) Hirsch-sharp polytopes along a
facet ...
54 r ) ty
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Hirsch-sharpness for d < 8 [Klee-Holt-Fritzsche]

(polar view)
When we glue two (simplicially) Hirsch-sharp polytopes along a
facet .. .the new polytope is “Hirsch-sharp-minus-1”. ..

d(Sl,[2)=d(SI, t1)+d(S2, Q)_I

24



Introduction Why f — d? Partial counter-examples Hirsch-sharp polytopes Transportation polytopes
00000 00000 00000000 00080 000000

Hirsch-sharpness for d < 8 [Klee-Holt-Fritzsche]

(polar view)
When we glue two (simplicially) Hirsch-sharp polytopes along a
facet .. .the new polytope is “Hirsch-sharp-minus-1”.. . unless
before glueing (at least) half of the neighbors of the glued faces
were not part of Hirsch paths.

d(sl, tz) =d(S1, t1)+d(52, @)
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Hirsch-sharpness for d < 8 [Klee-Holt-Fritzsche]

(polar view)
When we glue two (simplicially) Hirsch-sharp polytopes along a
facet .. .the new polytope is “Hirsch-sharp-minus-1”.. . unless
before glueing (at least) half of the neighbors of the glued faces
were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we
also create “forbidden neighbors”

! s

v
=1 v,
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Hirsch-sharp polytopes
[e]ele] o]

Hirsch-sharpness for d < 8 [Klee-Holt-Fritzsche]

(polar view)
When we glue two (simplicially) Hirsch-sharp polytopes along a
facet .. .the new polytope is “Hirsch-sharp-minus-1”.. . unless
before glueing (at least) half of the neighbors of the glued faces
were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we
also create “forbidden neighbors”

Theorem [Holt-Fritzsche '05]

After wedging 4 times in the KW (9,4)-polytope, we can glue
and preserve Hirsch-sharpness

24



(polar view)
Same idea, but instead of based on forbiden neighbors, based
on gluing along more than one simplex: Wedging times

on the KW (9,4)-polytope creates two “cliques of four simplices
on eight vertices”. We can glue on those eight vertices.
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Hirsch-sharpness for d = 7 [Holt]

(polar view)
Same idea, but instead of based on forbiden neighbors, based
on gluing along more than one simplex: Wedging three times
on the KW (9,4)-polytope creates two “cliques of four simplices
on eight vertices”. We can glue on those eight vertices.

25
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Hirsch-sharpness for d = 7 [Holl]

(polar view)
Same idea, but instead of based on forbiden neighbors, based
on gluing along more than one simplex: Wedging three times
on the KW (9,4)-polytope creates two “cliques of four simplices
on eight vertices”. We can glue on those eight vertices.
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Network

, with demands (negative numbers) or supplies
(positive numbers) associated to its vertices.



Directed graph, with demands (negative numbers) or supplies
(positive numbers) associated to its vertices.

Minimize a certain linear functional (“cost”) having one variable
for each edge x. and the restrictions:

@ For each edge e 0 < Xe.
@ For each vertex v, the sum

g Xe — g Xe
e exits v e enters v

equals the supply (positive) or demand (negative) at v.
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Network flow polytopes

Network
Directed graph, with demands (negative numbers) or supplies
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Transportation problem in a network
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Network flow polytopes

Network

Directed graph, with demands (negative numbers) or supplies
(positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional (“cost”) having one variable
for each edge x. and the restrictions:

@ For each edge e 0 < Xe.
@ For each vertex v, the sum

Y oXe— > X

e exits v e enters v
equals the supply (positive) or demand (negative) at v.
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The (set of feasible flows) in a network with V
vertices and E edges has dimension d < E — V and number of
facets f < E.

Its diamater is polynomial:

Theorem [Cunningham 79, Goldfarb-Hao 92, Orlin *97]

Every network flow polytope has diameter bounded by
O(EVlog V), that is, O(f?log f).

Remark: these are very particular polytopes (e.g., their 2-faces
have at most six sides), but extremely important in optimization.
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Network flow polytopes

The flow polytope (set of feasible flows) in a network with V
vertices and E edges has dimension d < E — V and number of
facets f < E.
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Network flow polytopes

The flow polytope (set of feasible flows) in a network with V
vertices and E edges has dimension d < E — V and number of
facets f < E.

lts diamater is polynomial:

Theorem [Cunningham 79, Goldfarb-Hao 92, Orlin '97]

Every network flow polytope has diameter bounded by
O(EV log V), that is, O(f2 log f).
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The flow polytope (set of feasible flows) in a network with V
vertices and E edges has dimension d < E — V and number of
facets f < E.

lts diamater is polynomial:

Theorem [Cunningham 79, Goldfarb-Hao 92, Orlin '97]

Every network flow polytope has diameter bounded by
O(EV log V), that is, O(f2 log f).

Remark: these are very particular polytopes (e.g., their 2-faces
have at most six sides), but extremely important in optimization.
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Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the with specified marginals:
given two vectors a € R™ and b € R”, the matrices (x;) with

Zx,-j:a,- Vi Yy ZX,'/':bj Vj'.
J i

Example

m=2,n=3;
a=(10,6), b= (4,5,7).
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The network flow polytopes of complete bipartite graphs.
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Transportation polytopes

Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

inj:ai Vioy ZX/j:bj vj.
j i
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Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

Sxj=a ¥i oy Y xj=b V.
i i

m=2,n=3;
a=(10,6), b= (4,5,7).
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Transportation polytopes
Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

ZX,'/' =a Vi vy ZX,'/' = bj V.
j i
m=2,n=3; I:I:I
a=(10,6), b= (4,5,7).
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Transportation polytopes

Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

ZX,'/' = gj Vi Yy ZX,'/' = bj Vj.
Ji i
a=(10,6), b= (4,5,7).
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Transportation polytopes
Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

ZX,'/' =a Vi vy ZX,'/' = bj V.
j i
m=2,n=3; I:I:I
a=(10,6), b= (4,5,7).
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Transportation polytopes

Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

ZX,'/' = gj Vi Yy ZX,'/' = bj Vj.
Ji i
4

m=2,n=23;
a=(10,6), b= (4,5,7).
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Transportation polytopes

Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

Sxj=a ¥i oy Y xj=b V.
i i

Z’zz’n:?” |1—5—i

= (10,6), b= (4,5,7).
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Transportation polytopes
Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

Sxj=a ¥i oy Y xj=b V.
i i
Example  Bampe

m=2,n=3; m=na=b=>1,...,1)=
a=(10,6), b= (4,5,7). Birkhoff polytope.
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Transportation polytope
The network flow polytopes of complete bipartite graphs.

Also: the with specified marginals:
given two vectors a € R™ and b € R”, the matrices (x;) with

Zx,-/fa,- Vioy Zx,-/fbj V).
j i

Theorem

Every transportation polytope has linear diameter < 8(f — d).
[Brightwell-van den Heuvel-Stougie, 2006].
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The network flow polytopes of complete bipartite graphs.
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Transportation polytopes
Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals:
given two vectors a € R™ and b € R", the matrices (x;;) with

ZXij:ai Vioy ZXU bj
J

Theorem

Every transportation polytope has linear diameter < 8(f — d).
[Brightwell-van den Heuvel-Stougie, 2006].
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We now consider tables
with three dimensions.



00000000

Givenace R, beR™andceR",
1-marginal 3-way

associated to them is defined in Imn
non-negative variables x;; x € R>¢ with
the I + m + n equations

Z Xjjk = a Vi,
ik
inﬁj“k = b; v,
ik

ZX,‘_]'_k = Ck VK. 44
i

=T
7
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Definition

Given ac R/, b R™and ¢ € R”, the
1-marginal 3-way transportation polytope
associated to them is defined in Imn
non-negative variables x;; x € R with
the I + m + n equations
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Given ac R/, b R™and ¢ € R”, the
1-marginal 3-way transportation polytope
associated to them is defined in Imn
non-negative variables x;; x € R with
the I + m + n equations

in’jvk = a; Vi,
j,k
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Definition

Given ac R/, b R™and ¢ € R”, the
1-marginal 3-way transportation polytope
associated to them is defined in Imn
non-negative variables x;; x € R with
the I + m + n equations

in’jvk = a; Vi,
j,k
in,j,k = b; Vj,

ik

in,/,k = Ck VK.
i?j
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3-way transportation polytopes

Definition 2-marginal version

Given ac R/, bc R™ and ¢ € R, the Same definition but with
1-marginal 3-way transportation polytope  Im+ In+ mn equations.
associated to them is defined in Imn

non-negative variables x;; x € R with

the I + m + n equations

in’jvk = gj Vi,
j,k

in,j,k = b; Vj,
ik

in,/,k = Ck VK.
i7j
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3-way transportation polytopes

Definition 2-marginal version
Givenac R/, be R™and c € R”, the Given three matrices
1-marginal 3-way transportation polytope A € R, B € R and
associated to them is defined in Imn C e R™,

non-negative variables x;; x € R with
the I + m + n equations

in’jvk = gj Vi,
j,k

in,j,k = b; Vj,
ik

in,/,k = Ck VK.
i7j
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3-way transportation polytopes

Definition 2-marginal version

Given ac R/, bc R™ and ¢ € R, the Given three matrices

1-marginal 3-way transportation polytope A € R, B € R and

associated to them is defined in Imn C e R™,

non-negative variables x;; x € R with o

the / + m + n equations Z Xijk = Aj Vi ],
k

in’jvk = gj Vi,
j,k

in,j,k = b; Vj,
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in,/,k = Ck VK.
i7j
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3-way transportation polytopes

Definition 2-marginal version
Given ac R/, bc R™ and ¢ € R, the Given three matrices
1-marginal 3-way transportation polytope A € R, B € R and
associated to them is defined in Imn C e R™,
non-negative variables x;; x € R with o
the I + m+ n equations Z Xijk = Ajj Vi, J,
k

in’jvk = gj Vi,

j-k > Xijk =B Vi.k,

> Xijk = b Vi, !

ik

in’j’k = Ck VK.
i7j
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3-way transportation polytopes

Definition 2-marginal version
Given ac R/, bc R™ and ¢ € R, the Given three matrices
1-marginal 3-way transportation polytope A € R, B € R and
associated to them is defined in Imn C e R™,
non-negative variables x;; x € R with o
the I + m+ n equations Z Xijk = Ajj Vi, J,
k
> Xijk = a Vi,
j-k > Xijk =B Vi.k,
> Xijk = b Vi, !
ik
ZXI,],k = Ck vk. ZX/,/,k = Ck \v/j’ k'
i

i7j
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@ There is a 2-marginal 3-way transportation polytope
isomorphic to P.

@ There is a 1-marginal 3-way transportation polytope with a
face isomorphic to P.

@ Moreover, both can be computed in polynomial time
starting from the description of P.
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Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]

Given any polytope P, defined via equations with rational
coefficients,
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@ There is a 2-marginal 3-way transportation polytope
isomorphic to P.
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Universality of 3-way transportation polytopes

Theorem [De Loera-Onn 2004]

Given any polytope P, defined via equations with rational
coefficients,

@ There is a 2-marginal 3-way transportation polytope
isomorphic to P.

@ There is a 1-marginal 3-way transportation polytope with a
face isomorphic to P.

@ Moreover, both can be computed in polynomial time
starting from the description of P.

Every 1-marginal 3-way transportation polytope with f facets
has diameter bounded by 4.
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