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Let GT and G~ be a transversal pair of maps in the sphere S?:
two graphs (the and the ) embedded in the

sphere. Assume that they meet a finite number of times, always
transversally, and not twice in the same pair of vertices.
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A question in topological graph theory

Let G* and G~ be a transversal pair of maps in the sphere S?:
two graphs (the blue graph and the red graph) embedded in the
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A question in topological graph theory

Let Gt and G~ be a transversal pair of maps in the sphere S2:
two graphs (the blue graph and the red graph) embedded in the
sphere. Assume that they meet a finite number of times, always
transversally, and not twice in the same pair of vertices.

Merge them into a single graph H (the superposition of the two;
their common refinement) that now has blue vertices, red ver-
tices and mixed vertices (former crossings).
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A question in topological graph theory

Let Gt and G~ be a transversal pair of maps in the sphere S2:
two graphs (the blue graph and the red graph) embedded in the
sphere. Assume that they meet a finite number of times, always
transversally, and not twice in the same pair of vertices.

Merge them into a single graph H (the superposition of the two;
their common refinement) that now has blue vertices, red ver-
tices and mixed vertices (former crossings).

Question
Is there always a path of length two from some blue vertex to
some red vertex?
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A question in topological graph theory

Let G* and G~ be a transversal pair of maps in the sphere S?:
two graphs (the blue graph and the red graph) embedded in the
sphere. Assume that they meet a finite number of times, always
transversally, and not twice in the same pair of vertices.



Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some fo some

Proof: We call an edge of the common refinement of G* and
G~ “terminal”if it is adjacent to a vertex of G™ or G™.
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A theorem in topological graph theory

Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some blue vertex to some red vertex.
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A theorem in topological graph theory

Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some blue vertex to some red vertex.

Proof: We call an edge of the common refinement of G* and
G~ “terminal”if it is adjacent to a vertex of G or G™.

A pair of maps in a
surface
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A theorem in topological graph theory

Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some blue vertex to some red vertex.

Proof: We call an edge of the common refinement of G* and
G~ “terminal”if it is adjacent to a vertex of G or G™.

The terminal part
of the common
refinement graph
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A theorem in topological graph theory

Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some blue vertex to some red vertex.

Proof: We call an edge of the common refinement of G* and
G~ “terminal”if it is adjacent to a vertex of G or G™.

é The non-terminal
part of the
B common
(/ refinement graph
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A theorem in topological graph theory

Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some blue vertex to some red vertex.

Proof: We call an edge of the common refinement of G* and
G~ “terminal”if it is adjacent to a vertex of G or G™.

Assume, to seek a contradiction, that a certain transversal pair
of maps (G*, G™) in the sphere S? does not have a terminal red
edge intersect a terminal blue edge.
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A theorem in topological graph theory

Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some blue vertex to some red vertex.

Proof: We call an edge of the common refinement of G* and
G~ “terminal”if it is adjacent to a vertex of G or G™.

Assume, to seek a contradiction, that a certain transversal pair
of maps (G*, G™) in the sphere S? does not have a terminal red
edge intersect a terminal blue edge.

Then, in the non-terminal part of H every vertex has degree
three (a “T” vertex) or four (a crossing).
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A theorem in topological graph theory

Theorem (S.-Stephen-Thomas, 2011)

Yes, in every transversal pair of maps in the sphere there is a
path of length two from some blue vertex to some red vertex.

Proof: We call an edge of the common refinement of G* and
G~ “terminal”if it is adjacent to a vertex of G or G™.

Vertices of degree
< 3inthe
non-terminal graph

A 3
Paths of length
(/ two in H
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A proof in topological graph theory

Definition

A zig-zag, color-alternating path is a path of non-terminal
edges such that whenever two consecutive edges have
different colors, the path turns right from red to blue and it turns
left from blue to red.
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Definition

A zig-zag, color-alternating path is a path of non-terminal
edges such that whenever two consecutive edges have
different colors, the path turns right from red to blue and it turns
left from blue to red. A zig-zag, color-alternating loop is a cycle
in which that happens except perhaps at the base point.
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A proof in topological graph theory

Definition

A zig-zag, color-alternating path is a path of non-terminal
edges such that whenever two consecutive edges have
different colors, the path turns right from red to blue and it turns
left from blue to red. A zig-zag, color-alternating loop is a cycle
in which that happens except perhaps at the base point.

Remark 1

Every non-terminal segment can be continued to a zig-zag,
color-alternating path until the path crosses itself. At that point
it produces a zig-zag, color-alternating loop.
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Choose an arbitrary point of S? to be “infinity”.

If a zig-zag, color-alternating loop is minimal (i. e., the region it
bounds contains no other such loop) then there is no other
edge in its interior.
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A proof in topological graph theory

Choose an arbitrary point of S? to be “infinity”.
Remark 2

If a zig-zag, color-alternating loop is minimal (i. e., the region it
bounds contains no other such loop) then there is no other
edge in its interior.

Otherwise, an interior edge
can be continued to a zig-zag
path, and eventually leads to a
smaller alternating loop.
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A proof in topological graph theory

Choose an arbitrary point of S? to be “infinity”.

Remark 2

If a zig-zag, color-alternating loop is minimal (i. e., the region it
bounds contains no other such loop) then there is no other
edge in its interior.

This gives a contradiction, be-
cause it implies that the bound-
ary of some face of our pairs
of maps is a zig-zag alternat-
ing loop, and a zig-zag alter-
nating loop must contain “reflex
vertices”. O
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Will the theorem hold in other surfaces?

No, as they found in the non-simply connected planet of

|
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Will the theorem hold in other surfaces?

No, as they found in the non-simply connected planet of
Torouine:
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The construction of counter-examples to the Hirsch conjecture
has two ingredients:



A tale of two graphs The strong d-step Theorem Prismatoids and map pairs 5-prismatoids
00000 ©0000000 00000000 0000000000

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture
has two ingredients:

@ A strong d-step theorem for spindles/prismatoids.
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Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture
has two ingredients:
@ A strong d-step theorem for spindles/prismatoids.

@ The construction of a prismatoid of dimension 5 and
“width” 6.



We saw how the d-step Theorem follows from the following
lemma:
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We saw how the d-step Theorem follows from the following

lemma:
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We saw how the d-step Theorem follows from the following
lemma:
F v f

d(u, v)=2
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In the previous episode...

We saw how the d-step Theorem follows from the following
lemma:

Lemma

For every d-polytope P with n facets and diameter § there is a
d + 1-polytope with one more facet and the same diameter §.
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In the previous episode...

We saw how the d-step Theorem follows from the following
lemma:

Lemma

For every d-polytope P with n facets and diameter § there is a
d + 1-polytope with one more facet and the same diameter §.

The strong d-step Theorem is the following modification of it:
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In the previous episode...

We saw how the d-step Theorem follows from the following
lemma:

Lemma

For every d-polytope P with n facets and diameter § there is a
d + 1-polytope with one more facet and the same diameter §.

The strong d-step Theorem is the following modification of it:

Lemma

For every d-spindle P with n facets and length X there is a
d + 1-spindle with one more facet and length X + 1.
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A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).
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~ Ataleoftwographs  Thestrongd-stepTheorem ~ Prismatoidsandmappairs  5-prismatoids

A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

The length of a
spindle is the
graph distance
from uto v.
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~ Ataleoftwographs  Thestrongd-stepTheorem ~ Prismatoidsandmappairs  5-prismatoids

A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

The length of a
spindle is the
graph distance
from uto v.

3-spindles have
length < 3.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n+ 1 facets and length \ + 1.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n+ 1 facets and length \ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n+ 1 facets and length \ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another
spindle P’ (of dimension n — d, with 2n — 2d facets, and length
> \+n-2d > n— d) that violates the Hirsch conjecture.
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A prismatoid is a polytope Q with two (parallel) facets Q™ and
Q™ containing all vertices.

‘

L
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A prismatoid is a polytope Q with two (parallel) facets Q™ and
Q™ containing all vertices.

The width of a

o prismatoid is the
a ‘- dual-graph
distance from Q*
to Q.
o
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A prismatoid is a polytope Q with two (parallel) facets Q™ and
Q™ containing all vertices.

The width of a
o prismatoid is the
a ‘- dual-graph
distance from Q*
to Q.

3-prismatoids have
width < 3.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d+ 1, with n+ 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is
another prismatoid Q' (of dimension n — d, with 2n — 2d facets, and
width > § + n— 2d > n — d) that violates (the dual of) the Hirsch
conjecture.
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d.

14
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?
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So, to disprove the Hirsch Conjecture we only need to find a

prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).
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Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010]
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. lts number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010] with 25 vertices
[Matschke-S.-Weibel 2011].

@ 5-prismatoids of arbitrarily large width exist
[Matschke-S.-Weibel 2011].

14
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Analyzing the combinatorics of a d-prismatoid Q can be done
via an intermediate slice . ..

<
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...which equals the Minkowski sum Q™ + Q~ of the two bases
QT and Q.

N|—=

15
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Combinatorics of prismatoids

...which equals the Minkowski sum Q™ + Q~ of the two bases
Q" and Q. The normal fan of Q™ + Q~ equals the “superposi-
tion” of those of Q* and Q™.

> @@
AR
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q* and Q~ and let G+ and
G~ be the corresponding maps in the (d — 2)-sphere (central
projection of the normal fans of Q" and Q™).
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q* and Q~ and let G+ and
G~ be the corresponding maps in the (d — 2)-sphere (central
projection of the normal fans of Q* and Q~). Then, the width of Q
equals 2 plus the minimum number of steps needed to go from
a vertex of G to a vertex of G~ in the (graph of) the
superposition of the two maps.

16
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Example: (part of) a 4-prismatoid

4-prismatoid of width > 4
;

pair of (geodesic, polytopal) maps in S? so that two
steps do not let you go from a blue vertex to a red vertex.



As we know:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some fo some

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width four.

19
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4-prismatoids have width < 4

0000000000

As we know:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.
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4-prismatoids have width < 4

As we know:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:
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4-prismatoids have width < 4

As we know:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width four.
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4-prismatoids have width < 4

As we know:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width four.
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Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:
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The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

20
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The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

The Klee-Walkup polytope is an “unbounded 4-spindle”.

20
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The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

The Klee-Walkup polytope is an “unbounded 4-spindle”.

What is the corresponding “transversal pair of (geodesic, poly-
topal) maps”?

20
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The Klee-Walkup (unbounded) 4-spindle

21
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A 4-dimensional prismatoid of width > 47?

Replicating the basic structure of the Klee-Walkup polytope we
can get a “non-Hirsch” pair of (infinite) maps in the plane (or a
finite one in the torus):
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A 4-dimensional prismatoid of width > 47

Replicating the basic structure of the Klee-Walkup polytope we
can get a “non-Hirsch” pair of (infinite) maps in the plane (or a
finite one in the torus):

bl
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Replicating the basic structure of the Klee-Walkup polytope we
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A 4-dimensional prismatoid of width > 47?

Replicating the basic structure of the Klee-Walkup polytope we
can get a “non-Hirsch” pair of (infinite) maps in the plane (or a
finite one in the torus):
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A 4-dimensional prismatoid of width > 47?

Replicating the basic structure of the Klee-Walkup polytope we
can get a “non-Hirsch” pair of (infinite) maps in the plane (or a
finite one in the torus):
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But, in dimension 5 (that is, with maps in the 3-sphere) we have
room enough to construct “non-Hirsch pairs of maps”:
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A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have
room enough to construct “non-Hirsch pairs of maps”:

Theorem

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

29
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A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have
room enough to construct “non-Hirsch pairs of maps”:

Theorem

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.

29
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A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have
room enough to construct “non-Hirsch pairs of maps”:

Theorem

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

X1 Xo X3 X4 X5 Xy Xo X3 X4 X5
+18 0 0 0 0 0 0 +18 —1
0 +18 0 0 0 0 £18 0 —1
0 0 £45 O +45 0 0 0 —1
0 0 0 +45 0 +45 0 0 —1
+15 +15 0 0 0 0 +£15 £15 —1
0 0 +30 =+30 +30 +30 O 0 —1
0 +10 +40 O +40 0 £10 O —1
+10 0 0 +40 0 +40 O +10 -1

Q := conv
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It has been verified computationally that the dual graph of Q
(modulo symmetry) has the following structure:

A_B/ \E/ \H/ N
N NGNS
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A 5-prismatoid of width > 5

Proof 2.

Show that there are no blue vertex a and red vertex b such that
ais a vertex of the blue cell containing b and b is a vertex of the
red cell containing a. O
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem
The following 5-prismatoid with 28 vertices (and 274 facets)
has width 6.

X1 X2 X3 X4 X5 Xq X2 X3 X4 X5

+18 0 0 0 1 0 0 +18 0 -1

0 0 +£30 0 1 0 +30 ©0 [

Q := conv 0 0 0 430 1 +30 O 0 [
0 4+5 0 +£25 1 +25 0 0 45 —1

0 0 +18 +18 1 +18 +18 0 [

27
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem

The following 5-prismatoid with 28 vertices (and 274 facets)
has width 6.

X1 X2 X3 X4 X5 Xq X2 X3 X4 X5

+18 0 0 0 1 0 0 +18 0 -1

0 0 +£30 0 1 0 +30 ©0 [

Q := conv 0 0 0 430 1 +30 O 0 [
0 4+5 0 +£25 1 +25 0 0 45 —1

0 0 +18 +18 1 +18 +18 0 [

Corollary
There is a non-Hirsch polytope of dimension 23 with 46 facets.
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And with some more work:

There is a 5-prismatoid with 25 vertices and of width 6.
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices,
and diameter 21.
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| poly20dim21L.ext
V-representation

begin

48 21 rational

11 1 02 ] ] ] 1 ) [ ] ] ] ] ) 1 1 ] ] ]
11 8 8 16 -5 ] [ 1 ] [ ] ] ] [ ] 8 1 1 ] ]
11 8 [ ] ] [ 1 ] [ ] ] ] [ ] 8 ] 1 1 ]
11 8 o -6 -10 ] 8 1 2 8 0 ] 8 8 2 8 8 ] 1 1
11 8 R [ 8 8 o 8 8 8 8 8 8 8 8 8 8 0 1
11 8 R 3 0 8 o 8 8 0 0 8 8 1 8 8 8 0 ]
11 8 0 [ £ 0 0 o ) 0 0 0 0 0 1 8 8 0 0 0
11 8 8 19 7 [l [ 1 ) [ [l ] 8 [l ) 1 [ [l [l [l
11 3188 -1/50 e 23 [l [ 1 ? [ [l [l [l [ 8 8 ] ] ] ]
11 -3/180 -1/50 [l [l [ o [ [ [l [l [l [ ] 8 ] ] ] ]
11 -3/2000 7/2000 6 388/10 [ [ o o [ [ [ ] [ 1 8 8 8 ] ]
11 372000 7/2000 6 -248/10 100DODDD 19PAAGGD 16600000 109PPDDEDDD 1 ) 8 8 8 8 8
11 372009 7/2000 6 -248/10 -10000800 [ 1 [ [ [l [l [l 1 1 8 8 8 0 0
11 3/2008 7/2080 6 -248/10 10PPODDD ~1000GGE 6 ) [l [l [l 1 1 1 8 8 0 0 0
11 3/2000 7/2000 6 -245/10 10PPOGGD 10GGEGH 1600000 o [ [l [l [l 1 [ 1 [l [l [l [l
11 3/2000 7/2000 0 -248/10 10000OPD 10900000 10000000 -1099BPEEEED o [l ] ] 1 ] 1 ] ] ] ]
11 3/2000 7/2008 0 -248/10 10000OPD 19GAEGG0 10000000 10PAPPRRRRG 100000000000 ] ] 1 o 8 ] ] ] ]
11 3/2000 7/2000 6 -248/10 1000DDPD 19PAAGGD 10000000 10POPPPERDD 16600000000 -199999DDDEED o 8 1 2 8 8 8 ] ]
11 372000 7/2000 6 -248/10 10PDOODD 19PARGGD 1000000 10PPPPRRRDD 1GAEAEOO00O 10DDDDDORDDD -19RERRRRGED 8 1 8 8 8 8 8 8
11 372009 7/2080 6 -248/10 10PPODDD 10GAGGGD 16600000 199PPRDEDDD 1 o 8 8 8 0 0
1.1 [ 1 [ [ [ 1 1 [ [ [ [ ] 1 1 8 0 0 0
14 4 5 1 ] ] [ 6o 1 1 [l ] ] [l [ 1 [l [l [l [l
1 8 -33/2 1 [l [l [ 1 ? 1 1 ] [l [l [ 8 ] ] ] ]
1 T 0 ] ] [ 1 o ] 1 1 ] [ o 8 ] ] ] ]
14 -5572 [l 1 [l [l [ o [ [ [l 1 1 [ 2 8 8 8 0 0
141 47 18 8 8 8 8 1 8 8 0 0 1 8 8 8 8 8 [ 8
1.1 L] 8 8 0 8 1 1 8 0 0 8 8 1 8 8 8 0 0
1.1 2 1 1 e 0 0 1 ) 0 0 0 0 0 1 8 8 0 0 0
1 18 e 15  -1/5 [l [ 1 [ [ [l [l [l [ ? 1 8 ] ] ]
1 -1 2999/100 8 -3/25  -1/5 [l [l 1 ? [ [l [l [l [ ? [ ] ] ] ]
1 -1 299999/10000 © 8 1/100 [l 1 o [ [ [l [l [l [ ? [ ] ] ] ]
1-1-2745/188 B 1/5008  1/800 1 [ o [ [ [l [l [l [ o 8 8 8 0 0
1-1 -27 © 1/508 -1/88 [l [ o [ [ [l [l © 100000 1000PDDD 1PPPRRRD 10000000 10DODODDD 10PRROGE 1000009990
1-1 -27 8 1/508 -1/88 [l [ 1 1 [l [l [l 6 166600 o [ [ [ [ [
1.1 27 © 1/568 -1/80 [l [l 1 ) [l [l [l © 166660 10000000 8 8 0 0 0
14 27 © 1/508 -1/80 [l [ 1 [ [ [l [l © 100000 1009ADPD -10800000 ] ] ] ]
1 -27 © 1/508 -1/80 [l [ o [ [ [l ] © 100000 10000000 1PAREEO 10000000 ] ] ]
141 -27 © 1/508 -1/80 [l [ o [ [ [l [l © 100000 10000000 1PPPPRRR 1000000 -100000000 ] ]
1-1 -27 © 1/508 -1/80 [l [ o [ [ [l [l © 100000 10000DDD 1PPPPRRR 1000000 100009999 -10MDEEEED 0
1-1 -27 o 1/508 -1/88 [l [ o 8 [ [l [l © 100000 100PODOD 19PPRRRD 10000000 10PODDDDD 10PRRGGG -1000009990
end

allbases
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There are 5-dimensional prismatoids with n vertices and width

Q(v).

20
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There are 5-dimensional prismatoids with n vertices and width

Q(v).

Start with the “simple, yet more drastic” pair of maps in the
torus.
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Asymptotic width in dimension five
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Asymptotic width in dimension five
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).

Between the two tori you basically get
the superposition of the two tori
maps. Ol
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