The conjecture

Motivation: LI

Some background

The counter-example

Conclusion

Counter-examples to the Hirsch conjecture arXiv:1006.2814

Francisco Santos http://personales.unican.es/santosf/Hirsch

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

Seville, December 3, 2010 — Exploratory Workshop on MINLP

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
0000	00000	00000	000000	

Definition

A (convex) polyhedron *P* is the intersection of a finite family of affine half-spaces in \mathbb{R}^d .

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Definition

A (convex) polytope *P* is the convex hull of a finite set of points in \mathbb{R}^d .

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
0000	00000	00000	000000	

Polytope = bounded polyhedron.

Every polytope is a polyhedron, but not conversely.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Polytope = bounded polyhedron.

Every polytope is a polyhedron, but not conversely.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion	
Faces of P					

Let P be a polytope (or polyhedron) and let

$$H = \{x \in \mathbb{R}^d : a_1 x_1 + \cdots + a_d x_d \leq a_0\}$$

be an affine half-space.

If $P \subset H$ we say that $\partial H \cap P$ is a face of P.

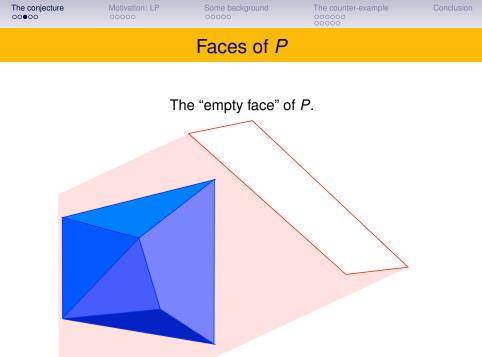
The conjecture	Motivation: LP	Some background	The counter-example	Conclusion	
Faces of P					

Let P be a polytope (or polyhedron) and let

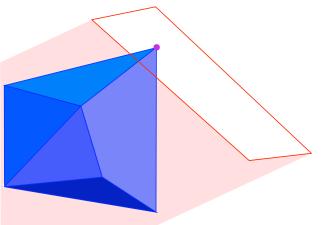
$$H = \{x \in \mathbb{R}^d : a_1 x_1 + \cdots + a_d x_d \leq a_0\}$$

be an affine half-space.

If $P \subset H$ we say that $\partial H \cap P$ is a face of P.

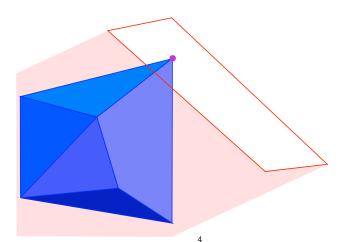


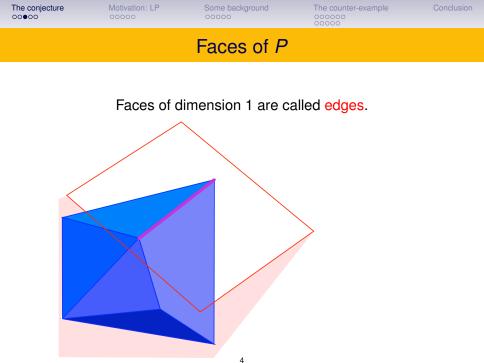
The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
		Faces of P		



The conjecture ○○●○○	Motivation: LP	Some background	The counter-example	Conclusion
		Faces of P		

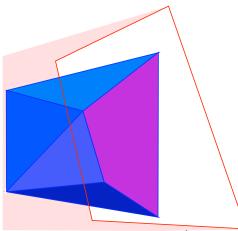
Faces of dimension 0 are called vertices.





The conjecture ○○●○○	Motivation: LP	Some background	The counter-example	Conclusion
		Faces of P		

Faces of dimension d - 1 (codimension 1) are called facets.



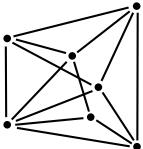
Vertices and edges of a polytope *P* form a graph (finite, undirected)

The distance d(u, v) between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Vertices and edges of a polytope *P* form a graph (finite, undirected)

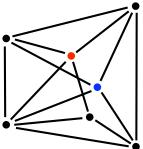


The distance d(u, v) between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Vertices and edges of a polytope *P* form a graph (finite, undirected)

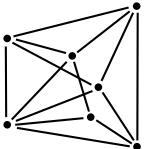


The distance d(u, v) between vertices u and v is the length (number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Vertices and edges of a polytope *P* form a graph (finite, undirected)



The diameter of G(P) (or of P) is the maximum distance among its vertices:

$$\delta(\boldsymbol{P}) = \max\{\boldsymbol{d}(\boldsymbol{u},\boldsymbol{v}): \boldsymbol{u},\boldsymbol{v}\in\boldsymbol{V}\}.$$

The conjecture 0000●	Motivation: LP	Some background	The counter-example	Conclusion

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty three years later...

Theorem (S. 2010+)

There is a 23-dim. polytope with 46 facets and diameter 24.

Corollary (S. 2010+)

There is an infinite family of non-Hirsch polytopes with diameter $\sim (1 + \epsilon)n$, even in fixed dimension. (Best so far: $\epsilon = 1/23$).

The conjecture 0000●	Motivation: LP	Some background	The counter-example	Conclusion

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n} - \boldsymbol{d}.$

Fifty three years later...

Theorem (S. 2010+)

There is a 23-dim. polytope with 46 facets and diameter 24.

Corollary (S. 2010+)

There is an infinite family of non-Hirsch polytopes with diameter $\sim (1 + \epsilon)n$, even in fixed dimension. (Best so far: $\epsilon = 1/23$).

The conjecture 0000●	Motivation: LP	Some background	The counter-example	Conclusion

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)

For every polytope P with n facets and dimension d,

 $\delta(P) \leq n - d.$

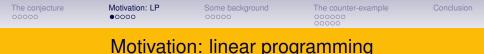
Fifty three years later...

Theorem (S. 2010+)

There is a 23-dim. polytope with 46 facets and diameter 24.

Corollary (S. 2010+)

There is an infinite family of non-Hirsch polytopes with diameter $\sim (1 + \epsilon)n$, even in fixed dimension. (Best so far: $\epsilon = 1/23$).

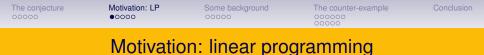


A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints. That is:

Given

a matrix *M* of size *n* × *d*,
a vector *b* ∈ ℝⁿ
a vector *z* ∈ ℝ^d (cost, objective function)

Find a *x* ∈ ℝ^d that minimizes ⟨*z*, *x*⟩
Among those satisfying *Mx* ≤ *b*.



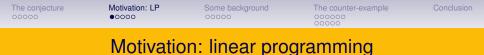
A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints. That is:

Given

a matrix *M* of size $n \times d$, a vector $b \in \mathbb{R}^n$ a vector $z \in \mathbb{R}^d$ (cost, objective function)

• Find a $x \in \mathbb{R}^d$ that minimizes $\langle z, x \rangle$

• Among those satisfying $Mx \le b$.



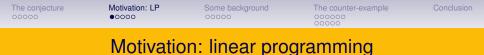
A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints. That is:

Given

a matrix *M* of size $n \times d$, a vector $b \in \mathbb{R}^n$ a vector $z \in \mathbb{R}^d$ (cost, objective function)

• Find a $x \in \mathbb{R}^d$ that minimizes $\langle z, x \rangle$

• Among those satisfying $Mx \le b$.



A linear program is the problem of maximization / minimization of a linear functional subject to linear inequality constraints. That is:

Given

a matrix *M* of size $n \times d$, a vector $b \in \mathbb{R}^n$ a vector $z \in \mathbb{R}^d$ (cost, objective function)

- Find a $x \in \mathbb{R}^d$ that minimizes $\langle z, x \rangle$
- Among those satisfying $Mx \leq b$.

The conjecture	Motivation: LP ○●○○○	Some background	The counter-example	Conclusion

- The set of feasible solutions $P = \{x \in \mathbb{R}^d : Mx \le b\}$ is a polyhedron *P* with (at most) *n* facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

The conjecture	Motivation: LP ○●○○○	Some background	The counter-example	Conclusion

- The set of feasible solutions $P = \{x \in \mathbb{R}^d : Mx \le b\}$ is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

- The set of feasible solutions P = {x ∈ ℝ^d : Mx ≤ b} is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

- The set of feasible solutions P = {x ∈ ℝ^d : Mx ≤ b} is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

- The set of feasible solutions $P = \{x \in \mathbb{R}^d : Mx \le b\}$ is a polyhedron P with (at most) n facets.
- The optimal solution (if it exists) is always attained at a vertex.
- The simplex method [Dantzig 1947] solves the linear program by starting at any feasible vertex and moving along the graph of *P*, in a monotone fashion, until the optimum is attained.
- In particular, the Hirsch conjecture is related to the question of whether the simplex method is a polynomial-time algorithm.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	0000	00000	000000	

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	0000	00000	000000	

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m equality constraints in n nonnegative variables is almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method of choice, a method of choice, usually competitive with, and on some classes of problems superior to, the more modern approaches.

(M. Todd, 2010)

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	0000	00000	000000	

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m equality constraints in n nonnegative variables is almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method of choice, a method of choice, usually competitive with, and on some classes of problems superior to, the more modern approaches.

(M. Todd, 2010)

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	0000	00000	000000	

There are more recent algorithms for linear programming which are proved to be polynomial: (ellipsoid [1979], interior point [1984]). But the simplex method is still one of the most often used, for its simplicity and practical efficiency:

The simplex method was chosen one of the "10 algorithms with the greatest influence on the development and practice of science and engineering in the 20th century" in the selection made by the journal *Computing in Science and Engineering* in the year 2000.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Besides, the polynomial methods for LP known are not *strongly polynomial*. They are polynomial in the "bit model" but not in the "real machine model" [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" according to [Smale 2000]. A polynomial pivot rule would solve this problem in the affirmative.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Besides, the polynomial methods for LP known are not *strongly polynomial*. They are polynomial in the "bit model" but not in the "real machine model" [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" according to [Smale 2000]. A polynomial pivot rule would solve this problem in the affirmative.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Besides, the polynomial methods for LP known are not *strongly polynomial*. They are polynomial in the "bit model" but not in the "real machine model" [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming is one of the "mathematical problems for the 21st century" according to [Smale 2000]. A polynomial pivot rule would solve this problem in the affirmative. The conjecture

Motivation: LP

Some background

The counter-example

Conclusion

... in any case, ...

Knowing the behavior of polytope diameters is one of the most fundamental open questions in geometric combinatorics. The conjecture

Motivation: LP

Some background

The counter-example

Conclusion

... in any case, ...

Knowing the behavior of polytope diameters is one of the most fundamental open questions in geometric combinatorics. The conjecture

Motivation: LP

Some background

The counter-example

Conclusion

... in any case, ...

Knowing the behavior of polytope diameters is one of the most fundamental open questions in geometric combinatorics.

The conjecture	Motivation: LP	Some background ●0000	The counter-example	Conclusion

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *n* facets:

 $\delta(\boldsymbol{P}) \leq \boldsymbol{n}^{\log_2 d+2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $e^{O(\sqrt{n\log d})}$.

The conjecture	Motivation: LP	Some background •0000	The counter-example	Conclusion

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *n* facets:

 $\delta(\boldsymbol{P}) \leq n^{\log_2 d + 2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $e^{O(\sqrt{n\log d})}$

The conjecture	Motivation: LP	Some background ●0000	The counter-example	Conclusion

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *n* facets:

 $\delta(\boldsymbol{P}) \leq n^{\log_2 d+2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $e^{O(\sqrt{n\log d})}$

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *n* facets:

 $\delta(\boldsymbol{P}) \leq n^{\log_2 d+2}.$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

 $e^{O(\sqrt{n\log d})}$

The conjecture	Motivation: LP	Some background ○●○○○	The counter-example	Conclusion

Polynomial bounds, under perturbation

Given a linear program with *d* variables and *n* restrictions, we consider a random perturbation of the matrix, within a parameter ϵ (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected diameter of the perturbed polyhedron is polynomial in d and e^{-1} , and polylogarithmic in n.

The conjecture	Motivation: LP	Some background o●ooo	The counter-example	Conclusion

Polynomial bounds, under perturbation

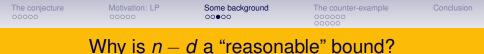
Given a linear program with *d* variables and *n* restrictions, we consider a random perturbation of the matrix, within a parameter ϵ (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected diameter of the perturbed polyhedron is polynomial in *d* and e^{-1} , and polylogarithmic in *n*.

The conjecture	Motivation: LP	Some background ○○●○○	The counter-example	Conclusion

Hirsch conjecture has the following interpretations:



Hirsch conjecture has the following interpretations:

Assume n = 2d and let *u* and *v* be two complementary vertices (no common facet):

Hirsch conjecture has the following interpretations:

Assume n = 2d and let *u* and *v* be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

"*d*-step conjecture" \Rightarrow Hirsch for n = 2d.

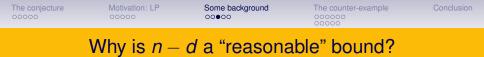
Hirsch conjecture has the following interpretations:

Assume n = 2d and let *u* and *v* be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

"*d*-step conjecture" \Rightarrow Hirsch for n = 2d.



Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

non-revisiting path \Rightarrow Hirsch.

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

non-revisiting path \Rightarrow Hirsch.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

The conjecture	Motivation: LP	Some background ○○○●○	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

The conjecture	Motivation: LP	Some background ○○○●○	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

 If n < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on n and n − d).

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

 If n < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on n and n − d).

The conjecture	Motivation: LP	Some background ○○○●○	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

• If n < 2d, because every pair of vertices lie in a common facet *F*, which is a polytope with one less dimension and (at least) one less facet (induction on *n* and n - d).

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

If n > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

 $d_{P'}(u',v')\geq d_P(u,v).$

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

If n > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

The conjecture	Motivation: LP	Some background ○○○●○	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

If n > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

 $d_{P'}(u',v') \geq d_P(u,v).$

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting path.

Proof: Let $H(n, d) = \max{\delta(P) : P \text{ is a } d\text{-polytope with } n \text{ facets}}$. The basic idea is:

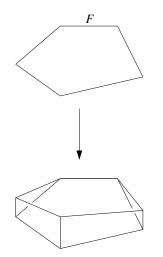
 $\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$

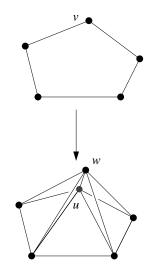
If n > 2d, because every pair of vertices lies away from a facet F. Let P' be the wedge of P over F. Then:

 $d_{P'}(u',v') \geq d_P(u,v).$

he conjecture	Motivation: LP	Some background	The counter-example	Conclusion

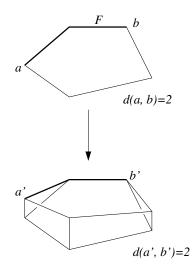
Wedging, a.k.a. one-point-suspension

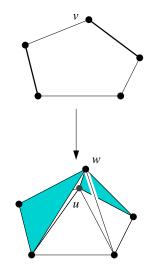




ne conjecture 0000	Motivation: LP	Some background	The counter-example	Conclusion

Wedging, a.k.a. one-point-suspension





The conjecture	Motivation: LP	Some background	The counter-example ●00000 ○0000	Conclusion
Two ingredients				

The construction of our counter-example has two parts:

- A "strong *d*-step theorem" for spindles/prismatoids.
- 2 The construction of a prismatoid of dimension 5 and "width" 6.

The conjecture	Motivation: LP	Some background	The counter-example ●00000 00000	Conclusion	
	Two ingredients				

The construction of our counter-example has two parts:

- A "strong *d*-step theorem" for spindles/prismatoids.
- 2 The construction of a prismatoid of dimension 5 and "width" 6.

The conjecture	Motivation: LP	Some background	The counter-example ●00000 00000	Conclusion			
Two ingredients							

The construction of our counter-example has two parts:

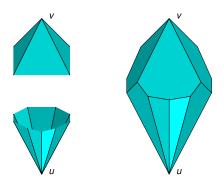
- A "strong *d*-step theorem" for spindles/prismatoids.
- The construction of a prismatoid of dimension 5 and "width" 6.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	00000	

Spindles and prismatoids

Definition

A *spindle* is a polytope P with two distinguished vertices u and v such that every facet contains either u or v.



Definition

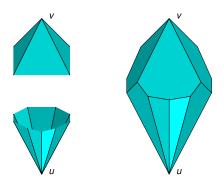
The *length* of a spindle is the graph distance from *u* to *v*.

The conjecture	Motivation: LP	Some background	The counter-example ○●○○○○	Conclusion

Spindles and prismatoids

Definition

A *spindle* is a polytope P with two distinguished vertices u and v such that every facet contains either u or v.



Definition

The *length* of a spindle is the graph distance from *u* to *v*.

cture Motivation: LP

Some background

The counter-example

Conclusion

Spindles and prismatoids

Definition

A *prismatoid* is a polytope Q with two facets Q^+ and Q^- containing all vertices.



Definition

The width of a primatoid is the dual graph distance from Q^+ to Q^- .

cture Motivation: LP

Some background

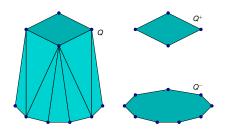
The counter-example

Conclusion

Spindles and prismatoids

Definition

A *prismatoid* is a polytope Q with two facets Q^+ and Q^- containing all vertices.



Definition

The width of a primatoid is the dual graph distance from Q^+ to Q^- .

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Theorem (Strong *d*-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with length δ . Then there is another spindle P' of dimension d + 1, with n + 1 facets and with length $\delta + 1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another spindle P' (of dimension n - d, with 2n - 2d facets, and length $\geq \delta + n - 2d > n - d$) that violates the Hirsch conjecture.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Theorem (Strong *d*-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with length δ . Then there is another spindle P' of dimension d + 1, with n + 1 facets and with length $\delta + 1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another spindle P' (of dimension n - d, with 2n - 2d facets, and length $\geq \delta + n - 2d > n - d$) that violates the Hirsch conjecture.

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion
00000	00000	00000	000000	

Theorem (Strong *d*-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with length δ . Then there is another spindle P' of dimension d + 1, with n + 1 facets and with length $\delta + 1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another spindle P' (of dimension n - d, with 2n - 2d facets, and length $\geq \delta + n - 2d > n - d$) that violates the Hirsch conjecture.

conjecture	Motiv
000	000

Theorem (Strong *d*-step, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices, and with width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and with width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

conjecture	Motivatio
20	00000

The

Some background

The counter-example

Conclusion

The strong *d*-step Theorem

Theorem (Strong *d*-step, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices, and with width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and with width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

The conjecture

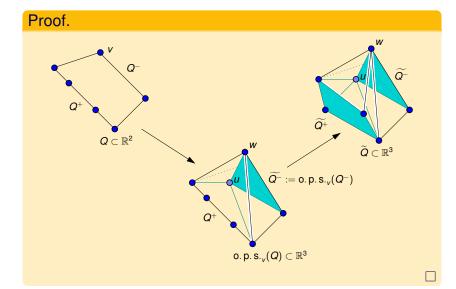
Notivation: LP

Some background

The counter-example

Conclusion

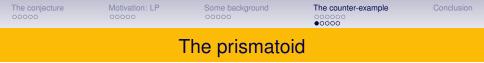
The strong *d*-step Theorem



The conjecture	Motivation: LP	Some background	The counter-example ○○○○○ ●○○○○	Conclusion
	-	The prismato	id	

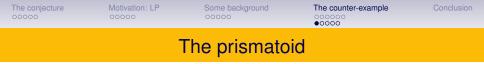
Let Q be the polytope having as vertices the 48 rows of the following matrices:

x_1			X_1	X2		
		1.1				-1
		- 1				-1
		- 1				-1
		- 1				-1
		- 1				-1
		- 1				-1
		- 1				-1
		1				-1/



Let *Q* be the polytope having as vertices the 48 rows of the following matrices:

X_1			X_1	X2	X_4	
		-1				-1)
		- 1				-1
		- 1				-1
		- 1				-1
		- 1				-1
		- 1				-1
		- 1				-1
		-1				-1/



Let *Q* be the polytope having as vertices the 48 rows of the following matrices:

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₁	<i>x</i> 2	x ₃	<i>x</i> ₄	x5
/ ±18	0	0	0	1	/ 0	0	0	± 18	-1
0	± 18	0	0	1	0	0	± 18	0	-1
0	0	± 45	0	1	± 45	0	0	0	-1
0	0	0	± 45	1	0	± 45	0	0	-1
±15	± 15	0	0	1	0	0	± 15	± 15	-1
0	0	\pm 30	\pm 30	1	± 30	\pm 30	0	0	-1
0	± 10	± 40	0	1		0			
± 10	0	0	± 40	1,	\ o	± 40	0	± 10	-1/

The conjecture	Motivation: LP	Some background	The counter-example ○○○○○ ○●○○○	Conclusion
	-	The prismato	id	

Theorem

The prismatoid Q of the previous slide has width six.

The conjecture	Motivation: LP	Some background	The counter-example ○○○○○ ○●○○○	Conclusion
		The prismato	id	

Theorem

The prismatoid Q of the previous slide has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter (at least) 44.

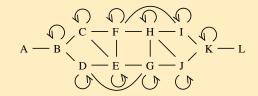
The conjecture	Motivation: LP	Some background	The counter-example ○○○○○ ○●○○○	Conclusion
		The prismato	id	

Theorem

The prismatoid Q of the previous slide has width six.

Proof 1 of the Theorem.

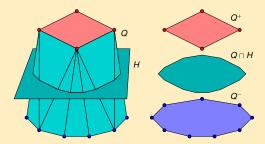
It has been verified with polymake that the dual graph of *Q* has the following structure:



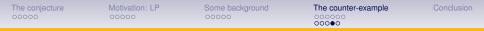
The conjecture	Motivation: LP	Some background	The counter-example	Conclusion		
The prismatoid						

Proof 2 of the Theorem.

Analyzing the combinatorics of a *d*-prismatoid can be done in a d-2-sphere...



... so, the proof is basically 3-dimensional.

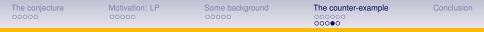


There are two ways in which a smaller non-Hirsch could be obained:

- Find a smaller 5-prismatoid of width > 5 (open), or
- Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem



There are two ways in which a smaller non-Hirsch could be obained:

• Find a smaller 5-prismatoid of width > 5 (open), or

• Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem

There are two ways in which a smaller non-Hirsch could be obained:

- Find a smaller 5-prismatoid of width > 5 (open), or
- Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem

There are two ways in which a smaller non-Hirsch could be obained:

- Find a smaller 5-prismatoid of width > 5 (open), or
- Find a 4-prismatoid of width > 4.

The latter is impossible:

Theorem

00000 00000 00000	ision
00000	

A smaller counter-example

Theorem

The following prismatoid of dimension 5 has width 6:

$$Q := \operatorname{conv} \left\{ \begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ (\begin{array}{c} \pm 18 & 0 & 0 & 0 & 1 \\ 0 & 0 & \pm 30 & 0 & 1 \\ 0 & 0 & 0 & \pm 30 & 1 \\ 0 & \pm 5 & 0 & \pm 25 & 1 \\ 0 & 0 & \pm 18 & \pm 18 & 1 \end{array} \right) \qquad \left(\begin{array}{ccccc} 0 & 0 & \pm 18 & 0 & -1 \\ 0 & \pm 30 & 0 & 0 & -1 \\ \pm 30 & 0 & 0 & 0 & -1 \\ \pm 25 & 0 & 0 & \pm 5 & -1 \\ \pm 18 & \pm 18 & 0 & 0 & -1 \end{array} \right)$$

Corollary

There is a 23-polytope with 46 facets violating the Hirsch conjecture.

The conjecture	Motivation: LP	Some background	The counter-example ○○○○○ ○○○○●	Conclusion

A smaller counter-example

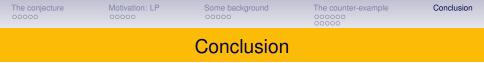
Theorem

The following prismatoid of dimension 5 has width 6:

$$Q := \operatorname{conv} \left\{ \begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 & & & x_1 & x_2 & x_3 & x_4 & x_5 \\ & \begin{pmatrix} \pm 18 & 0 & 0 & 0 & 1 \\ 0 & 0 & \pm 30 & 0 & 1 \\ 0 & \pm 5 & 0 & \pm 25 & 1 \\ 0 & 0 & \pm 18 & \pm 18 & 1 \end{array} \right) \qquad \left(\begin{array}{ccccc} 0 & 0 & \pm 18 & 0 & -1 \\ 0 & \pm 30 & 0 & 0 & 0 & -1 \\ \pm 30 & 0 & 0 & 0 & -1 \\ \pm 25 & 0 & 0 & \pm 5 & -1 \\ \pm 18 & \pm 18 & 0 & 0 & -1 \end{array} \right)$$

Corollary

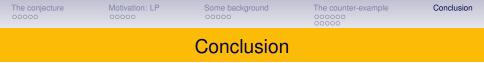
There is a 23-polytope with 46 facets violating the Hirsch conjecture.



- Via glueing and products, the counterexample can be converted into an infinite family that violates the Hirsch conjecture by about 2%.
- This breaks a "psychological barrier", but for applications it is absolutely irrelevant.

Finding a counterexample will be merely a small first step in the line of investigation related to the conjecture.

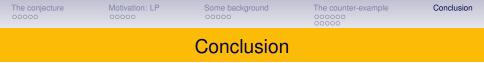
(V. Klee and P. Kleinschmidt, 1987)



- Via glueing and products, the counterexample can be converted into an infinite family that violates the Hirsch conjecture by about 2%.
- This breaks a "psychological barrier", but for applications it is absolutely irrelevant.

Finding a counterexample will be merely a small first step in the line of investigation related to the conjecture.

(V. Klee and P. Kleinschmidt, 1987)



- Via glueing and products, the counterexample can be converted into an infinite family that violates the Hirsch conjecture by about 2%.
- This breaks a "psychological barrier", but for applications it is absolutely irrelevant.

Finding a counterexample will be merely a small first step in the line of investigation related to the conjecture.

(V. Klee and P. Kleinschmidt, 1987)

The conjecture	Motivation: LP	Some background	The counter-example	Conclusion			
The end							

THANK YOU!