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Abstract. Monotone paths on zonotopes and the natural generalization to

maximal chains in the poset of topes of an oriented matroid or arrangement

of pseudo-hyperplanes are studied with respect to a kind of local move, called

polygon move or ip. It is proved that any monotone path on a d-dimensional

zonotope with n generators admits at least d2n=(n � d + 2)e � 1 ips for all

n � d+2 � 4 and that for any �xed value of n�d, this lower bound is sharp for

in�nitely many values of n. In particular, monotone paths on zonotopes which

admit only three ips are constructed in each dimension d � 3. Furthermore,

the previously known 2-connectivity of the graph of monotone paths on a

polytope is extended to the 2-connectivity of the graph of maximal chains

of topes of an oriented matroid. An application in the context of Coxeter

groups of a result known to be valid for monotone paths on simple zonotopes

is included.

1. Introduction

Let P be a d-dimensional polytope in R

d

and f be a generic linear functional on

R

d

, meaning that f is nonconstant on every edge of P . Such a functional f takes

its minimum and maximum over P at unique vertices s and t, respectively. An

f-monotone path on P is a sequence s = a

0

; a

1

; : : : ; a

n

= t of vertices of P such

that for each i with 1 � i � n, vertices a

i�1

and a

i

are joined by an edge of P and

f(a

i�1

) < f(a

i

). A ip for such a path  is a 2-dimensional face F of P such that

one of the two f -monotone paths on F , considered as a polytope on its own, forms

a subsequence of consecutive vertices in . Two distinct f -monotone paths on P

are said to di�er by a polygon move, or ip, across F [1, 14] if they have F as a

common ip and agree on vertices not in F .

The polygon moves give rise to a natural graph structure G(P; f) on the vertex

set of f -monotone paths on P , which is the analogue of the graph of triangulations

of a given point con�guration and geometric bistellar operations and that of cubical

tilings of a zonotope and cube-ips, in the context of the generalized Baues problem

[4]; see [14, Section 2]. In the case of triangulations and tilings and for a �xed

dimension, the problem to determine the level of connectivity of such a graph and,

in particular, the minimum possible number of neighbors of a vertex, has attracted

considerable attention in recent years; see e.g. [14, 15]. For the graph G(P; f) these

questions were raised in [14, Section 6] and studied in [1]. Recall that a graph G

is k-connected if any subgraph of G obtained by removing a set of at most k � 1
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vertices and their incident edges is connected and contains at least two vertices.

The relevant results of [1] can be summarized as follows.

Theorem 1.1 ([1]). (i) If P is any polytope of dimension d � 3 then G(P; f) is

2-connected. In particular, any f-monotone path on P has at least two ips.

(ii) For any d � 4 there exists a d-polytope P , a linear functional f and an

f-monotone path on P with as few as two ips. Furthermore, for d = 4

the polytope in the last statement can be chosen to be a zonotope with six

generators.

(iii) If P is a simple d-polytope then the graph G(P; f) is (d � 1)-connected. In

particular, any f-monotone path on P has at least d� 1 ips.

An f -monotone path on P is called coherent if it can be obtained by minimizing

some �xed and su�ciently generic linear functional on each slice P \ f

�1

(c) of

P or, in other words, if the path projects to the boundary of some 2-dimensional

and su�ciently generic projection of P . This notion agrees with the de�nition of

coherency in the more general framework introduced in [3]. The results there imply

that there exists a polytope of dimension d � 1, the monotone path polytope of P

and f , whose vertices are in bijection with coherent f -monotone paths and whose

edges represent ips among them (see also [14], [16, Chapter 9] and Remark 3.2).

In particular, coherent monotone paths have at least d � 1 ips. For this reason,

monotone paths with less than d� 1 ips are called ip-de�cient.

We will be interested in the special case in which P is a zonotope (see Section

2 for de�nitions). In this case the graph G(P; f) has an alternative description in

terms of the arrangement A of linear hyperplanes polar to P (see [5, Section 1.2]),

which we briey outline next. If B is the region of A which corresponds to the

f -minimizing vertex of P then the f -monotone paths on P biject to the maximal

chains of the poset of regions of A (see [10]) with basis B. The ips correspond

to the \elementary homotopies" connecting these maximal chains (see Section 6),

a concept which originated in the work of Deligne [9], and reduce to the \Coxeter

moves" in the important special case of reection arrangements (see [5, Section 2.3]

and Section 7). Moreover, this graph of maximal chains and elementary homotopies

can be de�ned for an arbitrary oriented matroid L with �xed tope B and was shown

to be connected in [8]. We will consider the problem to determine the minimum

number of ips possible for monotone paths on zonotopes of �xed dimension as well

as number of generators. Our �rst result gives a lower bound on this number.

Theorem 1.2. Let Z be a zonotope of dimension d � 2 with n generators and f

be a generic linear functional on Z. Any f-monotone path on Z admits at least

m(n; d) ips, where

m(n; d) =

8

<

:

d� 1; if n � d+ 1;

�

2n

n� d+ 2

�

� 1; if n � d+ 2.

The proof of Theorem 1.2, given in Section 4, is in fact valid in the setting

of arbitrary oriented matroids. Note that m(n; d) � 2 for all d � 3, which is in

agreement with Theorem 1.1 (i).

It is tempting to conjecture that the graph of monotone paths on a zonotope and

ips (or its oriented matroid analogue) is always m(n; d)-connected, where m(n; d)
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is as in Theorem 1.2. We do not have a proof of this even in the simplest non-trivial

case of n � d = 2. We can only extend the proof of 2-connectivity from Theorem

1.1(i) to the oriented matroid setting, improving the result of [8] mentioned earlier.

Theorem 1.3. If L is an oriented matroid of rank at least 3 and B is one of

its topes then the graph of maximal chains in the tope poset of L based at B and

elementary homotopies is 2-connected.

Our next result proves that the lower bound of Theorem 1.2 is sharp in various

special cases. In particular, this is proved for in�nitely many values of n, given any

�xed value of the codimension n� d.

Theorem 1.4. If n � d � 2 are integers such that

� n � d+ 3 or

� n � d+ 4 and n is divisible by n� d+ 2 or

� d � 5

then there exists a d-zonotope Z with n generators in general position, a linear

functional f and an f-monotone path on Z which admits only m(n; d) ips.

The previous theorem has the following interesting consequence. While there

are no ip de�cient monotone paths on d-zonotopes with d or d + 1 generators,

dd=2e ips can be achieved with d+ 2 generators in any dimension (Theorem 5.1).

Also, three ips can be achieved with 2d � 4 generators in any dimension d � 6

(Corollary 5.4) and two ips are possible in the case of zonotopes of dimension 5 or

less (Theorem 5.5). We conjecture in Section 5 that the lower bound m(n; d) can

be achieved for all n and d, in particular that for all d � 3 there exist monotone

paths on zonotopes with 3d� 6 generators which admit only two ips.

This paper is structured as follows. We begin with preliminaries on zonotopes

and oriented matroids in Section 2. In Section 3 we characterize monotone paths

on zonotopes and their ips in oriented matroid terms and establish some of their

elementary properties. In particular, we prove that one can always add a generator

and increase the length of a monotone path by one without altering the dimension

or number of ips. Theorems 1.2, 1.4 and 1.3 are proved in Sections 4, 5 and 6,

respectively. In Section 7 we point out an application of Theorem 1.1 to the graph

of reduced decompositions of the maximal element in a �nite Coxeter group.

2. Preliminaries

Throught the paper we use the notation [m;n] := fm;m+1; : : : ; ng for integers

m;n with m � n and let [n] := [1; n].

2.1. Sign vectors. We denote by �

n

the set f�; 0;+g

[n]

of sign vectors of length

n and write X = (X

1

; X

2

; : : : ; X

n

) for X 2 �

n

. The set �

n

is partially ordered

by extending coordinatewise the partial order on f�; 0;+g de�ned by the relations

0 < � and 0 < +. Its unique minimal element is the zero vector, denoted by 0.

The sign vector �X is obtained by negating each coordinate of X . The composition

X � Y of two sign vectors is de�ned by (X � Y )

i

= X

i

or Y

i

if X

i

6= 0 or X

i

= 0,

respectively and their separation set is S(X;Y ) = fi : X

i

= �Y

i

6= 0g = fi :

(X � Y )

i

6= (Y �X)

i

g. Two sign vectors X and Y are called orthogonal if S(X;Y )

and S(X;�Y ) are either both empty or both nonempty.
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2.2. Oriented matroids. A subset L of �

n

is the set of covectors of an oriented

matroid [5] if it satis�es the following axioms:

(L0) 0 2 L,

(L1) X 2 L implies �X 2 L,

(L2) X;Y 2 L implies X � Y 2 L,

(L3) if X;Y 2 L and e 2 S(X;Y ) then there exists a C 2 L such that C

e

= 0 and

C

f

= (X � Y )

f

= (Y �X)

f

for f =2 S(X;Y ).

For example, let A = (u

1

; : : : ; u

n

) be a con�guration of n vectors in R

d

. Any

linear functional f : R

d

! R induces a sign vector X by X

i

= sign(f(u

i

)). The

set L(A) of all sign vectors induced on A by functionals forms an oriented matroid.

The oriented matroids which can be obtained in this way are called realizable or

representable. We will normally identify an oriented matroid with its set of covec-

tors.

As a subposet of �

n

, an oriented matroid L is a ranked poset whose rank (one

less than the cardinality of any maximal chain in L) we denote by r. The quantity

n�r is the corank of L. The maximal elements of L are called topes. If a coordinate

is zero in some tope then it is zero in every covector by axiom (L2). Thus, there

is no loss of generality in assuming that topes have no zeros and, hence, that the

topes are the covectors with no zeros. The subtopes of L are the elements of rank

r � 1. Any subtope is covered by exactly two topes T

1

; T

2

and is said to join T

1

and T

2

.

The separation set S(T; T

0

) of two topes is the set of coordinates where T and

B have di�erent sign. The tope poset T (L; B) based at a given tope B is the set

of all topes T of L, partially ordered by inclusion of their separation sets S(T;B)

(see [5, Section 4.2] for more information). Thus T (L; B) is a graded poset with B

and �B as its minimum and maximum elements, respectively. The rank of a tope

T in this poset is the cardinality d(T;B) of the seperation set S(T;B), also called

the distance between T and B.

2.3. Duality. If L is the set of covectors of an oriented matroid then the set of sign

vectors orthogonal to all elements of L is again the set of covectors of an oriented

matroid, called the dual of L and denoted by L

�

. The covectors of L

�

are called

vectors of L. The rank of L

�

equals the corank of L.

Let A = (u

1

; : : : ; u

n

) be a con�guration of n vectors spanning R

d

. Up to a

linear automorphism, there is a unique con�guration A

�

= (u

�

1

; : : : ; u

�

n

) of n vectors

spanning R

n�d

such that

P

n

i=1

u

i


u

�

i

= 0 in R

d


R

n�d

. The two con�gurations are

said to be Gale transforms of each other [16, Section 6.4]. Their oriented matroids

are dual to one another. A vector (�

1

; : : : ; �

n

) 2 R

n

is the ordered sequence of

values of a linear functional on A if and only if it is the sequence of coe�cients of

a linear dependence on A

�

. Hence, the vectors of the oriented matroid realized by

A are the sequences of signs of the coe�cients in a linear dependence on A.

2.4. Zonotopes. Let A = (u

1

; : : : ; u

n

) be a con�guration of n vectors spanning

R

d

. Let O be the origin in R

d

and [O; u

i

] = f�u

i

: 0 � � � 1g for each i. The

zonotope Z(A) generated by A is the polytope Z(A) =

P

n

i=1

[O; u

i

]. This polytope

depends only on the underlying multiset of elements of A. The map which sends

a sign vector X = (X

1

; X

2

; : : : ; X

n

) to the sum

P

X

i

=+

u

i

+

P

X

i

=0

[O; u

i

] induces

an order reversing bijection between the poset of covectors L(A) and the poset of
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(nonempty) faces of Z(A). Under this bijection, the topes of L(A) correspond to

the vertices of Z(A) and the subtopes correspond to the edges.

3. Flips for monotone paths on zonotopes

In this section we establish some elementary properties of monotone paths on

zonotopes and their ips.

Let E be a con�guration of n nonzero vectors in R

d

, with no two parallel, and

Z(E) be the zonotope generated by E. Let f be a linear functional which is not

constant on any edge of Z(E), in other words, which does not vanish on any element

of E. Since changing a vector of E to its negative results only in a translation of

Z(E), we may assume without loss of generality that f is positive on E.

Lemma 3.1. Under the previous assumptions on E and f :

(i) The sequence of vertices of Z(E) de�ning an f-monotone path on Z(E) is of

the form O, v

1

, v

1

+ v

2

, v

1

+ v

2

+ v

3

; : : : ; v

1

+ � � �+ v

n

for some permutation

(v

1

; : : : ; v

n

) of the elements of E.

(ii) A permutation (v

1

; : : : ; v

n

) of E corresponds to an f-monotone path on Z(E)

if and only if for every i 2 [n] there exists a hyperplane containing v

i

and hav-

ing fv

1

; : : : ; v

i�1

g and fv

i+1

; : : : ; v

n

g, respectively, in its two complementary

open halfspaces.

Proof. Both parts follow from the characterization of vertices and edges of Z(E) in

terms of the covectors of L(E).

A sequence A = (v

1

; : : : ; v

n

) of vectors satisfying the condition in Lemma 3.1(ii)

for a given index i will be said to be valid at i. In oriented matroid terms, A is

valid at i if the sign vector which is negative on [i � 1], zero on i and positive on

[i + 1; n] is a covector of L(A). We call A a valid sequence if it is valid at every

index i. The validity at the �rst and last index implies that the positive span of A

is a pointed cone.

Remark 3.2. Another way of seeing how monotone paths are related to permu-

tations is as follows. Let I

n

denote the standard n-dimensional cube in R

n

and let

� : R

n

! R

d

be the projection which bijects the standard basis to the set of vectors

E. Observe that �(I

n

) = Z(E). Moreover, f �� is a linear functional in R

n

, generic

for I

n

. Every f -monotone path on Z(E) lifts to a (f ��)-monotone path on I

n

. As

is well-known, (see [16, Example 9.8]) monotone paths in the n-cube correspond to

permutations of the n coordinates.

This setting also helps to understand the monotone path polytope of Z(E).

The monotone path polytope �(I

n

; f � �) of the cube is the (n � 1)-dimensional

permutahedron (see again [16]). Lemma 2.3 in [3] says that the monotone path

polytope of Z(E) with respect to f equals �(�(I

n

; f � �)).

Corollary 3.3. If a sequence of n vectors is valid at i� 1 and i+1, where indices

are regarded modulo n, then it is also valid at i.

Proof. For i 2 [n], let X

i

be the sign vector which is negative on [i� 1], zero on i

and positive on [i+ 1; n]. Let X

0

= �X

n

and X

n+1

= �X

1

. With this notation,

the elimination axiom (L3) applied to X

i�1

and X

i+1

produces exactly the sign

vector X

i

. The result follows.

Lemma 3.4. Under the assumptions of Lemma 3.1 on E and f :
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(i) Two valid permutations of E represent f-monotone paths on Z(E) which

di�er by a ip if and only if one can be obtained from the other by swapping

a subsequence of consecutive vectors which are coplanar.

(ii) The swapping of v

i

; v

i+1

; : : : ; v

j

on a valid permutation (v

1

; : : : ; v

n

) of E

corresponds to a ip of monotone paths if and only if v

i

; v

i+1

; : : : ; v

j

are

coplanar and there exists a hyperplane which contains these vectors and has

fv

1

; : : : ; v

i�1

g and fv

j+1

; : : : ; v

n

g, respectively, in its two complementary open

halfspaces.

Proof. The forward statement of part (i) is clear from the de�nition of a ip. Its

converse follows from the elimination axiom (L3) of oriented matroids applied to

the covectors of a pair of distinct parallel edges of the two paths and orthogonality

with the vectors provided by three-term linear relations, if any. Part (ii) follows

from the characterization of faces of Z(E) in terms of the covectors of L(E).

We say that the valid sequence A = (v

1

; : : : ; v

n

) has a ip at (v

i

; : : : ; v

j

) if the

condition in Lemma 3.4(ii) is satis�ed. If no three consecutive vectors in the se-

quence are coplanar then the swapping referred to in the lemma is the transposition

of two consecutive vectors v

i

and v

i+1

. The following lemma allows us to assume

without loss of generality that this is always the case. We denote by A n v

i

the

sequence obtained from A by removing v

i

.

Lemma 3.5. Let A = (v

1

; v

2

; : : : ; v

n

) be a valid sequence of vectors in R

d

, with

d � 3. If v

i�1

; v

i

and v

i+1

are coplanar for some i, with indices regarded modulo

n, then A n v

i

has as many ips as A.

Proof. For i 2 [n], coplanarity of (v

i�1

; v

i

; v

i+1

) and validity of A at i imply that v

i

is a positive combination of v

i�1

and v

i+1

, where v

0

= �v

n

and v

n+1

= �v

1

if i = 1

or i = n, respectively. With this and Lemma 3.4 the proof is straightforward.

In oriented matroid terms, A has a ip at the pair (v

i

; v

i+1

) if and only if the

sign vector negative on [i�1], zero on fi; i+1g and positive on [i+2; n] is a covector

of L(A). The following lemma characterizes ips in terms of the vectors of L(A),

i.e. the covectors of the dual oriented matroid L

�

(A).

Lemma 3.6. Let A = (v

1

; : : : ; v

n

) be a valid sequence.

(i) If X = (X

1

; X

2

; : : : ; X

n

) is a nonzero vector of L(A) then there exist indices

i < j such that X

i

= + and X

j

= �.

(ii) The sequence A has no ip at (v

i

; v

i+1

) if and only if there exists a vector of

L(A) which is nonpositive on [i� 1], nonnegative on [i+2; n] and restricts to

(+;�) on fi; i+ 1g.

Proof. Part (i) follows from the fact that X is orthogonal to each of the covectors

of L(A) provided by Lemma 3.4(ii). To prove (ii) observe that (v

i

; v

i+1

) is not a

ip of A if and only if there exists a vector X of L(A) which is not orthogonal to

(�; : : : ;�; 0; 0;+; : : : ;+), the zeros located at coordinates i and i+1. Clearly, one

of the vectors X and �X has the �rst two properties claimed and is not identically

zero on [n] n fi; i+1g. That this sign vector restricts to (+;�) on fi; i+1g follows

from (i).

If A has no ip at (v

i

; v

i+1

) we call any vector of L(A) having the properties in

part (ii) of the previous lemma a witness of the nonip at this pair. An element v

i

of A is in general position in A if v

i

is not contained in any hyperplane spanned by
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vectors of A other than v

i

. The sequence A is in general position if all its elements

are in general position.

Proposition 3.7. For any valid sequence A = (v

1

; : : : ; v

n

) of n vectors spanning

R

d

, with d � 3, there exists a vector v 2 R

d

such that the sequence (v

1

; : : : ; v

n

; v)

is valid, has the same ips as A and has the new vector v in general position.

Proof. Let v = v

n

� �

1

v

1

� � � � � �

n�1

v

n�1

for any positive, su�ciently small and

su�ciently generic numbers �

1

; : : : ; �

n�1

. Genericity implies that v is in general

position in the sequence B = (v

1

; : : : ; v

n

; v).

Since v is very close to v

n

, validity of A at any index i 2 [n� 1] implies validity

of B at the same index. For the same reason, any ip of A not involving v

n

has to

be a ip of B. Validity of the �rst sequence at n implies that there is a hyperplane

containing v

n

with all other v

i

's on the same side. This hyperplane clearly has v

on the other side, so the new sequence is valid at n. Corollary 3.3 implies that B

is valid. The previous argument also implies that any ip of A involving v

n

has to

be a ip of B.

That every ip of B other than the transposition of v

n

and v is also a ip of A is

trivial by Lemma 3.4(ii). Hence, we only need to prove that the transposition of v

n

and v is not a ip. This follows from the fact that v

n

is a positive combination of

v and the other v

i

's: any functional vanishing on v

n

and v must have both positive

and negative values on the rest of the v

i

's.

4. The lower bound

In this section we prove Theorem 1.2. We let A = (v

1

; v

2

; : : : ; v

n

) be a valid

sequence of n vectors in R

d

and L = L(A) be the corresponding oriented matroid

on the ground set [n]. A set of indices I � [n] is said to be dependent in L if the

set of vectors fv

i

: i 2 Ig is linearly dependent.

Lemma 4.1. Let 1 � k < l � n be two indices such that A has no ip at the pairs

(v

i

; v

i+1

) with k � i < l and suppose that no three elements of (v

k

; : : : ; v

l

), with at

least two of them consecutive, are coplanar.

(i) The sequence A n v

k

has no ip at the pairs (v

i

; v

i+1

) for k < i < l.

(ii) There exist three vectors of L which are nonpositive on [k�1], nonnegative on

[l + 1; n] and whose restrictions on [k; l] are the sign vectors (0; : : : ; 0;+;�),

(+;�; 0; : : : ; 0; ) and (+; 0; : : : ; 0;�), respectively.

Proof. We prove (i) and (ii) by induction on l � k. The result reduces to Lemma

3.6(ii) for l � k = 1, so let l � k � 2. Let X be the set of vectors of L which are

nonpositive on [k� 1] and nonnegative on [l+1; n]. To prove (i) it su�ces to show

that for k < i < l, there exists a vector in X which is zero on k, nonpositive on

[k + 1; i � 1], nonnegative on [i + 2; n] and restricts to (+;�) on fi; i + 1g. By

the inductive hypothesis for (ii), there exists a vector X 2 X which restricts to

(+; 0; : : : ; 0;�) on [k; i] and is nonnegative on [i + 1; n]. Let Y = (Y

1

; : : : ; Y

n

) be

a witness of the nonip of A at (v

i

; v

i+1

), so that Y 2 X . If Y

k

= 0 then there

is nothing to prove. Otherwise Y

k

= � and we can eliminate k between X and

Y . Since S(X;Y ) � fk; i; i + 1g is not dependent in L, the vector produced by

this elimination is nonzero. Lemma 3.6 (i) implies that this vector has the desired

properties. To prove (ii) note that by (i), A n v

k

satis�es the hypotheses of the

lemma for (v

k+1

; : : : ; v

l

). By induction, there exist two vectors in X which restrict
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to (0; : : : ; 0;+;�) and (0;+; 0; : : : ; 0;�) on [k; l], respectively. By a symmetric

argument, there exists a vector in X which restricts to (+;�; 0; : : : ; 0) on [k; l].

Elimination of k+1 between the last two vectors produces a vector in X restricting

to (+; 0; : : : ; 0;�) and completes the induction.

Lemma 4.2. Let 1 � k < l � n be two indices such that A has no ip at the

pairs (v

i

; v

i+1

) with k � i < l and suppose that (v

k

; : : : ; v

l

) contains three coplanar

elements, two of which are consecutive, but no three consecutive coplanar elements.

There exists an index j with k < j < l such that:

(i) no three consecutive elements of (v

k

; : : : ; v

l

) n v

j

are coplanar,

(ii) A n v

j

has no ip at (v

j�1

; v

j+1

) and

(iii) A n v

j

has no ip at any pair (v

i

; v

i+1

) at which A has no ip.

Proof. We choose a triple (v

j

1

; v

j

; v

j

2

) of coplanar vectors, satisfying k � j

1

< j <

j

2

� l and j = j

1

+ 1 or j

2

� 1, with j

2

� j

1

as small as possible. We assume

with no loss of generality that j = j

1

+ 1. Since (v

j

; : : : ; v

j

2

) contains no three

coplanar elements, with at least two consecutive, we can apply Lemma 4.1 to A on

this subsequence.

If j

2

� j

1

� 4 then (i) holds automatically. Otherwise j

2

� j

1

= 3, by our

assumptions, and we can guarantee (i) by further choosing j

1

and j

2

to be as small

as possible. Observe as in Lemma 3.5 that v

j

is a positive combination of v

j�1

and

v

j

2

. Let X be the vector of L(A) which is positive on j � 1 and j

2

, negative on

j and zero elsewhere and let Y be a witness of the nonip of A at (v

j

; v

j+1

). In

view of Lemma 3.6(i), elimination of j between X and Y produces a vector of L(A)

which witnesses the nonip claimed in (ii). Finally, (iii) follows from Lemma 4.1(i)

if j < i < j

0

and is straightforward otherwise.

Lemma 4.3. Let 1 � k < m < m + 1 < l � n be indices such that A has a

ip at (v

m

; v

m+1

) but no ip at other pairs (v

i

; v

i+1

) with k � i < l. If no three

consecutive elements of (v

k

; : : : ; v

l

) are coplanar then the corank of L is at least

l� k � 1.

Proof. By Lemma 4.2 we may assume that none of the subsequences (v

k

; : : : ; v

m

)

or (v

m+1

; : : : ; v

l

) contains three coplanar elements, with at least two of them con-

secutive. Hence we can apply Lemma 4.1 on these subsequences. Let X be the set

of vectors of L which are nonpositive on [k � 1] and nonnegative on [l + 1; n]. We

�rst claim that there exist two vectors in X which are zero on [k; l]nfk;m;m+1; lg

and have the following additional properties:

(i) The �rst vector is nonnegative on fm+1; lg and restricts to (+;�) on fk;mg.

(ii) The second vector is nonpositive on fk;mg and restricts to (+;�) on fm +

1; lg.

We establish the existence of the vector claimed in (i) by induction on l � k. If

l = m + 2 then this follows from Lemma 4.1 (ii), so let l � m + 3. By induction,

there exist two vectors of X which are zero on [k; l] n fk;m;m+1; l� 1; lg and have

the following additional properties:

(i

0

) The �rst vector is nonnegative on fm+ 1; l � 1; lg and restricts to (+;�) on

fk;mg. We may assume that it is positive on l� 1 since otherwise it has the

properties claimed in (i).

(ii

0

) The second vector is nonpositive on fk;mg, nonnegative on l and restricts to

(+;�) on fm+ 1; l� 1g.
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In view of Lemma 3.6(i), elimination of l � 1 between the two vectors produces

a vector of L with the desired properties. The case of the vector claimed in (ii) is

analogous.

Given the claim, we complete the proof as follows. One can further choose the

vector in (i) to be zero on l by eliminating l between the vectors in (i) and (ii), if

needed. By successively composing the vectors (i) and (ii) for di�erent subintervals

of [k; l] we can �nd a chain of nonzero vectors of L of cardinality l � k � 1. This

implies that the corank of L is at least l � k � 1.

Proof of Theorem 1.2. Let A = (v

1

; v

2

; : : : ; v

n

) be the valid permutation of the set

of generators of Z representing a given f -monotone path on Z and L = L(A) be the

corresponding oriented matroid of rank d. The case d = 2 is trivial so we assume

that d � 3. Lemma 3.5 and the fact that m(n; d) � m(n� 1; d) allow us to assume

further that A does not contain three coplanar vectors v

i�1

; v

i

; v

i+1

, with indices

regarded modulo n.

The case n = d is trivial. If n = d+ 1 then L has only two nonzero vectors, one

being the negative of the other. Two such vectors cannot be witnesses of distinct

nonips unless these are at consecutive pairs (v

i�1

; v

i

) and (v

i

; v

i+1

) and i�1; i; i+1

are the only nonzero coordinates of the vectors. Since this would imply that v

i�1

,

v

i

and v

i+1

are coplanar, contrary to our assumption, it follows that A has at least

d � 1 ips. Finally, suppose that n � d + 2. We say that A has a ip at the pair

(v

n

; v

1

) if there exists a hyperplane which contains v

1

and v

n

and has the rest of

the v

i

in the same open halfspace. With this extension the notion of ip becomes

cyclic, in the sense that for all i, the sequence (v

i+1

; : : : ; v

n

;�v

1

; : : : ;�v

i

) is valid

and has ips which biject to those of A under shifting by i. Lemma 4.3 implies that

any n � d + 2 consecutive pairs (v

i

; v

i+1

) include at least two ips. This implies

a lower bound of d2n=(n � d + 2)e = m(n; d) + 1 on the number of ips of A, in

the cyclic sense, and of m(n; d) if the pair (v

n

; v

1

) is not considered as a possible

ip.

5. Monotone paths with few flips

In this section we use the technique of Gale transforms to construct valid se-

quences with the number of ips claimed in Theorem 1.4.

We will tacitly use the fact that if A = (v

1

; : : : ; v

n

) is a sequence of vectors

spanning R

d

, X = (X

1

; : : : ; X

n

) is a vector of L(A) such that fv

i

: X

i

6= 0g spans

R

d

and X < Y for a sign vector Y then Y is a vector of L(A).

Theorem 5.1. For any d � 2 there exists a valid sequence of d + 2 vectors in

general position in R

d

which has only dd=2e ips.

Proof. We may assume that d � 4, since the cases d = 2 and d = 3 are trivial. We

will construct explicitly a Gale transform of a sequence with the desired properties.

Suppose �rst that d is even. Let v

�

2

:= (1;�2), v

�

4

:= (1; 0), v

�

d�1

:= (0; 1) and

v

�

d+1

:= (�2; 1). Let the other d � 2 vectors be any vectors in general position

which, together with v

�

4

and v

�

d�1

, form the sequence

v

�

4

; v

�

1

; v

�

6

; v

�

3

; v

�

8

; v

�

5

; : : : ; v

�

d

; v

�

d�3

; v

�

d+2

; v

�

d�1

when taken in anti-clockwise order. This sequence alternates even and odd indices

and both the even and the odd appear monotonically. The con�guration is shown in
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Figure 1 for d = 6. We claim that the Gale transform (v

1

; : : : ; v

d+2

) of (v

�

1

; : : : ; v

�

d+2

)

is valid and has only d=2 ips. Indeed, the fact that v

�

2

, v

�

d+1

and any other v

�

i

are

positively dependent implies that the sequence is valid at 1 and d + 2. The fact

that v

�

i�1

is a positive combination of v

�

i+2

and v

�

i+3

for even i < d and v

�

d+2

is a

positive combination of v

�

d�2

and v

�

d�1

implies validity at all other indices and that

the d=2 pairs (v

i

; v

i+1

) for even i � d are ips. On the other hand there is no ip at

(v

1

; v

2

) or (v

d+1

; v

d+2

), since the positive spans of fv

�

3

; : : : ; v

�

d+2

g and fv

�

1

; : : : ; v

�

d

g

are pointed cones, and no ip at (v

i�1

; v

i

) for even i 2 [4; d], since the positive

spans of fv

�

1

; : : : ; v

�

i�2

g and fv

�

i+1

; : : : ; v

�

d+2

g intersect only at the zero vector. This

completes the proof in the even case.

v*

v*

v*

v*

v*

v*

v*

v*

2

4

1

3

57
8

6

Figure 1. Few ips in corank 2.

For the case that d is odd, let v

�

1

; : : : ; v

�

d+1

be as before and let v

�

0

be any

generic positive combination of v

�

2

and v

�

4

. The sequence (v

0

; : : : ; v

d+1

) dual to

(v

�

0

; : : : ; v

�

d+1

) is valid and the only new ip is at the pair (v

0

; v

1

).

The construction in Theorem 5.1 generalizes the following example of P. Edelman

and V. Reiner [11], refered to (but not explicitly described) in Remark 3.4 of [1].

Let (v

1

; v

3

; v

4

; v

6

) be a linear basis of R

4

, v

2

= v

1

+ 3v

3

+ v

4

+ 2v

6

and v

5

=

2v

1

+ v

3

+ 3v

4

+ v

6

. The sequence (v

1

; v

2

; v

3

; v

4

; v

5

; v

6

) is valid and has only two

ips, namely at (v

2

; v

3

) and (v

4

; v

5

).

In the following constructions we will use the fact that the validity of a vector

sequence A, as well as witnesses of nonips having no zero coordinate, are preserved

under any su�ciently small perturbation of the elements of A.

Theorem 5.2. For any d � 2 there exists a valid sequence of n = d+3 vectors in

general position in R

d

which has only d2n=5e � 1 ips.

Proof. Since the claimed number of ips is equal to dd=2e for n � 9, we may assume

that n � 10. Suppose �rst that n is divisible by 5. Let v

�

1

= (2; 1; 1), v

�

2

= (0;�2; 1),

v

�

3

= (�2; 1; 1), v

�

4

= (5; 0; 1), v

�

5

= (1; 0; 1), v

�

n�1

= �(�1; 0; 1) and v

�

i

= v

�

i�5

+

(6; 0; 0) for all i 2 f6; : : : ; n � 2; ng. Figure 2(a) shows the vector con�guration

in the a�ne plane x

3

= 1 in R

3

for n = 15. The white dot represents the vector

�v

�

14

. We leave it to the reader to verify that the Gale transform (v

1

; : : : ; v

n

) of

(v

�

1

; : : : ; v

�

n

) is a valid sequence and has exactly

2n

5

� 1 ips, namely at the pairs
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(v

i

; v

i+1

) for i = n � 2 and i = 5j � 2; 5j, where 1 � j �

n

5

� 1. To help with

this task, two points i and i + 1 in Figure 2 are joined by a segment if and only

if the pair (v

i

; v

i+1

) is not a ip (the segment joining v

�

15

and �v

�

14

is meant to go

through in�nity). As an example, a witness for the nonip at (v

7

; v

8

) is produced

by any line in Figure 2 (a) passing below v

�

2

, v

�

4

and v

�

6

and above v

�

10

and v

�

13

. If n

is not divisible by 5, the last few vectors can be modi�ed as in Figure 2(b) in order

to get the desired number of ips.

Since lines witnessing the nonips can be chosen not passing through any point

v

�

i

, the dual sequence can be perturbed to general position without a�ecting its

validity or number of ips.

v*
1

v*
2

v*
15

v*
3

v*
4

v*
10

v*
5

-v*14 v*
9

v*
8

v*
13v*

6 11
v*

v*
12

v*
7

v*5p-6

v*
5p-1

v*
5p-2

v*
5p-3

v*5p-6v*
5p+1

v*
5p-1

v*
5p-4

v*
5p-4

v*
5p-2

v*
5p-3

v*
5p

5p+2
v*

v*
5p-1

v*
5p-4

v*
5p-3

v*
5p-2 v*

5pv*5p-6 v*
5p+4

v*
5p+1

5p+2
v*

v*
5p-4

v*
5p-3

v*
5p-2

v*5p-6

v*
5p-1

v*
5p

v*
5p+1

v*
5p+3

(a)

(b)

n = 5p+1

n = 5p+3

n = 5p+2

n = 5p+4

Figure 2. Few ips in corank 3.

Theorem 5.3. If n � d+2 � 4 and n = p (n�d+2), with p 2 Z, then there exists

a valid sequence of n vectors in general position in R

d

which has only 2p� 1 ips.

Proof. We may assume that d � 3, in other words that p � 2. The following

construction generalizes the main ideas in the proofs of Theorems 5.1 and 5.2. Let

k = n� d and

(u

�1

; u

1

; : : : ; u

k

; u

k+2

; w)
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be a con�guration of vectors in R

k

whose oriented matroid contains the k+2 vectors

(1) and k + 1 covectors (2) listed below.

(1)

(�; +; : : : ;+;+;+; 0; 0)

(�; 0;+; : : : ;+;+; +; 0)

(�; �; 0;+; : : : ;+; +; 0)

.

.

.

(�; �; : : : ;�;�; 0; +; 0)

(0; �;�; : : : ;�;�; +; 0)

(2)

(�; +;�;+;+; : : : ; +; +)

(�; �;+;�;+; : : : ; +; +)

.

.

.

(�; : : : ;�;�;+;�; +; +)

(�; �;�; : : : ;�;�; �; +)

(+; +;+; : : : ;+;+; +; 0)

For instance, take a Gale transform of the rank 3 vector con�guration whose

a�ne picture appears in Figure 3. We assume further that there exists a functional

g : R

k

! R with g(u

i

) = 1 for all i and g(w) = 0. This is possible since we can

choose g as any functional which produces the last covector listed in (2) and then

scale each vector u

i

appropriately.

k+2

1 k-12 ku* u* u* u*

- w*

- u*

- u*-1

Figure 3. A vector con�guration of rank 3.

Let u

n�1

= �u

�1

and u

i

= u

i�k�2

+ t for all i 2 [k+1; n] n fk+2; n� 1g, where

t = �w for some positive � 2 R. Let A

�

= (u

1

; : : : ; u

n

) and A = (v

1

; : : : ; v

n

) be a

Gale transform of A

�

. We claim that A is valid for any value of � and that it has

exactly 2p � 1 ips if � is su�ciently large, namely at the pairs (v

q�2

; v

q�1

) and

(v

q

; v

q+1

) for indices q divisible by k + 2.

Indeed, let q = a(k + 2) with a 2 [0; p� 1]. By our choice of g, the sum of the

coe�cients in any linear dependence on (u

�1

; u

1

; : : : ; u

k

; u

k+2

) is zero and hence

such a dependence is preserved under translation of all vectors by t. As a result,

the sign vectors (1) are vectors of the sequence (u

q�1

; u

q+1

; : : : ; u

q+k

; u

q+k+2

), with

u

�1

= �u

n�1

if q = 0. Since any k + 1 elements of this sequence span R

k

, this

implies that A is valid at the indices q; : : : ; q + k + 1. For the second claim let

f

1

; : : : ; f

k

be functionals on R

k

which induce the �rst k covectors listed in (2) and

choose � so that f

i

(t) > jf

i

(u

j

)j for all i and j = �1; 1; : : : ; k; k + 2. A simple

computation shows that, under this assumption, the functional f

i

�af

i

(t) g induces

a witness for a nonip at (v

q+i

; v

q+i+1

) if 1 � i < k and at (v

q+k+1

; v

q+k+2

) if

i = k. The other n� 1� kp = 2p� 1 pairs are ips by Theorem 1.2.

Since the witnesses of the nonips have no zero coordinates, they are preserved

under any su�ciently small perturbation of A into general position.

Corollary 5.4. For any d � 6 and any n � 2d� 4 there exists a valid sequence of

n vectors in general position in R

d

which has only three ips.
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Proof. For the case n = 2d � 4 take p = 2 in the previous theorem. The general

case follows from Proposition 3.7.

Theorem 5.5. For any n � 9 there exists a valid sequence of n vectors in general

position in R

5

which has only two ips.

Proof. In view of Proposition 3.7 it su�ces to treat the case n = 9. Let A

�

=

(v

�

1

; : : : ; v

�

9

) be the sequence of columns of the following matrix, which we denote

again by A

�

:

A

�

:=

2

6

6

6

6

4

6 0 �6 14 8 2 2 5 10

1 �5 1 �1 5 �1 1 �2 1

1 �5 1 1 �5 1 0 0 0

1 1 1 1 1 1 �1 0 1

3

7

7

7

7

5

:

Note that v

�

1

; v

�

2

; : : : ; v

�

6

;�v

�

7

and v

�

9

lie in the a�ne hyperplane x

4

= 1 in R

4

while

v

�

8

is parallel to it. Part (a) of Figure 4 shows a two-dimensional projection of

this hyperplane along the direction of the third coordinate x

3

. The white dot

represents �v

�

7

and v

�

8

is drawn as lying at in�nity. The linking of the triangles

fv

�

1

; v

�

2

; v

�

3

g, fv

�

4

; v

�

5

; v

�

6

g and fv

�

7

; v

�

8

; v

�

9

g shown should help the reader to understand

the construction.

v*
10

v*
3 v*

1
v*

9

v*
2

v*
5

v*
8

v*
11

v*
4

v*
15

v*
7

v*
1

v*
9

13
-v*

v*6

v*
3

v*
2

v*
5

v*
8

v*
12

8
-v*

7
-v*

v*6 v*
4

v*14

14-v*

(a)

(b)

Figure 4. Two vector con�gurations of rank 4.

Let A = (v

1

; : : : ; v

9

) be a Gale transform of A

�

. We claim that A is valid and

has only two ips, namely at the pairs (v

3

; v

4

) and (v

6

; v

7

). To see the latter we
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consider the matrix

W :=

2

6

6

6

6

6

6

6

6

6

4

1 2 + e 1 + e 3� e

1 �2� e �1� e �3 + e

1 �2� e 1 + e �5� e

1 2 + e �1� e �11 + e

2 8 6 �27

�2 �8 6 �11

3

7

7

7

7

7

7

7

7

7

5

where � is any positive constant smaller than 1=2. The six rows ofW represent linear

functionals over R

4

which witness, respectively, nonips at the pairs (1; 2), (2; 3),

(4; 5), (5; 6), (7; 8) and (8; 9). This is shown by the following matrix multiplication:

W � A

�

=

2

6

6

6

6

4

12 + � �12 � 11� � 16 � � 16 � � 4� � 1 + 2� 1� 2� 15

�� 12 + 11� �12 � � 12 + � � � 3� 2� 9 + 2� 5

�� �� �12 � � 12 + � �12 � 11� � 5 9 + 2� 3 � 2e

�4 + � �16 + � �16 + � �� 12 + 11� �12 � � 15 1� 2� 1 + 2e

�1 �97 �25 �1 �1 �25 39 �6 1

�25 �1 �1 �25 �97 �1 �1 6 �39

3

7

7

7

7

5

To see that the sequence is valid consider the following matrix.

V :=

2

6

4

0 1 4 0 0 1 6 2 0

�85 �17 0 0 17 85 12 12 12

�1 0 0 �4 �1 0 0 2 6

3

7

5

The rows of V are orthogonal to those of A

�

, hence they represent linear depen-

dences among the vectors v

�

i

. Since det(v

�

2

; v

�

6

; v

�

7

; v

�

8

) = det(v

�

1

; v

�

5

; v

�

8

; v

�

9

)=24, in

each dependence the vectors in A

�

with nonzero coe�cients span R

4

. Hence, the

three dependences can be perturbed keeping the signs of the nonzero coe�cients

and producing arbitrary signs in the zero ones, to get dependences which show

validity of A at 1 and 9 (�rst row of V ), 3 and 4 (second row) and 6 and 7 (third

row). Validity at the other three indices follows from Corollary 3.3.

As in the previous constructions, nonips are preserved under any su�ciently

small perturbation of A into general position.

Remark 5.6. The construction in the proof of Theorem 5.5 can be generalized

to show that for any p 2 N and for d = 6p � 1, there exists a valid sequence

of n = d + 4 vectors in general position in R

d

which has only

n

3

� 1 ips. This

again matches the lower bound of Theorem 1.2. More precisely, if (v

�

1

; : : : ; v

�

6

) is

as in that proof, v

�

n�2

= �(�2;�1; 0; 1), v

�

n�1

= (5;�2; 0; 0), v

�

n

= (16p� 6; 1; 0; 1)

and v

�

i

= v

�

i�6

+ (16; 0; 0; 0) for all i with 7 � i � n � 3 then the Gale transform

(v

1

; : : : ; v

n

) of (v

�

1

; : : : ; v

�

n

) is valid and has ips only at the pairs (v

q

; v

q+1

) for

indices q divisible by 3. Part (b) of Figure 4 shows A

�

in the case p = 2, with the

same conventions adopted for part (a) in the proof of Theorem 5.5.

Proof of Theorem 1.4. Combine Theorems 5.1, 5.2, 5.3 and 5.5.

In a special case, part (ii) of the following conjecture claims that two ips can

be achieved in the case of zonotopes with 3d�6 generators in any dimension d � 3.

Conjecture 5.7. For integers n � d � 2, let h(n; d) denote the minimum number

of ips among all monotone paths on d-zonotopes with n generators.
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(i) h(n; d) is a nondecreasing function of n in each �xed corank n� d.

(ii) h(n; d) = m(n; d) for all n and d and the minimum can be achieved in general

position.

Clearly, part (ii) of the conjecture implies part (i). Conversely, Theorem 5.3 and

part (i) imply that

h(n; d) � 2

�

n

n� d+ 2

�

� 1 � m(n; d) + 1

for n � d + 2, hence that the lower bound m(n; d) can be o� by at most one.

Theorem 5.3 implies that part (i) of the conjecture is true in a weak asymptotic

sense.

6. Oriented matroids and chains of topes

In this section we adapt the ideas of [1, Section 4] to the setting of oriented

matroids and prove Theorem 1.3.

Let L be an oriented matroid of rank r on the ground set [n], T be the set

of topes of L and B 2 T . We assume without loss of generality that L has no

loops or parallel elements. We �rst de�ne carefully the graph which appears in the

statement of Theorem 1.3. Two maximal chains B = T

0

< T

1

< � � � < T

n

= �B

and B = T

0

0

< T

0

1

< � � � < T

0

n

= �B in the tope poset T (L; B) are said to di�er

by an elementary homotopy or deformation [5, Section 4.4], or ip if there exist

indices 0 � i < j � n such that T

k

= T

0

k

for all k with either k � i or k � j and

fT

i

; T

i+1

; : : : ; T

j

; T

0

j�1

; : : : ; T

0

i+1

g = star(X)

for some X 2 L of rank r � 2, where star(X) = fT 2 T : T � Xg. We denote by

G(L; B) the graph with vertices the maximal chains of T (L; B) and edges de�ned

by the ips. If L is the realizable oriented matroid associated to the zonotope

Z and f is a linear functional on Z taking its minimum at the vertex of Z which

corresponds to the tope B then G(L; B) is naturally isomorphic to the graph G(Z; f)

of f -monotone paths on Z and polygon moves.

For any closed interval I = [T; T

0

] in T (L; B) we can de�ne similarly the graph

G(L; I) with vertices the maximal chains of I and edges the ips among them. To

be more precise, if C and C

0

are any maximal chains in the intervals [B; T ] and

[T

0

;�B], respectively, then two maximal chains in I are connected by an edge in

G(L; I) if their extensions by C and C

0

are connected by an edge in G(L; B). In

the special case that I = T (L; B), the following result of Cordovil and Moreira [8]

states that the graph G(L; B) is connected.

Proposition 6.1. ([8] [5, Proposition 4.4.7]) For any closed interval I of T (L; B),

the graph G(L; I) is connected.

Let us recall the construction of pullbacks from [1, Section 4]. We will think of

graphs as �nite one-dimensional simplicial complexes, so that a simplicial map of

graphs sends vertices to vertices and edges to either edges or vertices. Furthermore,

such a map is surjective if it is surjective both on vertices and edges. Given simplicial

maps of graphs � : G

1

! H and � : G

2

! H , we de�ne a graph G as follows. The

vertices of G are the ordered pairs (a; b) of vertices of G

1

and G

2

, respectively, such

that �(a) = �(b). Two vertices (a; b) and (a

0

; b

0

) are connected by an edge in G if

either
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(i) a = a

0

and fb; b

0

g is an edge of G

2

,

(ii) b = b

0

and fa; a

0

g is an edge of G

1

or

(iii) fa; a

0

g and fb; b

0

g are edges of G

1

and G

2

, respectively, which both map

homeomorphically onto the same edge of H .

Note that G is the cartesian product of G

1

and G

2

if H has a single vertex. The

diagram

G ����! G

2

?

?

y

�

?

?

y

G

1

�

����! H;

(1)

where the unlabeled arrows denote projections to the �rst and second coordinate,

is called a pullback diagram.

The following lemma will be needed, as in [1, Section 4].

Lemma 6.2. ([1, Proposition 4.8]) Let (1) be a pullback diagram. If

(i) G

1

and G

2

are 2-connected,

(ii) � and � are surjective and

(iii) the �bers �

�1

(v); �

�1

(v) are connected for every vertex v of H

then G is 2-connected.

Remember that in Section 2.2 we de�ned the distance d(B; T ) between B and

another tope T as the number of coordinates at which the signs of B and T di�er.

Given L and B as before, we de�ne graphs H

i

, for 0 � i � n, and H

i�1;i

, for

1 � i � n, as follows. The vertices of H

i

are the topes T of L with d(B; T ) = i

and those of H

i�1;i

are the subtopes of L which join a vertex of H

i�1

to a vertex of

H

i

. In either case, two vertices X

1

and X

2

are connected by an edge of the graph

if there exists a covector X of rank r � 2 with X < X

1

and X < X

2

in L. Note

that there is a natural surjective simplicial map �

i�1

: H

i�1;i

! H

i�1

.

We postpone the proof of the following lemma until the end of this section.

Lemma 6.3. The graph H

i�1;i

is (r � 1)-connected for all 1 � i � n.

Proof of Theorem 1.3. For 1 � i � n we de�ne a graph G

i

of partial chains in

T (L; B) as follows. The vertices of G

i

are the chains T

0

< T

1

< � � � < T

i

of

T (L; B) with d(B; T

j

) = j for all j, where T

0

= B is implied. Two such vertices are

connected by an edge in G

i

if they can be extended to maximal chains of T (L; B)

which are connected by an edge in G(L; B). Note that G

i

= G(L; B) for i = n, so

it su�ces to prove that G

i

is 2-connected for all i by induction on i.

At the basis of the induction, G

1

is 2-connected by Lemma 6.3, since it is iso-

morphic to H

0;1

and r � 3. Let 1 � i < n and note that projection to the last

coordinate de�nes a surjective simplicial map �

i

: G

i

! H

i

. The maps � = �

i

and

� = �

i

give rise to the pullback diagram

G

i+1

����! H

i;i+1

?

?

y

�

?

?

y

G

i

�

����! H

i

:

(2)
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The graph G

i

is 2-connected by induction and H

i;i+1

is 2-connected by Lemma

6.3 and the assumption r � 3. The �bers �

�1

(v) are connected by Proposition 6.1

while connectivity of the �bers �

�1

(v) is the content of [5, Lemma 4.4.4]. Lemma

6.2 then implies that G

i+1

is 2-connected. This completes the inductive step and

the proof of the theorem.

The next corollary follows also from the proof of Theorem 1.2 in Section 4.

Corollary 6.4. If L is an oriented matroid of rank r � 3 and B is one if its topes

then any maximal chain in the tope poset T (L; B) admits at least two ips.

We now come back to the proof of Lemma 6.3. For the background on regular

cell complexes needed we refer to [5, Section 4.7]. We will use in particular the fact

that the augmented face poset of a regular cell decomposition of a PL d-sphere is

a combinatorial d-manifold, in the sense of [7] (i.e. a �nite lattice L of height d+2

such that each nonempty open interval in L is either an antichain of two elements

or connected with at least two comparable elements). This follows easily from the

fact that the class of (regular cell decompositions of) PL spheres is closed under

taking links [5, Theorem 4.7.21 (iv)].

Proof of Lemma 6.3. Let L

i�1

and L

i�1;i

be the order ideals in L generated by the

set R

i�1

of topes at distance at most i � 1 from B and the vertex set of H

i�1;i

,

respectively. Since R

i�1

is an order ideal in the tope poset T (L; B), it follows from

[5, Theorem 4.3.3] and [5, Proposition 4.7.26 (ii)] that L

i�1

�

^

0 is the face poset

of a shellable, regular cell decomposition of a PL (r � 1)-ball. The boundary of

this ball is a regular cell decomposition of a PL (r � 2)-sphere whose face poset is

isomorphic to L

i�1;i

�

^

0. It follows that L

i�1;i

[

^

1 is a combinatorial (r�2)-manifold.

A theorem of Barnette [2] (see also [7]) then implies that the graph formed by the

top two levels of L

i�1;i

is (r � 1)-connected. This graph coincides with H

i�1;i

by

de�nition.

7. Simple zonotopes and Coxeter arrangements

In this section we point out an application of the result of [1] on simple polytopes

to �nite Coxeter groups.

A d-dimensional polytope P is simple if every vertex of P is incident to exactly

d edges. If P is a zonotope, this is equivalent to the statement that the polar

arrangement of linear hyperplanes is simplicial. An important class of simplicial

arrangements of hyperplanes is the class of Coxeter arrangements [5, Section 2.3]

[13, Chapter 6]. Let W be a �nite Coxeter group, i.e. a �nite group presented by

a �nite set of generators S and the relations

(i) s

2

= 1, s 2 S and

(ii) (ss

0

)

m(s;s

0

)

= 1, s 6= s

0

, s; s

0

2 S

for some integers m(s; s

0

) � 2. The minimum size of such a set S is called the

rank of W . Relations (i) and (ii) are known as the Coxeter relations. The class of

�nite Coxeter groups coincides with that of �nite reection groups. The associated

reection arrangement, or Coxeter arrangement A

W

, is known to be simplicial and

hence its polar zonotope is simple. Its dimension is the rank of W . The regions

of A

W

are naturally in bijection with the elements of W . Moreover, if B is the

region corresponding to the identity element then the maximal chains in the poset

of regions of A

W

are in bijection with the reduced decompositions of the highest
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element w

0

of W , i.e. expressions of minimal length of the form w

0

= s

1

s

2

� � � s

`

,

with s

i

2 S for all i. The ips correspond to moves which replace m successive

entries s; s

0

; s; s

0

; : : : with s

0

; s; s

0

; s; : : : , where s 6= s

0

and m = m(s; s

0

), known as

Coxeter moves.

The following corollary of Theorem 1.1(iii) strengthens the well known fact (cf.

[6, 12]) that any two reduced decompositions of w

0

can be obtained from each other

by a sequence of Coxeter moves.

Corollary 7.1. If W is a �nite Coxeter group of rank r and w

0

is its heighest

element then the graph of reduced decompositions of w

0

and Coxeter moves is (r�1)-

connected.
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