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Polyhedra and polytopes

Definition
A (convex) polyhedron P is the intersection of a finite family of
affine half-spaces in Rd .

The dimension of P is the dimension of its affine hull.

2



The conjecture Motivation: LP Some background The counter-example Conclusion

Polyhedra and polytopes

Definition
A (convex) polytope P is the convex hull of a finite set of points
in Rd .

The dimension of P is the dimension of its affine hull.

2



The conjecture Motivation: LP Some background The counter-example Conclusion
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Every polytope is a polyhedron, but not conversely.
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Faces of P

Let P be a polytope (or polyhedron) and let

H = {x ∈ Rd : a1x1 + · · · adxd ≤ a0}

be an affine half-space.

If P ⊂ H we say that ∂H ∩ P is a face of P.
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Faces of P

The “empty face” of P.
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Faces of P
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Faces of P

Faces of dimension 0 are called vertices.
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Faces of P

Faces of dimension 1 are called edges.
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Faces of P

Faces of dimension d − 1 (codimension 1) are called facets.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The diameter of G(P) (or of P) is the maximum distance among
its vertices:

δ(P) = max{d(u, v) : u, v ∈ V}.
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The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...

Theorem (S. 2010+)
There is a 23-dim. polytope with 46 facets and diameter 24.

Corollary (S. 2010+)
There is an infinite family of non-Hirsch polytopes with diameter
∼ (1 + ε)n, even in fixed dimension. (Best so far: ε = 1/23).
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Motivation: linear programming

A linear program is the problem of maximization / minimization
of a linear functional subject to linear inequality constraints.
That is:

Given
a matrix M of size n × d ,
a vector b ∈ Rn

a vector z ∈ Rd (cost, objective function)

Find a x ∈ Rd that minimizes 〈z, x〉
Among those satisfying Mx ≤ b.
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Conection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m
equality constraints in n nonnegative variables is
almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2010)

9



The conjecture Motivation: LP Some background The counter-example Conclusion

Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m
equality constraints in n nonnegative variables is
almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2010)

9



The conjecture Motivation: LP Some background The counter-example Conclusion

Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

The simplex method was chosen one of the “10
algorithms with the greatest influence on the
development and practice of science and engineering
in the 20th century” in the selection made by the
journal Computing in Science and Engineering in the
year 2000.
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Complexity of linear programming

Besides, the polynomial methods for LP known are not strongly
polynomial. They are polynomial in the “bit model” but not in the
“real machine model” [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.
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... in any case, ...
Knowing the behavior of polytope diameters
is one of the most fundamental open
questions in geometric combinatorics.
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A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with n facets:

δ(P) ≤ nlog2 d+2.

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity
at most

eO(
√

n log d).
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Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we
consider a random perturbation of the matrix, within a
parameter ε (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is
polynomial in d and ε−1, and polylogarithmic in n.
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More generally, given any two vertices u and v of a polytope P:

non-revisiting path conjecture
It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path⇒ Hirsch.
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Why is n − d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·
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If n < 2d , because every pair of vertices lie in a common
facet F , which is a polytope with one less dimension and
(at least) one less facet (induction on n and n − d).
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If n > 2d , because every pair of vertices lies away from a
facet F . Let P ′ be the wedge of P over F . Then:

dP′(u′, v ′) ≥ dP(u, v).
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Wedging, a.k.a. one-point-suspension

vF

w

u
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v

d(a’, b’)=2

b’

F
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d(a, b)=2

b

a

u
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Two ingredients

The construction of our counter-example has two parts:

1 A “strong d-step theorem” for spindles/prismatoids.
2 The construction of a prismatoid of dimension 5 and

“width” 6.
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Spindles and prismatoids

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v .

u u

vv

Definition
The length of a
spindle is the
graph distance
from u to v .
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Spindles and prismatoids

Definition
A prismatoid is a polytope Q with two facets Q+ and Q−

containing all vertices.

Q+

Q−

Q

Definition
The width of a
primatoid is the
dual graph
distance from Q+

to Q−.
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The strong d-step Theorem

Theorem (Strong d-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with
length δ.
Then there is another spindle P ′ of dimension d + 1, with n + 1
facets and with length δ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d .

Corollary
In particular, if a spindle P has length > d then there is another
spindle P ′ (of dimension n − d, with 2n − 2d facets, and length
≥ δ + n − 2d > n − d) that violates the Hirsch conjecture.
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The strong d-step Theorem

Theorem (Strong d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices, and
with width δ.
Then there is another prismatoid Q′ of dimension d + 1, with
n + 1 vertices and with width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .
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The strong d-step Theorem

Proof.

Q ⊂ R2

Q+

Q−
Q̃−

Q̃ ⊂ R3

Q̃+

w

Q̃− := o. p. s.v(Q−)

Q+

w

o. p. s.v(Q) ⊂ R3

v

u

u
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The prismatoid

Let Q be the polytope having as vertices the 48 rows of the
following matrices:

0BBBBBBBBB@

x1 x2 x3 x4 x5
±18 0 0 0 1

0 ±18 0 0 1
0 0 ±45 0 1
0 0 0 ±45 1
±15 ±15 0 0 1

0 0 ±30 ±30 1
0 ±10 ±40 0 1
±10 0 0 ±40 1

1CCCCCCCCCA

0BBBBBBBBB@

x1 x2 x3 x4 x5
0 0 0 ±18 −1
0 0 ±18 0 −1
±45 0 0 0 −1

0 ±45 0 0 −1
0 0 ±15 ±15 −1
±30 ±30 0 0 −1
±40 0 ±10 0 −1

0 ±40 0 ±10 −1

1CCCCCCCCCA
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The prismatoid

Theorem

The prismatoid Q of the previous slide has width six.
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The prismatoid

Theorem

The prismatoid Q of the previous slide has width six.

Corollary
There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.
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The prismatoid

Theorem

The prismatoid Q of the previous slide has width six.

Proof 1 of the Theorem.
It has been verified with polymake that the dual graph of Q
has the following structure:

IC

D

F

E G J

H

BA K L
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The prismatoid

Proof 2 of the Theorem.
Analyzing the combinatorics of a d-prismatoid can be done in a
d − 2-sphere. . .

Q+

Q−

Q ∩ H
H

Q

. . . so, the proof is basically 3-dimensional.
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Towards a smaller counter-example

There are two ways in which a smaller non-Hirsch could be
obained:

Find a smaller 5-prismatoid of width > 5 (open), or
Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem
[S. 2010+] Every prismatoid of dimension four has width ≤ 4.
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A smaller counter-example

Theorem
The following prismatoid of dimension 5 has width 6:

Q := conv

8>>>>>>>><>>>>>>>>:

0BBB@
x1 x2 x3 x4 x5
±18 0 0 0 1

0 0 ±30 0 1
0 0 0 ±30 1
0 ±5 0 ±25 1
0 0 ±18 ±18 1

1CCCA
0BBB@

x1 x2 x3 x4 x5
0 0 ±18 0 −1
0 ±30 0 0 −1
±30 0 0 0 −1
±25 0 0 ±5 −1
±18 ±18 0 0 −1

1CCCA

9>>>>>>>>=>>>>>>>>;

Corollary
There is a 23-polytope with 46 facets violating the Hirsch
conjecture.
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Conclusion

Via glueing and products, the counterexample can be
converted into an infinite family that violates the Hirsch
conjecture by about 2%.
This breaks a “psychological barrier”, but for applications it
is absolutely irrelevant.

Finding a counterexample will be merely a small first
step in the line of investigation related to the
conjecture.

(V. Klee and P. Kleinschmidt, 1987)
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The end

T H A N K Y O U !
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