Prismatoids,	Hirsch	and	pairs	of	maps
0000					

5-prismatoids

Conclusion

Width of low-dimensional prismatoids

Francisco Santos

Universidad de Cantabria, Spain http://personales.unican.es/santosf/Hirsch

Conference on Geometric Graph Theory - Lausanne, September 28, 2010

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids,	Hirsch	and	pairs	of maps	
0000					
000					

5-prismatoids

Conclusion

Prismatoids, the Hirsch conjecture, and pairs of maps

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion
	Prismatoids	i -	

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

Exercise

3-prismatoids have width \leq 3.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion
	Prismatoids	;	

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

Exercise

3-prismatoids have width \leq 3.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion
	Prismatoids	i -	

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

Exercise

3-prismatoids have width \leq 3.

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids 00000 00000	Conclusion
	Prismatoids	i -	

Theorem (Strong *d*-step theorem, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\ge \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion oo
	Prismatoids	;	
Theorem (Strong d-	step theorem, p	rismatoid versio	n)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\ge \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion
	Prismatoids	;	
Theorem (Strong d-	step theorem, p	rismatoid versior	ר)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. Its number

of vertices and facets is irrelevant!!!

Question

Do they exist?

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010] with 28 vertices [S., Sept. 2010].

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant*!!!

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010] with 28 vertices [S., Sept. 2010].

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant*!!!

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010] with 28 vertices [S., Sept. 2010].

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant*!!!

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010] with 28 vertices [S., Sept. 2010].

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant*!!!

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010] with 28 vertices [S., Sept. 2010].

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant*!!!

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010] with 28 vertices [S., Sept. 2010].

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000 0000	00000	00

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant*!!!

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S., July 2010].
- 5-prismatoids of width 6 exist [S., May 2010] with 28 vertices [S., Sept. 2010].

Prismatoids,	Hirsch ar	nd pairs of	maps
0000			
000			

5-prismatoids

Conclusion

Width of prismatoids

Corollary

There is a polytope of dimension 23 with 46 facets and diameter 24 (non-Hirsch)

Via gluing and products:

Corollary

There is an infinite family of non-Hirsch polytopes with diameter $\sim (1 + \epsilon)n$, even in fixed dimension. (Best so far: $\epsilon = 1/23$).

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

Width of prismatoids

Corollary

There is a polytope of dimension 23 with 46 facets and diameter 24 (non-Hirsch)

Via gluing and products:

Corollary

There is an infinite family of non-Hirsch polytopes with diameter $\sim (1 + \epsilon)n$, even in fixed dimension. (Best so far: $\epsilon = 1/23$).

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
● ○ ○	000	00000	00

Prismatoids,	Hirsch and	pairs of maps
0000		
000		

5-prismatoids

Conclusion

Combinatorics of prismatoids

Analyzing the combinatorics of a d-prismatoid Q can be done via an intermediate slice ...

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

... which equals the Minkowski sum $Q^+ + Q^-$ of the two bases Q^+ and Q^- .

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000 000	000	00000	00

... which equals the Minkowski sum $Q^+ + Q^-$ of the two bases Q^+ and Q^- . The normal fan of $Q^+ + Q^-$ equals the "superposition" of those of Q^+ and Q^- .

5-prismatoids

Conclusion

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d - 1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d - 2-sphere.

Theorem

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Theorem

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Theorem

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Theorem

Prismatoids, Hirsch and pairs of maps $0000 \\ 000$	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion 00

Example: a 3-prismatoid

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps

4-prismatoids

5-prismatoids

Conclusion

4-dimensional prismatoids

Prismatoids, Hirsch and pairs of maps

4-prismatoids

5-prismatoids

Conclusion

Example: (part of) a 4-prismatoid

4-prismatoid of width > 4 \updownarrow pair of (geodesic, polytopal) maps in S^2 so that two steps do not let you go from a blue vertex to a red vertex.

11

Prismatoids, Hirsch and pairs of maps

4-prismatoids

5-prismatoids

Conclusion

Example: (part of) a 4-prismatoid

4-prismatoid of width > 4 \updownarrow pair of (geodesic, polytopal) maps in S^2 so that two steps do not let you go from a blue vertex to a red vertex.

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	0000	00000	00

Surprisingly enough:

Theorem (S., July 2010)

There is no "non-Hirsch" pair of maps in the 2-sphere.

To prove the theorem, we work in the general framework of pairs of maps in arbitrary surfaces. Let G^+ and G^- be two maps (a "red" and a "blue" one) in a surface *S*. Assume the following property:

Transversal pair of maps:

Surprisingly enough:

Theorem (S., July 2010)

There is no "non-Hirsch" pair of maps in the 2-sphere.

To prove the theorem, we work in the general framework of pairs of maps in arbitrary surfaces. Let G^+ and G^- be two maps (a "red" and a "blue" one) in a surface *S*. Assume the following property:

Transversal pair of maps:

Surprisingly enough:

Theorem (S., July 2010)

There is no "non-Hirsch" pair of maps in the 2-sphere.

To prove the theorem, we work in the general framework of pairs of maps in arbitrary surfaces. Let G^+ and G^- be two maps (a "red" and a "blue" one) in a surface *S*. Assume the following property:

Transversal pair of maps:

Surprisingly enough:

Theorem (S., July 2010)

There is no "non-Hirsch" pair of maps in the 2-sphere.

To prove the theorem, we work in the general framework of pairs of maps in arbitrary surfaces. Let G^+ and G^- be two maps (a "red" and a "blue" one) in a surface *S*. Assume the following property:

Transversal pair of maps:

5-prismatoids

Conclusion

4-prismatoids have width < 4

Surprisingly enough:

Theorem (S., July 2010)

There is no "non-Hirsch" pair of maps in the 2-sphere.

To prove the theorem, we work in the general framework of pairs of maps in arbitrary surfaces. Let G^+ and G^- be two maps (a "red" and a "blue" one) in a surface *S*. Assume the following property:

Transversal pair of maps:

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

We call an edge of the common refinement of G^+ and G^- *"terminal"* if it is adjacent to a vertex of G^+ or G^- .

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

We call an edge of the common refinement of G^+ and G^- *"terminal"* if it is adjacent to a vertex of G^+ or G^- .

A pair of maps in a surface

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

We call an edge of the common refinement of G^+ and G^- *"terminal"* if it is adjacent to a vertex of G^+ or G^- .

The terminal part of the common refinement graph

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

We call an edge of the common refinement of G^+ and G^- *"terminal"* if it is adjacent to a vertex of G^+ or G^- .

The non-terminal part of the common refinement graph

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

We call an edge of the common refinement of G^+ and G^- *"terminal"* if it is adjacent to a vertex of G^+ or G^- .

We call an edge of the common refinement of G^+ and G^- *"terminal"* if it is adjacent to a vertex of G^+ or G^- .

Assume, to seek a contradiction, that a certain transversal pair of maps (G^+, G^-) in the sphere S^2 does not have a terminal red edge intersect a terminal blue edge.

5-prismatoids

Conclusion

4-prismatoids have width < 4

Definition

A *zig-zag, color-alternating path* is a path of non-terminal edges such that whenever two consecutive edges have different colors, the path turns right from red to blue and it turns left from blue to red. A *zig-zag, color-alternating loop* is a cycle in which that happens except perhaps at the base point.

Lemma ⁻

Every non-terminal segment can be continued to a zig-zag, color-alternating path until the path crosses itself. At that point it produces a zig-zag, color-alternating loop.

Conclusion

4-prismatoids have width < 4

Definition

A *zig-zag, color-alternating path* is a path of non-terminal edges such that whenever two consecutive edges have different colors, the path turns right from red to blue and it turns left from blue to red. A *zig-zag, color-alternating loop* is a cycle in which that happens except perhaps at the base point.

Lemma ⁻

Every non-terminal segment can be continued to a zig-zag, color-alternating path until the path crosses itself. At that point it produces a zig-zag, color-alternating loop.

Conclusion

4-prismatoids have width < 4

Definition

A *zig-zag, color-alternating path* is a path of non-terminal edges such that whenever two consecutive edges have different colors, the path turns right from red to blue and it turns left from blue to red. A *zig-zag, color-alternating loop* is a cycle in which that happens except perhaps at the base point.

Lemma 1

Every non-terminal segment can be continued to a zig-zag, color-alternating path until the path crosses itself. At that point it produces a zig-zag, color-alternating loop.

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Choose an arbitrary point of S^2 to be "infinity".

Lemma 2

If a zig-zag, color-alternating loop is minimal (i. e., the region it bounds contains no other such loop) then there is no other edge in its interior.

This gives a contradiction, because it implies that the boundary of some face of our pairs of maps is a zig-zag alternating loop, and a zig-zag alternating loop must contain "reflex vertices".

Prismatoids, Hirsch and pairs of maps	4-prismatoids ○○○ ○○○●	5-prismatoids 00000 00000	Conclusion

Choose an arbitrary point of S^2 to be "infinity".

Lemma 2

If a zig-zag, color-alternating loop is minimal (i. e., the region it bounds contains no other such loop) then there is no other edge in its interior.

This gives a contradiction, because it implies that the boundary of some face of our pairs of maps is a zig-zag alternating loop, and a zig-zag alternating loop must contain "reflex vertices".

Prismatoids,	Hirsch	and	pairs	of	maps
0000					

5-prismatoids

Conclusion

Prismatoids, Hirsch and pairs of maps

4-prismatoids

5-prismatoids

Conclusion

5-dimensional prismatoids

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000 00000	00

But, in dimension 5 (that is, with maps in the 3-sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem

The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	
0000	000	0000	

But, in dimension 5 (that is, with maps in the 3-sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem

The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

Prismatoids,	Hirsch	and	pairs	of	maps	
0000						
000						

Conclusion

A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem

The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter (at least) 44.

Prismatoids,	Hirsch	and	pairs	of	maps	
0000						
000						

Conclusion

A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have room enough to construct "non-Hirsch pairs of maps":

Theorem

The prismatoid Q of the next two slides, of dimension 5 and with 48 vertices, has width six.

Proof 1.

It has been verified computationally that the dual graph of Q (modulo symmetry) has the following structure:

$$A \longrightarrow B \begin{pmatrix} C & F \\ D & F \end{pmatrix} \begin{pmatrix} F & F \\ G & H \end{pmatrix} \begin{pmatrix} I \\ J \end{pmatrix} K \longrightarrow L$$

Prismatoids, Hirsch and pairs of maps

4-prismatoids

5-prismatoids

Conclusion

Prismatoids, Hirsch and pairs of maps

4-prismatoids

5-prismatoids

Conclusion

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids	Conclusion
0000	000	00000	00

Proof 2.

Show that there are no blue vertex a and red vertex b such that a is a vertex of the blue cell containing b and b is a vertex of the red cell containing a.

5-prismatoids

Conclusion

A smaller 5-prismatoid of width > 5

With the same ideas

Theorem

The following 5-prismatoid with 28 vertices (and 274 facets) has width 6.

$$Q := \operatorname{conv} \left\{ \begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ (\pm 18 & 0 & 0 & 0 & 1 \\ 0 & 0 & \pm 30 & 0 & 1 \\ 0 & 0 & 0 & \pm 30 & 1 \\ 0 & \pm 5 & 0 & \pm 25 & 1 \\ 0 & 0 & \pm 18 & \pm 18 & 1 \end{array} \right) \qquad \left(\begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & \pm 18 & 0 & 0 & -1 \\ \pm 30 & 0 & 0 & 0 & -1 \\ \pm 25 & 0 & 0 & \pm 5 & -1 \\ \pm 18 & \pm 18 & 0 & 0 & -1 \end{array} \right) \right\}$$

Corollary

There is a non-Hirsch polytope of dimension 23 with 46 facets.

5-prismatoids

Conclusion

A smaller 5-prismatoid of width > 5

With the same ideas

Theorem

The following 5-prismatoid with 28 vertices (and 274 facets) has width 6.

$$Q := \operatorname{conv} \left\{ \begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ (\pm 18 & 0 & 0 & 0 & 1 \\ 0 & 0 & \pm 30 & 0 & 1 \\ 0 & 0 & 0 & \pm 30 & 1 \\ 0 & \pm 5 & 0 & \pm 25 & 1 \\ 0 & 0 & \pm 18 & \pm 18 & 1 \end{array} \right) \qquad \qquad \left(\begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & \pm 18 & 0 & 0 & -1 \\ \pm 30 & 0 & 0 & 0 & -1 \\ \pm 25 & 0 & 0 & \pm 5 & -1 \\ \pm 18 & \pm 18 & 0 & 0 & -1 \end{array} \right) \right\}$$

Corollary

There is a non-Hirsch polytope of dimension 23 with 46 facets.

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

If we fix the dimension d, the width of prismatoids is linear:

Theorem

The width of a d-dimensional prismatoid with n facets cannot exceed $2^{d-3}n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ${\sim}1970$].

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

If we fix the dimension d, the width of prismatoids is linear:

Theorem

The width of a d-dimensional prismatoid with n facets cannot exceed $2^{d-3}n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ${\sim}1970$].

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

If we fix the dimension d, the width of prismatoids is linear:

Theorem

The width of a d-dimensional prismatoid with n facets cannot exceed $2^{d-3}n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, \sim 1970].

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

In dimension five we can do better:

Theorem

The width of a 5-dimensional prismatoid with n facets cannot exceed n/2 + 3.

Proof.

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

In dimension five we can do better:

Theorem

The width of a 5-dimensional prismatoid with n facets cannot exceed n/2 + 3.

Proof.

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

In dimension five we can do better:

Theorem

The width of a 5-dimensional prismatoid with n facets cannot exceed n/2 + 3.

Proof.

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

In dimension five we can do better:

Theorem

The width of a 5-dimensional prismatoid with n facets cannot exceed n/2 + 3.

Proof.

5-prismatoids

Conclusion

Asymptotic width in fixed dimension

In dimension five we can do better:

Theorem

The width of a 5-dimensional prismatoid with n facets cannot exceed n/2 + 3.

Proof.

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

Asymptotic width in dimension five

Theorem

There are 5-dimensional prismatoids with n vertices and width $\Omega(\sqrt{n})$.

Sketch of proof

Start with the "simple, yet more drastic" pair of maps in the torus.

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

Asymptotic width in dimension five

Theorem

There are 5-dimensional prismatoids with n vertices and width $\Omega(\sqrt{n})$.

Sketch of proof

Start with the "simple, yet more drastic" pair of maps in the torus.

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

Prismatoids,	Hirsch	and	pairs	of	maps
0000					
000					

5-prismatoids

Conclusion

5-prismatoids

Conclusion

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3-sphere.

Complete the tori maps to the whole 3-sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

5-prismatoids

Conclusion

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3-sphere.

Complete the tori maps to the whole 3-sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

5-prismatoids

Conclusion

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3-sphere.

Complete the tori maps to the whole 3-sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ●○
	Conclusion		

- The counter-examples to the Hirsch conjecture break a "psychological barrier", but for applications they are so far irrelevant. They violate Hirsch by about 4%.
- The main open question(s) remains open: Is there a family of polytopes with superlinear diameter? Is the diameter of every polytope polynomially bounded?
- Prismatoids *of fixed dimension* will not answer those questions (their width is linear).
- In fact, prismatoids of dimension 5 will not produce polytopes violating Hirsch by more than 50%.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ●○
	Conclusion		

- The counter-examples to the Hirsch conjecture break a "psychological barrier", but for applications they are so far irrelevant. They violate Hirsch by about 4%.
- The main open question(s) remains open: Is there a family of polytopes with superlinear diameter? Is the diameter of every polytope polynomially bounded?
- Prismatoids *of fixed dimension* will not answer those questions (their width is linear).
- In fact, prismatoids of dimension 5 will not produce polytopes violating Hirsch by more than 50%.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ●○
	Conclusion		

- The counter-examples to the Hirsch conjecture break a "psychological barrier", but for applications they are so far irrelevant. They violate Hirsch by about 4%.
- The main open question(s) remains open: Is there a family of polytopes with superlinear diameter? Is the diameter of every polytope polynomially bounded?
- Prismatoids *of fixed dimension* will not answer those questions (their width is linear).
- In fact, prismatoids of dimension 5 will not produce polytopes violating Hirsch by more than 50%.

Prismatoids, Hirsch and pairs of maps 0000 000	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ●○
	Conclusion		

- The counter-examples to the Hirsch conjecture break a "psychological barrier", but for applications they are so far irrelevant. They violate Hirsch by about 4%.
- The main open question(s) remains open: Is there a family of polytopes with superlinear diameter? Is the diameter of every polytope polynomially bounded?
- Prismatoids *of fixed dimension* will not answer those questions (their width is linear).
- In fact, prismatoids of dimension 5 will not produce polytopes violating Hirsch by more than 50%.

Prismatoids, Hirsch and pairs of maps 0000 000	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ●○
	Conclusion		

- The counter-examples to the Hirsch conjecture break a "psychological barrier", but for applications they are so far irrelevant. They violate Hirsch by about 4%.
- The main open question(s) remains open: Is there a family of polytopes with superlinear diameter? Is the diameter of every polytope polynomially bounded?
- Prismatoids *of fixed dimension* will not answer those questions (their width is linear).
- In fact, prismatoids of dimension 5 will not produce polytopes violating Hirsch by more than 50%.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ●○	
Conclusion				

- The counter-examples to the Hirsch conjecture break a "psychological barrier", but for applications they are so far irrelevant. They violate Hirsch by about 4%.
- The main open question(s) remains open: Is there a family of polytopes with superlinear diameter? Is the diameter of every polytope polynomially bounded?
- Prismatoids *of fixed dimension* will not answer those questions (their width is linear).
- In fact, prismatoids of dimension 5 will not produce polytopes violating Hirsch by more than 50%.

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ●○	
Conclusion				

- The counter-examples to the Hirsch conjecture break a "psychological barrier", but for applications they are so far irrelevant. They violate Hirsch by about 4%.
- The main open question(s) remains open: Is there a family of polytopes with superlinear diameter? Is the diameter of every polytope polynomially bounded?
- Prismatoids *of fixed dimension* will not answer those questions (their width is linear).
- In fact, prismatoids of dimension 5 will not produce polytopes violating Hirsch by more than 50%.

Prismatoids, Hirsch and pairs of maps	4-prismatoids	5-prismatoids 00000 00000	Conclusion ○●	
Conclusion				

Finding a counterexample [to the Hirsch conjecture] will be merely a small first step in the line of investigation related to the conjecture.

(V. Klee and P. Kleinschmidt, 1987)

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion ○●	
Conclusion				

Finding a counterexample [to the Hirsch conjecture] will be merely a small first step in the line of investigation related to the conjecture.

(V. Klee and P. Kleinschmidt, 1987)

Prismatoids, Hirsch and pairs of maps	4-prismatoids 000 0000	5-prismatoids 00000 00000	Conclusion
	The end		

THANK YOU!