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What follows is the �nal version of the paper, as appeared in Colle
t. Math.

52, 3 (2001), 231{256. But there is a minor error in the proof of Theorem 2.8.

To 
orre
t it, in line 25 of page 11 (line 20 of page 241 in the journal) 
hange:

\of S for w

i

(i = 1; : : : ; k). In parti
ular, w

i

restri
ted. . . "

to:

\of �(P ) for w

i

(i = 1; : : : ; k). By part 2 of Theorem 2.2, w

i

restri
ted. . . "

Also, delete the following senten
e four lines after that:

\By part 2 of Theorem 1.3, S

i

is the �-
oherent subdivision of the proje
tion

� : P ! �(P ) for the fun
tional w

i

(i = 1; : : : ; k)."
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Abstra
t

Let � : P ! Q be an aÆne proje
tion map between two polytopes P

and Q. Billera and Sturmfels introdu
ed in 1992 the 
on
ept of polyhedral

subdivisions of Q indu
ed by � (or �-indu
ed) and the �ber polytope of

the proje
tion: a polytope �(P; �) of dimension dim(P ) � dim(Q) whose

fa
es are in 
orresponden
e with the 
oherent �-indu
ed subdivisions (or

�-
oherent subdivisions).

In this paper we investigate the stru
ture of the poset of �-indu
ed

re�nements of a �-indu
ed subdivision. In parti
ular, we de�ne the re-

�nement polytope asso
iated to any �-indu
ed subdivision S, whi
h is a

generalization of the �ber polytope and shares most of its properties.

As appli
ations of the theory we prove that if a point 
on�guration

has non-regular subdivisions then it has non-regular triangulations and

we provide simple proofs of the existen
e of non-regular subdivisions for

many parti
ular point 
on�gurations.

Keywords: polytope, polyhedral subdivision, se
ondary polytope,

�ber polytope, re�nement.

Introdu
tion

In 1992, Billera and Sturmfels [6℄ introdu
ed the 
on
ept of polyhedral sub-

divisions of Q indu
ed by an aÆne proje
tion map � : P ! Q between two

polytopes (or �-indu
ed) and the �ber polytope of the proje
tion: a polytope

�(P; �) of dimension dim(P )� dim(Q) whose fa
es are in 
orresponden
e with

the 
oherent �-indu
ed subdivisions (or �-
oherent subdivisions). See also [26,

Chapter 9℄. This was a natural generalization and a 
lari�
ation of the theory

of se
ondary polytopes developed by Gelfand, Kapranov and Zelevinsky [8, 14℄.

There is a 
ertain amount of re
ent literature 
on
erning this theory (see

[2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 19, 20, 21℄ and the survey arti
le [22℄), mainly in


onne
tion with the so-
alled Baues problem, stated by Billera, Kapranov and

�
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Sturmfels [7℄, whi
h asked whether the re�nement poset of all proper �-indu
ed

subdivisions of a polytope proje
tion is homotopy equivalent to a sphere. Al-

though a negative example was found by Rambau and Ziegler [21℄ the parti
ular

and important 
ases of P being a simplex or a 
ube remain open.

Here we show that the theory of �ber polytopes generalizes ni
ely to the

study of lower ideals of the poset of �-indu
ed subdivisions, i.e., to the study

of �-indu
ed re�nements of a given �-indu
ed subdivision S. In parti
ular, for

any �-indu
ed subdivision S of Q one 
an de�ne a 
ertain �-re�nement polytope

�(S; �) (Theorem 1.3) with the following properties:

(a) If S is the trivial subdivision, then �(S; �) equals the �ber polytope

�(P; �) (Theorem 1.3, part 3).

(b) The fa
es of �(S; �) 
orrespond to 
ertain �-indu
ed re�nements of S

whi
h we 
all �-
oherent re�nements of S (Theorem 2.4, parts 2 and 4)

and whi
h in
lude all the �-
oherent subdivisions whi
h re�ne S.

(
) If S is a �-
oherent subdivision then �(S; �) equals the fa
e of the �ber

polytope 
orresponding to S (Theorem 1.3, parts 2 and 4).

(d) If S

0

re�nes S then �(S

0

; �) is stri
tly 
ontained in �(S; �) (Theorem 2.4,

parts 1 and 3 and Corollary 2.5).

It is important to stress that the re�nement polytope 
onsidered here is not

the same as the generalized se
ondary polytope of the subdivision S, 
onsidered

in [1, Se
tion 2.12℄ and [24, Se
tion 4.2℄. That polytope has properties (a) and

(b) above, but neither (
) nor (d). See more details in Remark 2.7.

With the aid of this theory we are able to prove several ni
e properties of

the poset 
(S; �) of �-indu
ed re�nements of a �-indu
ed subdivision S, su
h

as the following ones:

� The poset is \atomi
", meaning by this that any subdivision S is the least


ommon upper bound of its tight re�nements (Proposition 2.3; a �-indu
ed

subdivision is 
alled tight if it has no proper �-indu
ed re�nements, i.e.,

if it is an atom in the poset).

� A subdivision S is �-
oherent if and only if all of its tight re�nements

are �-
oherent (Theorem 2.8). In parti
ular, if a polytope proje
tion

produ
es non-
oherent subdivisions, then it produ
es non-
oherent tight

subdivisions (Corollary 2.9). This allows us to give simple proofs of the

existen
e of non-regular subdivisions for several parti
ular point 
on�gu-

rations (Se
tion 3, Examples 3.2).

� If the re�nement polytope �(S; �) has dimension 1, then the poset of

proper �-indu
ed re�nements of S is isomorphi
 to the poset of proper

fa
es of a 
ube of a 
ertain dimension (Theorem 4.3).

� In parti
ular, the elements of height 1 in the poset have exa
tly two proper

re�nements, whi
h are both tight (Corollary 4.5). This suggests the def-

inition of a �-
ip between two tight �-indu
ed subdivisions (De�nition
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4.7). If P is a simplex, if P is a 
ube or if dim(Q) = 1 this de�nition 
o-

in
ides respe
tivily (at least in non-degenerate 
ases) with the standard

notions of bistellar 
ip between triangulations of a point 
on�guration,


ube-
ip between 
ubi
al tilings of a zonotope and polygon move between

monotone paths in a polytope (Se
tion 5).

The stru
ture of the paper is as follows: Se
tion 1 is a review of the 
on
epts

and previous results in the theory of �ber polytopes and �-indu
ed subdivisions,

and ends with the de�nition of the �-re�nement polytope. Se
tion 2 
ontains the

main results on �-re�nement polytopes and �-
oherent re�nements. Se
tion 3

applies the theory to existen
e of non-regular triangulations. Se
tion 4 analyzes

the 
ase where the �-re�nement polytope is 1-dimensional and Se
tion 5 is

devoted to the 
on
ept of �-
ip and its relation to bistellar 
ips, 
ube 
ips

and polygon moves in the 
ases mentioned above. Several examples and open

questions are in
luded throughout the paper.

1 Re�nement polytopes

Subdivisions of a point 
on�guration

By a point 
on�guration A in R

d

we mean a �nite labelled subset of R

d

. We

admit A to have repeated points, whi
h are distinguished by their labels. The

following formalization of polyhedral subdivisions of A 
omes from [14, Se
tion

7.2℄. Equivalent ones 
an be found in [3, 6, 8, 15, 22, 26℄. We will 
all fa
es

of A the subsets where aÆne fun
tionals take their maximum. A and ; are


onsidered fa
es. Given two subsets B

1

and B

2

of A we say that they interse
t

properly if the following two 
onditions hold:

� 
onv(B

1

)\
onv(B

2

) is a fa
e F of both polytopes 
onv(B

1

) and 
onv(B

2

)

(possibly empty).

� F \B

1

= F \B

2

.

A subset of A is said to be full-dimensional if it aÆnely spans A and simpli
ial

if it is aÆnely independent. Following [8℄ and [14℄ we de�ne:

De�nition 1.1 A (polyhedral) subdivision ofA is a 
olle
tion S of full-dimensional

subsets of A whi
h interse
t pairwise properly and 
over 
onv(A) in the sense

that [

B2S


onv(B) = 
onv(A). The elements of S are 
alled 
ells of the subdi-

vision.

The set of subdivisions of A is partially ordered by the re�nement relation

S

1

� S

2

:() 8B

1

2 S

1

; 9B

2

2 S

2

; B

1

� B

2

:

The poset of subdivisions of A has a unique maximal element whi
h is the

trivial or improper subdivision fAg. The maximal proper elements are 
alled


oarse subdivisions and the minimal elements are the subdivisions all of whose

fa
es are simpli
ial, whi
h are 
alled triangulations of A. The maxima
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Baues posets and �-indu
ed subdivisions

Let P � R

p

be a polytope and � : R

p

! R

q

be an aÆne proje
tion map. We

denote by vert(P ) the set of verti
es of P . Let A = �(vert(P )), with ea
h point

in A labelled by the vertex of P of whi
h it is 
onsidered to be the image (A

may have repeated points). A subdivision S of A is said to be �-indu
ed if ea
h

of its 
ells equals �(B) for some fa
e B of the point 
on�guration vert(P ).

Observe that, sin
e � is a bije
tion between vert(P ) and A, the subdivision

S 
ompletely des
ribes whi
h fa
es of vert(P ) proje
t to 
ells of S, even if

di�erent geometri
 fa
es of the polytope P have the same image under �. We

will use the following notation: if S is a �-indu
ed subdivision of A and B is a


ell of S, P

B

will denote the fa
e of the polytope P for whi
h �(vert(P

B

)) = B

and P

S

will denote the union of all su
h fa
es, for the di�erent 
ells in S.

We will 
all Baues poset of the polytope proje
tion � : P ! �(P ) the poset

of all �-indu
ed subdivisions of A (ex
luding the trivial one fAg) partially

ordered by re�nement. We will denote it 
(P; �). Its minimal elements are


alled tight �-indu
ed subdivisions. A �-indu
ed subdivision S is tight if and

only if P

S

has pure dimension equal to the dimension of �(P ). Equivalently,

if for every fa
e F of P 
ontained in P

S

one has dim(F ) = dim(�(F )). Fa
es

with this property will be 
alled tight fa
es of P . Observe that the re�nement

ordering in 
(P; �) 
oin
ides with the in
lusion ordering in the set fP

S

: S is a

�-indu
ed subdivisiong.

The generalized Baues problem posed by Billera, Kapranov and Sturmfels [7℄

asked whether 
(P; �) is always homotopy equivalent to a sphere of dimension

dim(P ) � dim(�(P )). In general the answer is negative, as an example of

Rambau and Ziegler [21℄ showed. The parameters in this example are dim(P ) =

5, dim(�(P )) = 2 and #vert(P ) = 10. However, the 
ases of P being a simplex

or a hyper
ube I

d

are spe
ially interesting and still open. In the simplex 
ase


(P; �) is the poset of all the subdivisions of A = �(vert(P )). In the 
ube 
ase

it is the poset of all zonotopal tilings of the zonotope �(I

d

) and it is isomorphi


to the extension spa
e of the oriented matroid dual to the one realized by the

generators of the zonotope (this isomorphism is the Bohne-Dress theorem on

zonotopal tilings, see [26℄). Positive answers are known for the following 
ases:

� dim(�(P )) = 1 [7℄ or dim(P )� dim(�(P )) � 2 [21℄.

� P is a simplex and either dim(�(P )) = 2 [13℄ or dim(P )�dim(�(P )) = 3

[4℄.

� P is a 
ube and either dim(�(P )) = 2 or dim(P )� dim(�(P )) = 3 [21℄.

� P is a 
y
li
 polytope and � the proje
tion whi
h forgets some of the


oordinates (in parti
ular, A is the vertex set of another 
y
li
 polytope)

[20, 3℄.

The 
ube 
ase is a
tually equivalent to a spe
ial 
ase of the simplex 
ase.

Indeed, the poset of zonotopal tilings of a zonotope of dimension d with n

generators equals the poset of all subdivisions of a 
ertain Lawren
e polytope of

dimension n + d � 1 with 2n verti
es (see [15℄ and [23, Se
tion 4℄). It is also
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equivalent to the extension spa
e 
onje
ture of oriented matroid theory. More

generally, the 
ase of P being a produ
t of simpli
es (in whi
h 
(A; �) is the

poset of mixed subdivisions of a Minkowski sum of point 
on�gurations) would

follow from the 
ase of P being a simplex, via the use of the Cayley tri
k [15℄.

We will 
ome ba
k to this in Se
tion 5.

Fiber polytopes and �-
oherent subdivisions

Every non-zero linear fun
tional w 2 (R

p

)

�

de�nes a �-indu
ed subdivision as

follows: the map � fa
tors into a map (�;w) : R

p

! R

q

� R and the map � :

R

q

�R! R

q

whi
h forgets the last 
oordinate. Let A be the point 
on�guration

(�;w)(vert(P )) in R

q

� R. A fa
e of A is 
alled upper if its outer normal 
one


ontains a ve
tor with last 
oordinate stri
tly positive. The 
olle
tion of upper

fa
ets of A proje
ts onto a subdivision S

w

of A. The subdivision is �-indu
ed,

sin
e every fa
e of A is the proje
tion of the vertex set of a fa
e of P . We 
all

S

w

the �-
oherent subdivision of A for the fun
tional w. A subdivision of A is


alled �-
oherent if it is the �-
oherent subdivision for some fun
tional.

The following is a di�erent des
ription of the �-indu
ed subdivision S

w

asso
iated to a linear fun
tional w: for any generi
 point x 2 
onv(A) = �(P )

let (�

�1

(x))

w

be the fa
e of the �ber �

�1

(x) � P on whi
h w takes its maximum

and let F

x;w

be the smallest fa
e of P whi
h 
ontains (�

�1

(x))

w

. Then, S

w

=

f�(vert(F

x;w

)) : x 2 
onv(A) and x is generi
g.

Given a �-
oherent subdivision S of A, the 
olle
tion of all fun
tionals w

for whi
h S = S

w

is a relatively open polyhedral 
onvex 
one. The 
olle
tion

of all these 
ones for varying S is a polyhedral fan whi
h 
overs (R

p

)

�

. In fa
t,

it is the normal fan of a 
ertain polytope of dimension dim(P ) � dim(�(P ))


alled the �ber polytope of the proje
tion �, as proved in [6℄. We will de-

note this polytope �(P; �) and its pre
ise de�nition is as follows: Let �(P; �)

denote the set of all pie
ewise linear se
tions s : �(P ) ! P for the proje
-

tion �. For ea
h su
h se
tion, the average

1

vol(�(P ))

R

�(P )

s(x)dx is a point in

the �ber �

�1

(O) � R

p

of � over the 
entroid O of �(P ). Let �(P; �) :=

n

1

vol(�(P ))

R

�(P )

s(x)dx : s 2 �(P; �)

o

.

Theorem 1.2 ([6℄) �(P; �) is a polytope of dimension dim(P ) � dim(�(P )).

Its fa
es are in one-to-one 
orresponden
e with the �-
oherent subdivisions of

A = �(vert(P )).

If the polytope P is a simplex, the �-
oherent subdivisions of A are simply


alled 
oherent [14℄ or regular [8, 17℄. The �ber polytope is 
alled the se
ondary

polytope of the point 
on�guration A.

Re�nement polytopes

The following statement makes more expli
it the bije
tion between �-
oherent

subdivisions of A and fa
es of �(P; �):
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Theorem 1.3 Let S be a �-indu
ed subdivision for a 
ertain polytope proje
tion

� : P ! �(P ). Let �(S; �) be the subset of �(P; �) 
onsisting of se
tions with

image in P

S

. Let

�(S; �) :=

(

1

vol(�(P ))

Z

�(P )

s(x)dx : s 2 �(S; �)

)

:

Then,

1. �(S; �) is the Minkowski average of the �ber polytopes of the di�erent 
ells

in S. More pre
isely

�(S; �) =

1

vol(�(P ))

X

B2S

vol(
onv(B))�(P

B

; �)

2. If S is the �-
oherent subdivision of A for a fun
tional w, then �(S; �) is

the fa
e of �(P; �) whi
h maximizes w.

3. �(S; �) = �(P; �) if and only if S is the trivial subdivision fAg.

4. �(S; �) is a fa
e of �(A; �) if and only if S is a �-
oherent subdivision.

Proof: De
omposing the integral

R

�(P )

s(x)dx via the subdivision S, for ea
h

se
tion s 2 �(S; �), gives the formula in part 1.

For part 2, if S is �-
oherent for a fun
tional w 2 (R

p

)

�

, then for ea
h 
ell

B 2 S, the maximum value of w(

R


onv(B)

s(x)dx) is taken on and only on the

se
tions s(x) with image 
ontained in P

B

. This proves the statement, and also

the following 
laim whi
h will be used for part 4: if S

0

is a subdivision with

�(S

0

; �) � �(S; �) and S is �-
oherent, then P

S

0

� P

S

and, hen
e, S

0

re�nes

S.

Part 1 trivially shows that �(fAg; �) = �(P; �). In order to prove part 3,

suppose that S is not the trivial subdivision. Let B be any 
ell in S and x be

a point in the relative interior of B. Let P

B

be the fa
e of P 
orresponding

to B. The fa
t that S is not trivial implies that P

B

\ �

�1

(x) is a proper fa
e

of the �ber �

�1

(x). Let w be a fun
tional whose maximum over �

�1

(x) is not

taken in any point of P

B

\ �

�1

(x). Let S

w

be the �-
oherent subdivision for

w. By the proof of part 2, the value of the fun
tional w over S(P; �) 
annot be

maximized in any point of �(S; �). In parti
ular, �(S; �) 6= �(P; �).

The \if" in part 4 is implied by part 2 of the statement. For the \only-

if", suppose that �(S; �) is a fa
e of �(P; �). Let w be a fun
tional whose

maximum over �(P; �) is taken pre
isely in the fa
e �(S; �). By part 2,

�(S; �) = �(S

w

; �), where S

w

is the �-
oherent subdivision of A for w. The

last 
laim in the proof of part 2 implies that S re�nes S

w

. Sin
e S is assumed

not to be �-
oherent, it is a proper re�ement of S

w

.

�(S

w

; �) is the Minkowski average of the �ber polytopes �(P

B

; �) for the


ells B 2 S

w

. �(S; �) is, by part 3 applied to the di�erent 
ells of S

w

, a

Minkowski sum of polytopes stri
tly 
ontained in them. Thus, �(S; �) is stri
tly


ontained in �(S

w

; �), whi
h is a 
ontradi
tion. 2
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De�nition 1.4 Let S be a �-indu
ed subdivision for a polytope proje
tion

P ! �(P ). The polytope �(S; �) of Theorem 1.3 will be 
alled the �-re�nement

polytope of the subdivision S.

Remark 1.5 The proje
tion � : P

S

! �(P ) indu
es a map B : �(P ) ! 2

R

p

whi
h asso
iates to every point x 2 �(P ) the restri
ted �ber �

�1

(x)\P

S

. This

map is an example of what Billera and Sturmfels [6℄ 
all a polytope bundle

and it is pie
ewise linear. The �-re�nement polytope �(P; �) is the Minkowski

integral of the polytope bundle. In parti
ular, Theorem 1.3 and Proposition 1.2

in [6℄ imply, respe
tively, parts 1 and 2 of the previous theorem.

Remark 1.6 If S is a tight �-indu
ed subdivision then �(S; �) has only one

element and, in parti
ular, the re�nement polytope �(S; �) is a single point.

This point equals

v

S

:=

P

B2S

vol(
onv(B))O

B

vol(�(P ))

;

where O

B

denotes the 
entroid of the fa
e P

B

of P .

Suppose, moreover, that P is a simplex with vertex set fe

1

; : : : ; e

p+1

g and

let a

i

= �(e

i

), so that �-indu
ed subdivisions 
oin
ide with the polyhedral subdi-

visions of the point 
on�guration A := fa

1

; : : : ; a

p+1

g. Then, the 
entroid O

B

of ea
h fa
e 
an be rewritten as the average of its q+1 verti
es and the formula

above takes the following form

v

S

=

P

p+1

i=1

�

P

a

i

2B2S

vol(
onv(B))

�

e

i

(d+ 1)vol(�(P ))

:

In other words, the i-th aÆne 
oordinate of the vertex v

S

2 R

p

equals, up

to a normalization 
onstant, the volume of the star of a

i

in S. This is the

standard way to express the vertex of the se
ondary polytope asso
iated to a

regular triangulation of A [8, 14℄.

2 �-
oherent re�nements of a �-indu
ed subdivision

We are interested in the poset of �-indu
ed subdivisions of A whi
h re�ne a

given one S. We will see that this poset behaves in many respe
ts as 
(P; �) and

in parti
ular that the fa
es of the above de�ned �-re�nement polytope �(S; �)

are in 
orresponden
e with some �-indu
ed re�nements of S. As it happened

with Theorem 1.3 some of our results 
an be proved from more general results


on
erning polytope bundles as in Se
tion 1 of [6℄. We will not dis
uss this in

detail.

Throughout this se
tion we �x � : R

p

! R

q

to be a linear proje
tion map,

P a polytope in R

p

and A = �(vert(P )).

For ea
h �-indu
ed subdivisionS ofA we will 
all the poset of all re�nements

of S whi
h are �-indu
ed the �-re�nement poset of S. We denote it 
(S; �). In

other words, 
(S; �) is the lower ideal of S in the poset 
(P; �).

For any linear fun
tional w 2 (R

p

)

�

and any 
ell B of a subdivision S it

makes sense to 
onsider the �-
oherent subdivision B

w

of B for the fun
tional

w.
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De�nition 2.1 Let S be a �-indu
ed subdivision of A. We 
all the subdivision

Ref(S; �;w) := [

B2S

B

w

the �-re�nement of S for the fun
tional w. (That

Ref(S; �;w) is indeed a subdivision of A is proved in the next theorem).

A subdivision ofA is 
alled a �-
oherent re�nement of S if it 
an be obtained

from S in this way.

Theorem 2.2 1. Ref(S; �;w) is a �-indu
ed subdivision of A and re�nes S.

2. If the �-
oherent subdivision of A for a 
ertain fun
tional w re�nes S,

then it equals Ref(S; �;w).

3. If S is itself �-
oherent for a fun
tional w

0

, then for any w 2 R

p

�

there is

a suÆ
iently small positive � 2 R su
h that Ref(S; �;w) is the �-
oherent

subdivision of A for the fun
tional w

0

+ �w.

Proof: 1. Sin
e ea
h B

w

is a re�nement of the 
ell B of S, the 
ells in S

w


over A. For the same reason, two 
ells in the same B

w

interse
t properly. Let

� 2 B

w

and �

0

2 B

0

w

be 
ells in the re�nements of B and B

0

, for di�erent 
ells

B and B

0

in S. Then F = B\B

0

is a 
ommon fa
e of B and B

0

and both � \F

and �

0

\ F are 
ells in the �-
oherent subdivision of F indu
ed by w. Thus,

� \ �

0

is a 
ommon fa
e of � and �

0

, and S

w

is a subdivision. It is obvious that

S

w

re�nes S. Also, S

w

is �-indu
ed sin
e the 
ells in ea
h B

w

are proje
tions

of fa
es of the 
orresponding P

B

, whi
h is itself a fa
e of P .

2. Let S

0

be the �-
oherent subdivision of A for w. Suppose that S

0

re�nes

S. This implies that for every 
ell B 2 S the subset S

0

B

of S

0


onsisting of 
ells


ontained in B is a subdivision of B. On the other hand, sin
e S

0

is �-
oherent

for w, the subset S

0

B

in question must be the �-
oherent subdivision of B for w.

Hen
e, S

0


ontains all the 
ells of Ref(S; �;w). Sin
e two di�erent subdivisions

of A 
annot be 
ontained in one another, we 
on
lude that S

0

= Ref(S; �;w).

3. Sin
e the normal fan of �(P; �) de
omposes the line fw

0

+ �w : � 2 Rg

into a �nite 
olle
tion of segments, there exists a small positive real � su
h that

the polytope (�;w

0

+ �w)(P ) has the same 
ombinatorial type and the same

upper envelope for every � 2 (0; �℄. We assume � to have this property.

It is 
lear that in these 
onditions the fa
e latti
e of (�;w

0

+ �w)(P ) is a

re�nement of the fa
e latti
e of (�;w

0

)(P ). We want to see now that the upper

envelope of (�;w

0

+ �w)(P ) is a re�nement of the upper envelope of (�;w

0

)(P ).

Let F be an upper fa
et of (�;w

0

+ �w)(P ) and let F

0

be a fa
et of (�;w

0

)(P )


ontaining F . Sin
e the exterior normal to F has positive last 
oordinate, the

exterior normal to F

0

has non-negative last 
oordinate. The exterior normal to

F

0


annot have zero last 
oordinate, be
ause this would imply that �(F

0

) (and

hen
e �(F )) is not full-dimensional. Thus, F

0

is an upper fa
et.

The above proves that the �-
oherent subdivision of A produ
ed by w

0

+ �w

is a re�nement of S. Part 2 of the statement gives the rest. 2

The following observations are straightforward:

� The �-
oherent re�nements of a �-
oherent subdivision S are exa
tly the

�-
oherent subdivisions whi
h re�ne S (this is a 
onsequen
e of part 2

of the previous result). In parti
ular, the �-
oherent re�nements of the

trivial subdivision fAg are exa
tly the �-
oherent subdivisions of A.
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� The �-
oherent re�nements of a subdivision whi
h is not �-
oherent may

or may not be �-
oherent. A trivial example of this is that a non-
oherent

subdivision is a �-
oherent re�nement of itself, for the fun
tional w = 0.

For a non-trivial one, see Example 2.6(b).

� Re
ipro
ally, not all the �-indu
ed subdivisions whi
h re�ne a �-
oherent

one are �-
oherent. The trivial subdivision gives a trivial example. For a

non-trivial one, see Example 2.6(a).

The se
ond part of the following result 
an be rephrased as \the Baues poset


(P; �) is atomi
", although the word atomi
 is usually reserved to latti
es.

Proposition 2.3 Let � : P ! �(P ) be a polytope proje
tion. Let S be a �-

indu
ed subdivision. Let d be the dimension of �(P ).

1. Let F be a fa
e of P of dimension greater than d. If every tight d-fa
e of

F is 
ontained in P

S

then F itself is 
ontained in P

S

.

2. Let S

0

be a �-indu
ed subdivision. If every tight re�nement of S

0

re�nes

S then S

0

re�nes S.

Proof: 1. Let x be a generi
 point in �(F ). Being generi
 implies that every

vertex of �

�1

(x) \ F is 
ontained in the relative interior of a d-fa
e of F and

that this d-fa
e is tight. Hen
e, �

�1

(x)\F is 
ontained in P

S

. Sin
e this holds

for any generi
 point x, F is 
ontained in P

S

.

2. Let F be a fa
e of P 
ontained in P

S

0

. Let F

0

be a tight d-fa
e of F .

We will prove that F

0

� P

S

, whi
h implies by part 1 that F � P

S

. Hen
e

S

0

P

� S

P

and this implies that S

0

re�nes S.

Let w be a ve
tor in the (relatively open) normal 
one of the fa
e F

0

of

F . Then F

0

is a maximal fa
e in P

Ref(S

0

;�;w)

and it is in P

S

00

for any tight

re�nement S

00

of Ref(S

0

; �; w). By hypothesis, P

S

00

� P

S

. 2

Theorem 2.4 Let S be a �-indu
ed subdivision for a 
ertain polytope proje
tion

� : P ! �(P ). Let S

0

be a �-indu
ed re�nement of S. Then,

1. �(S

0

; �) � �(S; �).

2. If S

0

is the �-
oherent re�nement of S for a fun
tional w, then �(S

0

; �)

is the fa
e of �(S; �) whi
h maximizes w.

3. �(S; �) = �(S

0

; �) if and only if S = S

0

.

4. �(S

0

; �) is a fa
e of �(S; �) if and only if S

0

is a �-
oherent re�nement

of S.

Proof: Part 1 is trivial sin
e S

0

� S implies that �(S

0

; �) � �(S; �). In other

words, if a polytope bundle is 
ontained in a se
ond one, the Minkowski integral

of the �rst one is 
ontained in that of the se
ond.

For parts 2, 3 and 4 the proofs of the analogue statements in Theorem 1.3

are equally valid here, with minor 
hanges. 2
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Corollary 2.5 Let S be a �-indu
ed subdivision for a 
ertain polytope proje
-

tion � : P ! �(P ). Then:

1. The map S

0

7! �(S

0

; �) is an isomorphism between the poset of �-
oherent

re�nements of S and the poset of non-empty fa
es of the polytope �(S; �).

Moreover, the normal 
one of the fa
e �(S

0

; �) of �(S; �) equals the 
ol-

le
tion of ve
tors w su
h that S

0

= Ref(S; �;w).

2. In parti
ular, the verti
es of �(S; �) are the points fv

T

: T is a tight

re�nement of Sg. 2

Example 2.6 Let � be the proje
tion from a 5-simplex to the point 
on�gura-

tion A = f(4; 0; 0); (0; 4; 0); (0; 0; 4); (2; 1+�; 1��); (1��; 2; 1+�); (1+�; 1��; 2)g,

where � is a suÆ
iently small real number, possibly zero. This is the smallest

example of a 
on�guration with non-
oherent subdivisions [8, 14, 22, 26℄. If

� = 0, then A 
onsists of the verti
es of two homotheti
 triangles one inside

another. If � 6= 0, then the interior triangle is slightly rotated, but the Baues

poset is independent of this rotation.

Let the points in A be labelled 1; : : : ; 6 in the order we have written them.

Consider the subdivison S = f456; 1245; 2356; 1346g, 
onsisting of the 
entral

triangle surrounded by three quadrilaterals. The re�nements of S are obtained

by independently introdu
ing one of the two diagonals in some or all of the

quadrilaterals. Hen
e, 
(S; �) is isomorphi
 to the fa
e poset of a 3-
ube.

(a) If � = 0, then S is 
oherent. Its 
orresponding fa
e in the se
ondary

polytope �(fAg; �) is a hexagon. The two non-regular triangulations (and

some other re�nements of S) are not �-
oherent re�nements.

(b) If � 6= 0, then S is not 
oherent. In the se
ondary polytope, the former

hexagonal fa
et is now \in
ated" to three quadrilateral fa
ets, 
orrespond-

ing to three re�nements of S. The re�nement polytope of S must 
ontain

these three fa
ets and, hen
e, it is three dimensional. On the other hand,

its fa
e poset is a subposet of 
(S; �), whi
h is already the fa
e poset of

a 3-dimensional polytope. Hen
e, all the re�nements of S are �-
oherent,

although some of them are not 
oherent.

Remark 2.7 Suppose that P is a simplex and let S be a subdivision of a point


on�guration A = �(P ). A re�nement S

0

of S is 
alled regular de
omposition

of S in [1, Se
tion 2.12℄ and 
oherent re�nement of S in [24, Se
tion 4.2℄ if it

satis�es the following 
onditions:

(i) For ea
h 
ell B 2 S there is a lifting fun
tion w

B

de�ned on B su
h that

S

0

restri
ted to 
onv(B) equals B

w

B

and

(i) The lifting fun
tions 
an be 
hosen in su
h a way that for every B;B

0

2 S,

the fun
tion w

B

� w

B

0

de�ned on B \B

0

is an aÆne fun
tion.

Our de�nition of �-
oherent re�nement is stronger than this, sin
e we require

w

B

= w

B

0

on B \B

0

. (This is 
alled strongly 
oherent re�nement in [24℄).

10



This weaker notion of 
oherent re�nement gives rise to di�erent \re�ne-

ment polytopes", 
alled generalized se
ondary polytopes in [1℄ and [24℄. As

an example, in the subdivision S of Example 2.6 all the re�nements of S are


oherent in this wider sense and hen
e the generalized se
ondary polytope is


ombinatorially a 3-
ube regardless of the value of �. The generalized se
ondary

polytopes are spe
ially interesting in 
onne
tion to the tori
 s
hemes asso
iated

to subdivisions of a point 
on�guration.

Theorem 2.8 Let S be a �-indu
ed subdivision. Then, the following 
onditions

are equivalent:

1. S is �-
oherent.

2. All �-
oherent re�nements of S are �-
oherent subdivisions.

3. All �-
oherent re�nements of S whi
h are tight are �-
oherent subdivi-

sions.

Proof: For the impli
ation 1) 2, suppose that S is �-
oherent, so that �(S; �)

is a fa
e of �(P; �). If S

0

is a �-
oherent re�nement of S then �(S

0

; �) is a fa
e

of �(S; �) and, thus, of �(P; �) (we have used parts 2 of Theorem 1.3 and of

Theorem 2.4). By part 4 of Theorem 1.3, S

0

is �-
oherent.

The impli
ation 2) 3 is trivial. Let us prove 3) 1. We will use indu
tion

on the number of proper re�nements of S. Thus, we 
an assume that the

impli
ation 3) 1 holds for every proper re�nement of S.

Let S

1

; : : : ; S

k

be the maximal proper �-
oherent re�nements of S, whi
h are

in bije
tion with the fa
ets of the �-re�nement polytope �(S; �). By indu
tive

hypothesis, S

1

; : : : ; S

k

are �-
oherent subdivisions.

Let w

1

; : : : ; w

k

2 R

p

�

be linear fun
tionals so that S

i

is the �-
oherent

re�nement of S for w

i

(i = 1; : : : ; k). In parti
ular, w

i

restri
ted to the aÆne

span of �(S; �) represents the exterior normal of the i-th fa
et of �(S; �). S
aling

the w

i

with positive 
onstants we 
an assume that the fun
tional w :=

P

k

i=1

w

i

is 
onstant on �(S; �) and, hen
e, that the �-
oherent re�nement of S for the

fun
tional w is S itself.

By part 2 of Theorem 1.3, S

i

is the �-
oherent subdivision of the proje
tion

� : P ! �(P ) for the fun
tional w

i

(i = 1; : : : ; k). We 
laim that this implies

that S is the �-
oherent subdivision for the fun
tional w. In fa
t, let us 
all

S

w

this latter �-
oherent subdivision. Sin
e the �-
oherent subdivision for w

i

re�nes S for every i, S

w

re�nes S too (here we are just using that on ea
h �ber

�

�1

(x)\P the normal 
one to the fa
e whi
h proje
ts to a 
ell of S is 
onvex).

Hen
e, by part 2 of Theorem 2.2, S

w

is the �-
oherent re�nement of S for

the fun
tional w. Sin
e w is 
onstant on �(S; �), �(S

w

; �) = �(S; �) and, by

part 3 of Theorem 2.4, S = S

w

. 2

Corollary 2.9 Let P ! �(P ) be a polytope proje
tion. The following state-

ments are equivalent:

1. Every �-indu
ed subdivision is �-
oherent.
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2. Every tight �-indu
ed subdivision is �-
oherent.

3. (The order 
omplex of) 
(P; �) is homeomorphi
 to a sphere of dimension

dim(P )� dim(�(P )).

Proof: That 
ondition 1 implies both 2 and 3 is trivial. The impli
ation from

2 to 1 is a dire
t 
onsequen
e of Theorem 2.8.

For the impli
ation from 3 to 1, observe that the subposet of 
(P; �) 
on-

sisting of �-
oherent subdivisions is the poset of proper fa
es of the polytope

�(P; �), whi
h is homeomorphi
 to a sphere of dimension dim(P )�dim(�(P )).

The impli
ation follows from the fa
t that a sphere 
annot be a proper subset

of a sphere of the same dimension (see e.g. [18, p.217, exer
ise 6.9℄) 2

De�nition 2.10 We will 
all height of a �-indu
ed subdivision S the maximum

of the lengths of all the re�nement 
hains of �-indu
ed subdivisions having S

as maximal element (so that tight �-indu
ed subdivisions have height zero and

the height of every other �-indu
ed subdivision equals one plus the maximum

height of its proper �-indu
ed re�nements).

Corollary 2.11 If S is a non-trivial �-indu
ed subdivision with height greater

or equal than the dimension of the �ber polytope, then there exists a tight �-

indu
ed but not �-
oherent subdivision whi
h re�nes S. 2

Question 2.12 Is the 
onverse of Corollary 2.11 also true? In other words,

does there exist a polytope proje
tion � whi
h has non-
oherent subdivisions but

in whi
h all proper �-indu
ed subdivisions have height stri
tly lower than the

dimension of the �ber polytope? We do not know any su
h example.

Example 2.13 Suppose that T is a �-indu
ed subdivision whi
h re�nes another

�-indu
ed subdivision S and that height(S) � height(T ) > 1. Does this imply

that there is another �-indu
ed subdivision S

0

in between S and T? The answer

is no, as the following example shows.

Let A be the point 
on�guration 
onsisting of the twelve verti
es of a regular

i
osahedron together with its 
entroid. Let � be the natural proje
tion from a

12-simplex onto A, so that every subdivision of A is �-indu
ed. Let S be the

trivial subdivision, whi
h has height at least 13� 3� 1 = 9 (in fa
t, at least 10

as we will see in Example 3.2.2).

The twenty fa
ets of the i
osahedron 
an be divided into six adja
ent pairs

and eight single triangles in su
h a way that ea
h pair is adja
ent to four single

triangles and ea
h single triangle to three pairs. (On
e a pair is formed there is

a unique way to form the other ones). Let T be the subdivision of A obtained


oning the 
entroid to ea
h single triangle and to ea
h pair, so that the 
ells of

T are eight tetrahedra and six triangular bipyramids. T has height equal to six,

sin
e ea
h bipyramid 
an be re�ned independently and has height 1. However,

it is easy to 
he
k that T is a 
oarse subdivision of A.
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3 Non-regular triangulations

In this se
tion we will assume that P is a simplex, and let A = �(vert(P )).

Every polyhedral subdivision of A is �-indu
ed and 
(P; �) is simply denoted


(A). The �-
oherent subdivisions in this 
ase are usually 
alled regular. The

�ber polytope �(A) asso
iated with the proje
tion from a simplex is the se
-

ondary polytope of A [8, 14℄ and has dimension #A� dim(A)� 1.

Corollary 2.9 says that A has non-regular subdivisions if and only if it has

non-regular triangulations. This is interesting sin
e the triangulations of A are

easier to enumerate than the subdivisions. For example, in [2℄ the authors,

after 
omputing all the triangulations of the 
y
li
 polytopes C(7; 3), C(8; 3)

and C(8; 4) and 
he
king that they are regular prove that all the subdivisions

are regular too by somewhat sophisti
ated arguments (see Lemma 4.6 in [2℄).

Our result saves this part of the work.

In the following we will produ
e simple proofs of existen
e of non-regular

triangulations for some parti
ular point 
on�gurations.

Lemma 3.1 Let S be a subdivision of a point 
on�guration A. Let B

1

; : : : ; B

k

be the list of 
ells of S whi
h are not simpli
es. Let h

i

be the dimension of

the se
ondary polytope of B

i

. Suppose further that the fa
ets of ea
h B

i

are

simpli
es, ex
ept perhaps for those 
ontained in the boundary of 
onv(A). Then,

S has height at least h

1

+ � � �+ h

k

.

Proof: The 
onditions on the fa
ets of the B

i

's imply that the 
ommon fa
e of

any pair of them is a simplex. Thus, the re�nements of S are obtained re�ning

the B

i

's independently. In parti
ular, 
(S; �) equals the dire
t produ
t of the

Baues posets of ea
h of the B

i

's, and ea
h of these has height at least h

i

. 2

Examples 3.2 The following point 
on�gurations have non-regular triangula-

tions:

1. The six verti
es of two parallel triangles in the plane, one inside another.

Let T

1

denote the outer triangle and T

2

the inner one. Let a

i

, b

i

and




i

denote the verti
es of T

i

. Then, the subdivision S = ffa

1

a

2

b

1

b

2

g;

fa

1

a

2




1




2

g; fb

1

b

2




1




2

g; fa

2

b

2




2

gg satis�es the 
onditions of Lemma 3.1

and has height 3, the dimension of the se
ondary polytope. This is the

same 
on�guration and subdivision as in Example 2.6.

2. The verti
es of any 3-polytope with more verti
es than fa
ets, together

with an interior point of it.

Let Q be any 3-polytope with more verti
es than fa
ets and let a be a point

in its interior. Consider the subdivision S obtained 
oning a to the fa
ets

of Q, whi
h satis�es the 
onditions of Lemma 3.1. Calling V , E and F

the numbers of verti
es, edges and fa
ets of Q, the height of S is easily

seen to be at least 2E � 3F , whi
h equals 2V �F � 4 by Euler's formula.

By our hypothesis, this number is at least V � 3, the dimension of the

se
ondary polytope.

13



Observe that every simple 3-polytope other than the tetrahedron is a valid

Q for this example. Also, that essentially the same proof applies if Q is

any polytope obtained by a small peturbation of a 3-polytope with more

verti
es than fa
ets or if Q is an i
osahedron. For the i
osahedron, divide

its boundary into ten pairs of two adja
ent triangles and 
one these pairs

to the interior point. This produ
es a subdivision of height 10 while the

se
ondary polytope has dimenssion 13� 4 = 9. Example 2.13 also implies

that this point 
on�guration has non-regular triangulations.

3. The 
on�guration 
onsisting of the 
entroids of the 15 non-empty fa
es of

a 3-dimensional simplex.

Consider the 3-simplex subdivided into four 
ombinatorial 3-
ubes, ea
h

of them being the star of a vertex in the �rst bary
entri
 subdivision of the

3-simplex. In ea
h of the four 3-
ubes so obtained we 
ut the inner 
orner

(in
ident to the 
entroid of the 3-simplex). This produ
es a subdivision

S of the 3-simplex into four 3-simpli
es and four 3-polytopes with seven

verti
es and all but the three external fa
ets simpli
ial. This subdivision

satis�es the 
onditions of Lemma 3.1 and has height at least 4�(7�3�1) =

12, whi
h is greater than the dimension 15� 3� 1 = 11 of the se
ondary

polytope.

4. The verti
es of a 4-
ube.

Let a be a parti
ular vertex of the 4-
ube. The vertex �gure of the 4-
ube

at a is pre
isely a 3-simplex divided into four 
ombinatorial 3-
ubes as in

the previous example. Thus, the 4-
ube 
an be subdivided into four 
ones

over 3-
ubes with apex at a. Cutting verti
es in these four 3-
ubes as we

did in the previous 
on�guration produ
es a subdivision of the 4-
ube with

eight 
ells, four of whi
h are 4-simpli
es and the other four have eight

verti
es. This subdivision satis�es the 
onditions of Lemma 3.1. Again,

this subdivision has height at least 4 � (8 � 4 � 1) = 12, whi
h is bigger

than 16� 4� 1 = 11.

5. The 3-dimensional 
on�guration in R

4


onsisting of the 12 points e

i

� e

j

(i; j = 1; 2; 3; 4; i 6= j) together with the origin.

A di�erent (aÆnely equivalent) des
ription of the point 
on�guration in

question is that it 
onsists of the 
entroid and the 12 verti
es of a 
ubo
-

taheron, where a 
ubo
tahedron is the 
onvex hull of the mid-points of the

edges of a regular 3-
ube. After removing two square pyramids with base at

two opposite square fa
ets and apex at the 
entroid of the 
ubo
tahedron,

the rest of the 
ubo
tahedron 
an be subdivided into four (non-regular) o
-

tahedra. This gives a subdivision satisfying the 
onditions of Lemma 3.1

and of height 2 + 2 + 2 + 2 + 1 + 1 (2 for ea
h of the four o
tahedra and

1 for ea
h of the 2 square pyramids), whi
h is bigger than 12� 3� 1.

6. The verti
es of the produ
t �

3

��

3

of two 3-dimensional simpli
es.

Let us embed �

3

��

3

in R

4

�R

4

having as verti
es the 16 points (e

i

; e

j

),

i; j = 1; : : : ; 4. Let A be this set of verti
es. The proje
tion � : R

4

�
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R

4

7! R

4

de�ned by (x

1

; x

2

; x

3

; x

4

; y

1

; y

2

; y

3

; y

4

) 7! (x

1

� y

1

; x

2

� y

2

; x

3

�

y

3

; x

4

�y

4

) sends A to the point 
on�guration A

0

of the previous example,

identifying the four verti
es (e

i

; e

i

) at the origin O of R

4

. The fa
t that

dim(A)�dim(A

0

) = 3 = dim(f(e

i

; e

i

) : i = 1; : : : ; 4g)�dim(fOg) implies

that if B [ fOg is a subset of A

0

with k elements and dimension l, then

B [ f(e

i

; e

i

) : i = 1; : : : ; 4g is a subset of A with k + 3 elements and

dimension l+3 (we are slightly abusing notation, identifying Anf(e

i

; e

i

) :

i = 1; : : : ; 4g with A

0

n fOg by the proje
tion �). Hen
e, the lifted 
ell in

A is full-dimensional or simpli
ial if and only if the 
ell in A

0

had those

properties. Moreover, if two su
h 
ells in A

0

interse
t properly then the


orresponding lifted 
ells interse
t properly too.

In parti
ular, the subdivision S

0

of A

0

des
ribed in the previous example,


onsisting of 4 o
tahedra and 2 square pyramids, lifts to a family S of

6 full-dimensional 
ells in A whi
h interse
t properly. We want to show

that S is a subdivision satisfying the 
onditions of Lemma 3.1. If this is

so, then it is 
lear that it has height 2 + 2 + 2 + 2 + 1 + 1 = 10, whi
h is

more than the dimension (9) of the se
ondary polytope of �

3

��

3

.

� S

0


an be re�ned to a triangulation T

0

with 20 simpli
es, all of them

in
ident to O. For this, re�ne the square pyramids arbitrarily and

re�ne the o
tahedra using the diagonal 
ontaining O. This triangula-

tion T

0

lifts to a 
olle
tion T of 20 full-dimensional simpli
es whi
h

interse
t properly in A. Sin
e �

3

��

3

is a latti
e polytope of nor-

malized volume 20, T is a triangulation of A. Sin
e ea
h simplex of

T is 
ontained in a 
ell of S, S is a subdivision of A.

� The interior 
ommon fa
ets between 
ells of S are obtained lifting the

interior 
ommon fa
ets between 
ells of S

0

, all of whi
h are in
ident

to O and are simpli
es. This implies that they are also simpli
es in

S.

Remark 3.3 For most of the point 
on�gurations in the above list non-regular

triangulations were previously known (see [10℄ for the 4-
ube and the produ
t

of two tetrahedra and [12℄ for the 
ubo
tahedron). However, the proof presented

here is probably the simplest existing one. In parti
ular, our proof relies only

on the 
ombinatori
s and not the geometry of the point 
on�guration, where by

\
ombinatori
s" we mean the oriented matroid M(A) of aÆne dependen
ies

between the points of A. This is interesting sin
e the Baues poset of A (and in

parti
ular whether or not A has any non-regular triangulations) depends only

on the oriented matroid M(A), while the regularity of a spe
i�
 triangulation

depends also on the geometry.

In parti
ular, observe that if the example 1 is slightly perturbed so that the

two triangles be
ome non-parallel, our proof still implies that the 
on�guration

has non-regular triangulations, while any \geometri
" proof would have to be

adapted to the perturbed 
ase; the 
on�guration moves from having two di�erent

non-regular triangulations to having only one.
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Example 3.4 Sin
e the property of having only regular triangulations for a

point 
on�guration A depends only on its oriented matroid M(A), a natural

question is whether this property is minor 
losed, i.e., 
losed under the oriented

matroid operations of deletion and 
ontra
tion.

It is easy to 
he
k that the property is 
losed under deletion: if T is a non-

regular triangulation of An fpg then the triangulation T

0

of A obtained joining

to p the fa
ets of T whi
h are visible from T is non-regular.

However, the property is not 
losed under 
ontra
tion: let A � R

3

be the

point 
on�guration a

1

= (2; 0; 0), a

2

= (0; 2; 0), a

3

= (0; 0; 2), a

4

= (1; 0; 0),

a

5

= (0; 1; 0), a

6

= (0; 0; 1), and a

7

= (�1;�1;�1). The 
ontra
tion A=a

7

is

(aÆnely equivalent to) the planar point 
on�guration that we have dis
ussed

in Example 3.2.1. In parti
ular, A=a

7

has non-regular triangulations. On the

other hand, A has only regular triangulations. Indeed, the following two as-

sertions are easy to 
he
k. Observe that A=a

7

has �ve symmetry 
lasses of

triangulations, four of them regular:

� Ea
h regular triangulation of A=a

7

is the link of the point a

7

in a unique

triangulation T

0

of A. This triangulation is regular, by Lemma 2.2 in [11℄

where it is proved that every regular triangulation of A=a is the link of

the point a in at least one regular triangulation of A.

� The two non-regular triangulations of A=a

7

are not links of a

7

in triangu-

lations of A. In other words, the trun
ated triangular pyramid 
onv(a

1

; a

2

;

a

3

; a

4

; a

5

; a

6

) 
annot be triangulated so that the triangulation of its bound-

ary agrees with the non-regular triangulations of A=a

7

.

This shows that although the arguments in Examples 3.2.4 and 3.2.6 are

based in a 
ontra
tion te
hnique, the 
ontra
tion alone is not enough.

Question 3.5 We 
an further ask whether the property of not having non-

regular triangulations 
an be 
hara
terized by a �nite list of ex
luded minors.

Sin
e the property is not 
losed under 
ontra
tion, we ask this for ea
h �xed

dimension.

The answer is yes if d � 3 for point 
on�gurations A in general position,

meaning by this that any dim(A) + 1 points are independent, as a 
ombination

of the following two results:

1. The following higher dimensional generalization of Erd�os-Szekeres Theo-

rem [9, Proposition 9.4.7℄: for any �xed dimension d and any integer n

there is an integer N su
h that any point 
on�guration in R

d


ontaining

at least N points in general position 
ontains as a minor the oriented

matroid of a 
y
li
 polytope C(n; d).

2. The existen
e of non-regular triangulations of any 
y
li
 polytope C(n; d)

with d � 3 and n � d+ 6 [2℄.

These two results imply that any point 
on�guration in d � 3 with enough

points in general position has non-regular triangulations. This is 
learly not

true in d = 2, sin
e the vertex set of any n-gon has only regular triangulations.
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For d = 2 we 
onje
ture that any 2-dimensional point 
on�guration whi
h has

non-regular triangulations 
ontains either an 8-element or a 6-element sub
on-

�guration whi
h has non-regular triangulations.

4 The Baues poset for almost-�ne subdivisions. Flips

De�nition 4.1 Let S be a �-indu
ed subdivision for a polytope proje
tion

� : P ! �(P ). We will 
all rank of S the dimension of the �-re�nement

polytope �(S; �).

It is 
lear from Theorem 2.2 that the height of any �-indu
ed subdivision

is greater or equal than its rank. Also, that a �-indu
ed subdivision has rank

0 if and only if it has height 0 (and if and only if it is tight). In this se
tion we

will be interested in the �-re�nement posets of subdivisions of rank 1. Let us

�rst see how to 
ompute the rank of a subdivision:

Proposition 4.2 Let S be a �-indu
ed subdivision of a polytope proje
tion � :

P ! �(P ). For ea
h B 2 S, let L

B

be the linear subspa
e parallel to a �ber

�

�1

(x) \ P

B

of the proje
tion � : P

B

! 
onv(B) for any x in the relative

interior of 
onv(B) and let

L

S

:=

X

B2S

L

B

Then, L

S

is the linear subspa
e parallel to �(S; �). In parti
ular, the rank of S

equals dim(L

S

).

ProofI:f S is the trivial subdivision, this is a well known fa
t (the aÆne span of

the �ber polytope equals the �ber over the 
entroid of �(P )). For a non-trivial

S, the statement follows from the de
omposition of the �-re�nement polytope

�(S; �) as a Minkowski sum of the �ber polytopes of the 
ells B 2 S (Theorem

1.3.1). 2

Theorem 4.3 Let S be a �-indu
ed subdivision of rank 1. Then the poset


(S; �) of �-indu
ed re�nements of S is isomorphi
 to the poset of proper non-

empty fa
es of a 
ube of dimension height(S). In parti
ular, it is homeomorphi


to a sphere of dimension height(S)� 1.

Proof: Throughout this proof let jSj represent the polyhedral 
omplex indu
ed

by a polyhedral subdivision S. jSj is a 
olle
tion of polytopes whi
h 
overs �(P )

and whi
h is 
losed under taking fa
es. Its maximal elements are the 
onvex

hulls of the 
ells in S.

By Proposition 4.2 the �ber �

�1

(x) \ P

S

of every point x 2 �(P ) is either

a point or a segment parallel to �(S; �). Let U denote the subset of �(P )


onsisting of points whose �ber is a segment.

� Claim 1: U is open in �(P ). Proof: Let C be the union of the (
losed)


ells of jSj whi
h do not interse
t U . C is 
learly 
losed and disjoint from

U . Moreover, the relative interior of every 
ell F of jSj is 
ontained in
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either C or U , depending on whether F is the proje
tion of a fa
e of P

of the same dimension or of one dimension more. Hen
e, U and C are


omplements of ea
h other and U is open.

Let us globally 
hoose a positive and negative dire
tion in the �bers of the

points in U . Every re�nement S

0

of S is 
hara
terized by the map �

S

0

: U !

f�; 0;+g whi
h to a point x 2 U asso
iates the sign � or + if �

�1

(x) \ P

S

0

is

the negative or positive end of the segment �

�1

(x) \ P

S

(respe
tively) or 0 if

�

�1

(x) \ P

S

0

= �

�1

(x) \ P

S

.

� Claim 2: �

S

0

is 
ontinuous in U for every �-indu
ed re�nement S

0

of

S. Proof: Let us 
all U

0

, U

+

and U

�

the inverse images by �

S

0

of 0, +

and �. U

0

is open in �(P ) (and hen
e in U) by Claim 1 applied to the

subdivision S

0

. That U

+

and U

�

are open in �(P ) (and hen
e in U) 
an

be proved with the same argument: if x is a point in U

+

then the relative

interior of any fa
e of jSj 
ontaining x is 
ontained in U

+

(and the same

for U

�

).

Saying that �

S

0

: U ! f�; 0;+g is 
ontinuous is equivalent to saying that it

is 
onstant on ea
h 
onne
ted 
omponent of U . Moreover, the following 
onverse

of Claim 2 is trivial: any lo
ally 
onstant map � : U ! f�; 0;+g represents a

�-indu
ed re�nement of S. Thus, the set of �-indu
ed re�nements of S is in

bije
tion with the set of maps from fU

1

; : : : ; U

k

g to f+; 0;�g, where U

1

; : : : ; U

k

are the 
onne
ted 
omponents of U (whi
h are 
learly a �nite number). This

set of maps is in natural bije
tion with the fa
es of a 
ube of dimension k, and

this bije
tion indu
es a poset isomorphism between 
(S; �) and the poset of

proper non-empty fa
es of the k-dimensional 
ube. The rest of the statement

is trivial. 2

It is interesting to observe that the proof above is valid also if S has lo
al

rank equal to 1, meaning by this that for any B 2 S, L

B

has dimension 0 or 1

(or, equivalently, dim(P

B

) � dim(B) + 1). This o

urs in Example 2.13. The

only 
hange needed in the proof is that the 
hoi
e of a positive and negative

dire
tion for ea
h �ber is lo
al, i.e., made independently in ea
h 
onne
ted


omponent of U .

Question 4.4 In what other 
ases is it posible to prove that the poset 
(S; �)

is homeomorphi
 or at least homotopy equivalent to a sphere? It would be

interesting to prove it for the 
ases dim(A) = 1 or rank(S) = 2. It might be

that the existing proofs for proje
tions from a simplex [7, 21℄ 
an be adapted

here.

Corollary 4.5 Let S be a �-indu
ed subdivision. Then, S has height 1 if and

only if it has exa
tly two proper re�nements: In this 
ase the two re�nements

are tight.

Proof: If S has height 0 then it has no proper re�nements. If S has height at

least 2, then it has rank at least 1 and at least three proper re�nements: at
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least two tight ones (verti
es of �(S; �)) and at least one non-tight one, in a


hain of length at least two.

Finally, if S has height 1, then it has rank 1 be
ause height(S) � rank(S)

and rank 0 would imply height 0. In this 
ase, the previous result says that


(S; �) is the poset of fa
es of a segment. 2

Example 4.6 We will see in Se
tion 5 that if P is a simplex or a 
ube (more

generally, any produ
t of simpli
es) then rank 1 implies height 1. This is not

true in general. For example, the natural proje
tion between the 
y
li
 polytopes

C(6; 4) and C(6; 2) has �-indu
ed subdivisions of rank 1 and height 2 (in a


ertain 
oordinatization), as shown in [2, Se
tion 6℄.

It is even easy to 
onstru
t subdivisions of rank 1 and arbitrarily large

height: Let P

0

be the regular prism over an n-gon for an even n, i.e., the

3-polytope with the following 2n verti
es: a

k

=

�


os(

2�k

n

); sin(

2�k

n

); 1

�

and

b

k

=

�


os(

2�k

n

); sin(

2�k

n

);�1

�

, for k = 0; : : : ; n � 1. Let P be the slightly non-

regular antiprism obtained trun
ating P

0

, whose verti
es are the a

i

's and the

mid-points of 
onse
utive b

i

's. Let 


i

= (b

i

+ b

i+1

)=2 be su
h a mid-point for

ea
h i = 0; : : : ; n� 1, where it is understood that b

n

= b

0

. Let � be the proje
-

tion (x; y; z) 7! x whi
h maps P to the segment [�1; 1℄. Let S be the subdivision


onsisting of the 
ells f�(a

i

); �(


i

); �(a

i+1

)g, for i = 0; : : : ;

n

2

� 1. Then, S has

rank 1 (L

S

is a verti
al segment) and height n=2.

De�nition 4.7 Let S

1

and S

2

be two tight �-indu
ed subdivisions. We will

say that they di�er by a �-
ip if they are the two proper re�nements of a


ertain �-indu
ed subdivision of height 1. We will 
all �-
ips the �-indu
ed

subdivisions of height 1.

We will 
all graph of tight �-indu
ed subdivisions the graph whose verti
es

are the tight �-indu
ed subdivisions and whose edges are the �-
ips 
onne
ting

them. We denote it G(P; �). For any �-indu
ed subdivision S, we will denote

G(S; �) the subgraph of G(P; �) indu
ed by the tight re�nements of S.

If S

0

is a �-
ip and S

1

and S

2

are its two tight re�nements, then any �-

indu
ed subdivision 
oarser than S

1

and S

2

is 
oarser than S

0

as well, by part 2

of Proposition 2.3. This implies that G(S; �) is homeomorphi
 to the subgraph

of the 1-skeleton of 
(S; �) indu
ed by subdivisions of height at most 1. The

following result is analogue to Lemma 8 in [22℄.

Proposition 4.8 Let � : P ! �(P ) be a polytope proje
tion. Let S be a �-

indu
ed subdivision. The following 
onditions are equivalent:

1. The graph G(S

0

; �) is 
onne
ted for every �-indu
ed re�nement S

0

of S.

2. The re�nement poset 
(S

0

; �) is 
onne
ted for every �-indu
ed re�nement

S

0

of S.

Proof: (1))(2) For any parti
ular subdivision S

0

, if the graph G(S

0

; �) is 
on-

ne
ted then all the tight �-indu
ed subdivisions are 
onne
ted in 
(S

0

; �) by

�-
ips. Any non-tight subdivision 
an be re�ned to a tight one.
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(2))(1) We want to show that if S

0

; : : : ; S

k

is a path in 
(S

0

; �) 
onne
ting

two tight re�nements S

0

and S

k

of S then there is a path 
onne
ting S

0

and

S

k

and using only subdivisions of height 0 or 1 (i.e., tight subdivisions or 
ips).

Let h be the maximum height of a subdivision in the path S

0

; : : : ; S

k

. We will

use indu
tion on h.

Any subdivision S

i

of height h in the path is between two subdivisions S

i�1

and S

i+1

of height lower than h whi
h re�ne S

i

. By part (2) applied to S

i

,

there is a path 
onne
ting S

i�1

and S

i+1

in 
(S

i

; �) and this path 
onsists of

subdivisions of height less than h. Repla
ing ea
h subdivision of height h for

su
h a path we obtain a path from S

0

to S

k

with subdivisions of height less

than h. 2

5 Spe
ial 
ases

Here we study 
ips in the parti
ular 
ases of P being a simplex, P being a


ube and dim(�(P )) = 1. In these thre 
ases �-
ips are equal (at least in

generi
 situations) to geometri
 bistellar 
ips, 
ube-
ips and polygon moves,

respe
tively.

Triangulations and geometri
 bistellar 
ips

We 
onsider here the 
ase where P is a simplex. An interesting feature of this


ase is that the bad behaviour exhibited in Example 4.6 
annot o

ur:

Proposition 5.1 Let � : P ! �(P ) be a polytope proje
tion. If P is a simplex

then any �-indu
ed subdivision S of rank 1 has height 1.

Proof: Let C be the interse
tion of all the fa
es of the simplex P whi
h 
ontain

a segment parallel to the 1-dimensional ve
tor spa
e L

S

. Sin
e P is a simplex,

C is a fa
e of P and 
ontains a segment parallel to L

S

. For ea
h B 2 S, L

B

is

either trivial or equals L

S

, and the latter happens if and only if P

B


ontains C.

Observe that dim(C) = dim(�(C)) + 1 and, hen
e, the proje
tion C !

�(C) indu
es two non-trivial subdivisions of �(C), whi
h 
orrespond to two

re�nements of S. Conversely, any re�nement of a non-tight 
ell B of S indu
es

a �-indu
ed subdivision of the proje
tion C ! �(C). Clearly, in a re�nement

of S all the non-tight 
ells are re�ned indu
ing the same �-indu
ed subdivision

of the proje
tion � : C ! �(C).

Hen
e, the proper re�nements of S are in bije
tion with the subdivisions

indu
ed by the proje
tion � : C ! �(C). This means that S has two proper

re�nements and, by Corollary 4.5, it has height 1. 2

The following is the standard de�nition of geometri
 bistellar 
ip in a trian-

gulation, see [14, Chapter 7℄ or [8, 12, 22℄. We intend to show that this notion


oin
ides with our notion of �-
ip.

Let A be a point 
on�guration. Using the terminology of matroid theory,

we 
all a minimal aÆnely dependent subset of A a 
ir
uit (see [9℄ or [26℄ for

details). The unique (up to a s
alar fa
tor) dependen
e equation in a 
ir
uit

divides its elements into two parts Z = Z

+

[ Z

�


ontaining respe
tively the
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elements with positive and negative 
oeÆ
ient in the equation. These two parts

are sometimes referred to as the Radon partition of Z and the pair (Z

+

; Z

�

) is


alled an oriented 
ir
uit. A 
ir
uit Z 
an be triangulated in exa
tly two ways:

T

+

(Z) := f
onv(Z � fpg) : p 2 Z

+

g T

�

(Z) = f
onv(Z � fpg) : p 2 Z

�

g:

De�nition 5.2 Let T be a triangulation of A (i.e., a tight �-indu
ed subdivi-

sion for the 
anoni
al proje
tion � whi
h sends the verti
es of a simplex P to

the elements of A) and (Z

+

; Z

�

) � A an oriented 
ir
uit of A. Suppose that

the following 
onditions are satis�ed:

1. The triangulation T

+

(Z) is a sub
omplex of T .

2. All the maximum-rank simpli
es of T

+

(Z) have the same link L in T . In

parti
ular, T

+

(Z) � L is a sub
omplex of T . Here and in what follows we

denote by A � B the join of two simpli
ial 
omplexes A and B, i.e., the

simpli
ial 
omplex fa [ b : a 2 A; b 2 Bg.

In these 
onditions we 
an obtain a new triangulation T

0

of A by repla
ing

the sub
omplex T

+

(Z) � L of T with the 
omplex T

�

(Z) � L. This operation

of 
hanging the triangulation is 
alled a geometri
 bistellar 
ip (or a 
ip, for

short) supported on the 
ir
uit (Z

+

; Z

�

). We say that T and T

0

are geometri


bistellar neighbors. We 
all the 
ip of type (k; l) if Z

+

and Z

�

have k and l

elements respe
tively.

Proposition 5.3 Let � : P ! �(P ) be a polytope proje
tion where P is a

simplex and let A = �(vert(P )). Then, two triangulations T and T

0

of A di�er

by a bistellar 
ip if and only if they di�er by a �-
ip.

Proof: Suppose �rst that T and T

0

di�er by a bistellar 
ip. Using the notation

of De�nition 5.2, we have that S := T n (T

+

(Z) � L) [ (Z � L) = T

0

n (T

�

(Z) �

L) [ (Z � L) is a subdivision of A re�ned by both T and T

0

. Let us see that

it has no other re�nements. Any non-simpli
ial 
ell in S is of the form Z � �

for an aÆnely independent set �. Its only two re�nements are T

+

(Z) � � and

T

�

(Z) � �. Moreover, if a non-simpli
ial 
ell of S is re�ned using T

+

(Z) then

any other non-simpli
ial 
ell is re�ned in the same way (and the same happens

for T

�

(Z)). Hen
e, T and T

0

are the only two re�nements of S and S has height

1 by Corollary 4.5.

Re
ipro
ally, suppose that S is a height 1 subdivision and that T and T

0

are

its proper re�nements. We want to prove that T and T

0

satisfy the 
onditions

of De�nition 5.2. Let B any non-simpli
ial 
ell of S. Sin
e L

B

has dimension 1,

P

B

is a simplex of dimension d+1, hen
e B has d+2 elements and it 
ontains

a unique 
ir
uit Z. Moreover, this 
ir
uit Z is independent of the 
hoi
e of B.

In fa
t, let C be the minimal fa
e of P 
ontaining a segment parallel to L

S

, as

in the proof of Proposition 5.1. We saw there that dim(C) � dim(�(C)) = 1

and that C is 
ontained in P

B

for any non-simpli
ial 
ell B of S. In parti
ular,

�(vert(C)) 
ontains the 
ir
uit Z 
ontained in any non-simpli
ial 
ell B.

As a 
on
lusion, the non-simpli
ial part of S has the form Z �L where L is

a simpli
ial sub
omplex of S, T and T

0

. Hen
e, T and T

0

di�er by a bistellar


ip on the 
ir
uit Z. 2
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Mixed subdivisions. The Cayley Tri
k

Let P

1

� R

p

1

; : : : ; P

r

� R

p

r

be a �nite family of polytopes. Let �

M

: P

1

�� � ��

P

r

! �

M

(P

1

� � � � � P

r

) be a proje
tion of the produ
t of these polytopes. If

O

i

denotes the origin in R

p

i

we 
an de
ompose �

M

into the proje
tions

�

i

: P

i

! �

i

(P

i

)

x 7! �

M

(O

1

; : : : ; O

i�1

; x;O

i+1

; : : : ; O

r

)

We have that �

M

(P

1

� � � ��P

r

) = M(�

1

(P

1

); : : : ; �

r

(P

r

)) where M denotes the

Minkowski sum of polytopes.

On the other hand, we 
all Cayley embedding of �

1

(P

1

); : : : ; �

r

(P

r

) the fol-

lowing point 
on�guration in R

r�1

�R

d

. Let e

1

; : : : ; e

r

be a �xed aÆne basis in

R

r�1

and �

i

: R

d

! R

r�1

�R

d

be the aÆne in
lusion given by �

i

(x) = (e

i

; x).

Then we de�ne

C(�

1

(P

1

); : : : ; �

r

(P

r

)) := 
onv ([

r

i=1

�

i

(�

i

(P

i

)))

The Cayley embedding of polytopes from 
omplementary aÆne subspa
es

equals the join produ
t of them. (For our purposes the join produ
t P

1

� � � � �P

r

of several polytopes with P

i

� R

p

i


an be de�ned to be their Cayley embed-

ding C(P

1

; : : : ; P

r

) � R

r�1

� R

p

1

� � � � � R

p

r

.) We have the following natural

proje
tion.

�

C

: P

1

� : : : � P

r

! C(�

1

(P

1

); : : : ; �

r

(P

r

));

(e

i

; p

i

) 7! (e

i

; �

i

(p

i

)):

The Cayley tri
k is a natural bije
tion between the subdivisions indu
ed by

the proje
tions �

M

and �

C

. The bije
tion is easier to state and understand

looking at the family P

S

of fa
es of P asso
iated to a subdivision indu
ed by a

proje
tion � : P ! �(P ).

Theorem 5.4 ([15℄) Let �

M

: P

1

� � � � � P

r

! M(�

1

(P

1

); : : : ; �

r

(P

r

)) and

�

C

: P

1

� � � � � P

r

! C(�

1

(P

1

); : : : ; �

r

(P

r

)) be two polytope proje
tions in the


onditions above.

1. If S is a �

M

-indu
ed subdivision then every maximal fa
e in (P

1

� � � � �

P

r

)

S

is of the form F

1

� � � � � F

r

for 
ertain fa
es F

i

of ea
h P

i

and

moreover the family of fa
es

fF

1

� � � � � F

r

: F

1

� � � � � F

r

2 (P

1

� � � � � P

r

)

S

g

equals (P

1

� � � � � P

r

)

S

0

for a 
ertain �

C

-indu
ed subdivision S

0

.

2. Conversely, if S is a �

C

-indu
ed subdivision then every maximal fa
e in

(P

1

� � � � � P

r

)

S

is of the form F

1

� � � � � F

r

for 
ertain fa
es F

i

of ea
h P

i

and moreover the family of fa
es

fF

1

� � � � � F

r

: F

1

� � � � � F

r

2 (P

1

� � � � � P

r

)

S

g

equals (P

1

� � � � � P

r

)

S

0

for a 
ertain �

M

-indu
ed subdivision S

0

.
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2

Suppose now that ea
h P

i

is a simplex. Then the join produ
t P

1

� � � � � P

r

is also a simplex and, in parti
ular, every �

C

-indu
ed subdivision of rank 1 has

height 1. Sin
e the Baues posets of the proje
tions �

M

and �

C

are isomorphi


by Theorem 5.4 it is natural to expe
t that also every �

M

-indu
ed subdivision

of rank 1 has height 1. This follows from the following result, based on [25,

Theorem 5.1℄.

Proposition 5.5 Suppose that P

1

; : : : ; P

r

are simpli
es. Let �

M

: P

1

� � � � �

P

r

! M(�

1

(P

1

); : : : ; �

r

(P

r

)) and �

C

: P

1

� � � � � P

r

! C(�

1

(P

1

); : : : ; �

r

(P

r

))

be two polytope proje
tions in the 
onditions above. Let S be a �

M

-indu
ed

subdivision and S

0

a �

C

-indu
ed subdivision whi
h 
orrespond to ea
h other

as in Theorem 5.4. Then the polytopes �(S;�

M

) and �(S

0

;�

C

) are normally

equivalent. In parti
ular, they have the same dimension.

Before going into the proof, let us re
all that two polytopes are said to

be normally equivalent [6℄ or strongly isomorphi
 [25℄ if they lie in the same

aÆne spa
e and they have the same normal fan. The polytopes �(S;�

M

)

and �(S

0

;�

C

) of the previous statement 
an be 
onsidered to lie in the same

aÆne spa
e sin
e the �bers of the proje
tions �

M

and �

C

are both 
anoni
ally

isomorphi
 to the produ
ts of the �bers of the proje
tions �

i

.

Proof: If S and S

0

are the trivial subdivisions then the statement is just The-

orem 5.1 in [25℄. For arbitrary subdivisions, re
all that �(S;�

M

) equals the

Minkowski sum of the �ber polytopes �(B;�

M

) for the di�erent 
ells B 2 S

(and the same for S

0

). Sin
e ea
h �(B;�

M

) is normally equivalent to the 
or-

responding �(B

0

;�

C

) and sin
e the normal fan of a Minkowski sum equals the


ommon re�nement of the normal fans of the summands, the result holds.

Remark: In the statement of [25, Theorem 5.1℄ the parameter r (number of

polytopes P

i

) equals the parameter d (dimension of the ambient spa
e of the

proje
tions �

i

(P

i

)). However, this assumption is not used in the proof and it is

posed be
ause the 
ase d = r is interesting for the 
ontext of that paper. Even

more, the same proof works also without the assumption that the polytopes P

i

are simpli
es. 2

Zonotopal tilings and 
ubi
al 
ips

Here we assume that P is a 
ube, i.e., a produ
t of segments. This is a parti
ular


ase of the previous one so, in parti
ular, it will be still true that rank 1 implies

height 1, by Proposition 5.5.

If P is a 
ube of some dimension r, then its proje
tion �(P ) is the Minkowski

sum of r segments, i.e., a zonotope. The �-indu
ed subdivisions 
oin
ide with

the zonotopal tilings of �(P ). The tight ones are the 
ubi
al tilings, i.e., the

subdivisions of �(P ) all of whi
h 
ells are 
ubes. The natural notion of ele-

mentary 
hange between 
ubi
al tilings is that of a 
ube-
ip (see [22℄) whi
h is

usually de�ned as follows: Let S be a 
ubi
al tiling of a zonotope �(P ) and let

d = dim(�(P )). Suppose that there is an interior vertex v of S whi
h is in
ident
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to exa
tly d + 1 
ells. Then these 
ells form a 
onvex zonotope of dimension

d with d + 1 generators, whi
h has exa
tly two 
ubi
al tilings. One of them is


ontained in S. Swit
hing to the other one produ
es a new 
ubi
al tiling S

0

of

�(P ), and S and S

0

are said to di�er by a 
ube-
ip. For example, 
ube-
ips

in dimension 2 
orrespond to swit
hing between the two de
ompositions of a

hexagon into three parallelograms and in dimension 3 to swit
hing between the

two disse
tions of a rhombi
 dode
ahedron into four 
ombinatorial 3-
ubes.

Let us say that a �-
ip S for a polytope proje
tion � : P ! �(P ) is non-

degenerate if there is only one non-tight 
ell in S and all of its fa
ets are tight.

Proposition 5.6 Let P ! �(P ) be a polytope proje
tion where P is a 
ube.

Then, two 
ubi
al tilings di�er by a 
ube-
ip if and only if they di�er by a

non-degenerate �-
ip.

Proof: The `only-if' is trivial: the d+ 1 
ubes in whi
h a 
ube-
ip is made are

a subdivision of a non-tight 
ell all of whose fa
ets are tight. For the `if', let

S be the �-
ip between T and T

0

. Let B be its unique non-tight 
ell. It has

dim(L

B

) = 1, sin
e S has rank 1, and hen
e, P

B

is a (d + 1)-
ube. Be
ause

of non-degenera
y, the proje
tion � : P

B

! B has (d + 1) upper fa
ets and

(d + 1) lower fa
ets, i.e., B has two 
ubi
al tilings both with d + 1 
ells, as in

the de�nition of a 
ube-
ip. 2

The question arises of what \degenerate 
ube-
ips" look like. Suppose that

a 
ubi
al tiling T of �(P ) 
ontains one of the two 
ubi
al tilings of a zonotope

Z of dimension k with k + 1 minimally dependent generators. What are the


onditions ne
essary for the swit
h at the zonotope Z to be possible? As in the


ase of triangulations, the 
ondition is related to the links, with the following

de�nition:

De�nition 5.7 Let Z be a zonotope of dimension d generated by the segments

a

1

; : : : ; a

r

. For any subset B � fa

1

; : : : ; a

r

g we will denote Z

B

the Minkowski

sum of its elements. Let S be a zonotopal tiling of Z. Let Z

B

be a Minkowski

sum of a subset B of fa

1

; : : : ; a

r

g. We 
all zonotopal link of B in S the set

link

S

(B) := fW : Z

B

+ Z

W

is a 
ell of Sg:

Let k � d be an integer and let B

1

; : : : ; B

k+1

be di�erent independent

subsets of fa

1

; : : : ; a

r

g of 
ardinality k. If

1. [

k+1

i=1

B

i

has k + 1 elements (i.e., if

P

k+1

i=1

B

i

is a zonotope generated by

k + 1 elements of fa

1

; : : : ; a

r

g) and

2. All the B

i

have the same zonotopal link L in S,

then removing from S all the 
ells B

i

+W , i = 1; : : : ; k + 1 and W 2 L and

inserting the 
ells B

0

i

+ W , where B

0

1

; : : : ; B

0

k+1

is the other 
ubi
al tiling of

P

k+1

i=1

B

i

one gets a new zonotopal tiling S

0

. We say that S and S

0

di�er by a

zonotopal 
ip.

With this de�nition it is easy to prove that:
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Proposition 5.8 Let � : P ! �(P ) be the proje
tion from a 
ube P to a

zonotope �(P ). Two 
ubi
al tilings S

1

and S

2

of �(P ) di�er by a �-
ip if and

only if they di�er by a zonotopal 
ip. The �-
ip is non-degenerate (i.e, the

zonotopal 
ip is a 
ube 
ip) if and only if the parameter k of De�nition 5.7

equals the dimension of �(P ). 2

Monotone paths and polygon 
ips

Here we suppose that dim(�(P )) = 1. There is a unique (up to a 
onstant)

linear fun
tional f on P whi
h is 
onstant on ea
h �ber of the proje
tion �. The

�-indu
ed subdivisions are the 
ellular strings on the polytope P with respe
t

to f and the tight ones are the monotone paths in the dire
tion of f (see [7℄).

The standard notion of elementary move between two monotone paths is that of

a polygon move (see [22℄): two monotone paths di�er by a polygon move if they

are di�erent only in the boundary of a 2-fa
e of P . As it happened in the 
ase of

zonotopal tilings, polygon moves 
orrespond exa
tly to non-degenerate �-
ips,

but there are also some \degenerate polygon moves" whi
h 
onsist essentially

in simultaneously moving through a family of 2-fa
es of P all of whi
h have

an edge parallel to a 
ommon dire
tion. For example, let P be the o
tahedron

f(x; y; z) 2 R

3

: jxj+ jyj+ jzj � 1g and let � : (x; y; z) 7! z be the proje
tion to

a verti
al segment. There are four monotone paths, all of them �-
oherent, but

no non-degenerate polygon 
ip at all. Any �-
ip involves two di�erent 2-fa
es

of P .

In this 
ase �-indu
ed subdivisions of rank 1 may have height greater than

1, as Example 4.6 shows.
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