
Corretion of errors to

On the re�nements of a polyhedral subdivision

Franiso Santos, February 2002

What follows is the �nal version of the paper, as appeared in Collet. Math.

52, 3 (2001), 231{256. But there is a minor error in the proof of Theorem 2.8.

To orret it, in line 25 of page 11 (line 20 of page 241 in the journal) hange:

\of S for w

i

(i = 1; : : : ; k). In partiular, w

i

restrited. . . "

to:

\of �(P ) for w

i

(i = 1; : : : ; k). By part 2 of Theorem 2.2, w

i

restrited. . . "

Also, delete the following sentene four lines after that:

\By part 2 of Theorem 1.3, S

i

is the �-oherent subdivision of the projetion

� : P ! �(P ) for the funtional w

i

(i = 1; : : : ; k)."
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Abstrat

Let � : P ! Q be an aÆne projetion map between two polytopes P

and Q. Billera and Sturmfels introdued in 1992 the onept of polyhedral

subdivisions of Q indued by � (or �-indued) and the �ber polytope of

the projetion: a polytope �(P; �) of dimension dim(P ) � dim(Q) whose

faes are in orrespondene with the oherent �-indued subdivisions (or

�-oherent subdivisions).

In this paper we investigate the struture of the poset of �-indued

re�nements of a �-indued subdivision. In partiular, we de�ne the re-

�nement polytope assoiated to any �-indued subdivision S, whih is a

generalization of the �ber polytope and shares most of its properties.

As appliations of the theory we prove that if a point on�guration

has non-regular subdivisions then it has non-regular triangulations and

we provide simple proofs of the existene of non-regular subdivisions for

many partiular point on�gurations.

Keywords: polytope, polyhedral subdivision, seondary polytope,

�ber polytope, re�nement.

Introdution

In 1992, Billera and Sturmfels [6℄ introdued the onept of polyhedral sub-

divisions of Q indued by an aÆne projetion map � : P ! Q between two

polytopes (or �-indued) and the �ber polytope of the projetion: a polytope

�(P; �) of dimension dim(P )� dim(Q) whose faes are in orrespondene with

the oherent �-indued subdivisions (or �-oherent subdivisions). See also [26,

Chapter 9℄. This was a natural generalization and a lari�ation of the theory

of seondary polytopes developed by Gelfand, Kapranov and Zelevinsky [8, 14℄.

There is a ertain amount of reent literature onerning this theory (see

[2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 19, 20, 21℄ and the survey artile [22℄), mainly in

onnetion with the so-alled Baues problem, stated by Billera, Kapranov and

�
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Sturmfels [7℄, whih asked whether the re�nement poset of all proper �-indued

subdivisions of a polytope projetion is homotopy equivalent to a sphere. Al-

though a negative example was found by Rambau and Ziegler [21℄ the partiular

and important ases of P being a simplex or a ube remain open.

Here we show that the theory of �ber polytopes generalizes niely to the

study of lower ideals of the poset of �-indued subdivisions, i.e., to the study

of �-indued re�nements of a given �-indued subdivision S. In partiular, for

any �-indued subdivision S of Q one an de�ne a ertain �-re�nement polytope

�(S; �) (Theorem 1.3) with the following properties:

(a) If S is the trivial subdivision, then �(S; �) equals the �ber polytope

�(P; �) (Theorem 1.3, part 3).

(b) The faes of �(S; �) orrespond to ertain �-indued re�nements of S

whih we all �-oherent re�nements of S (Theorem 2.4, parts 2 and 4)

and whih inlude all the �-oherent subdivisions whih re�ne S.

() If S is a �-oherent subdivision then �(S; �) equals the fae of the �ber

polytope orresponding to S (Theorem 1.3, parts 2 and 4).

(d) If S

0

re�nes S then �(S

0

; �) is stritly ontained in �(S; �) (Theorem 2.4,

parts 1 and 3 and Corollary 2.5).

It is important to stress that the re�nement polytope onsidered here is not

the same as the generalized seondary polytope of the subdivision S, onsidered

in [1, Setion 2.12℄ and [24, Setion 4.2℄. That polytope has properties (a) and

(b) above, but neither () nor (d). See more details in Remark 2.7.

With the aid of this theory we are able to prove several nie properties of

the poset 
(S; �) of �-indued re�nements of a �-indued subdivision S, suh

as the following ones:

� The poset is \atomi", meaning by this that any subdivision S is the least

ommon upper bound of its tight re�nements (Proposition 2.3; a �-indued

subdivision is alled tight if it has no proper �-indued re�nements, i.e.,

if it is an atom in the poset).

� A subdivision S is �-oherent if and only if all of its tight re�nements

are �-oherent (Theorem 2.8). In partiular, if a polytope projetion

produes non-oherent subdivisions, then it produes non-oherent tight

subdivisions (Corollary 2.9). This allows us to give simple proofs of the

existene of non-regular subdivisions for several partiular point on�gu-

rations (Setion 3, Examples 3.2).

� If the re�nement polytope �(S; �) has dimension 1, then the poset of

proper �-indued re�nements of S is isomorphi to the poset of proper

faes of a ube of a ertain dimension (Theorem 4.3).

� In partiular, the elements of height 1 in the poset have exatly two proper

re�nements, whih are both tight (Corollary 4.5). This suggests the def-

inition of a �-ip between two tight �-indued subdivisions (De�nition
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4.7). If P is a simplex, if P is a ube or if dim(Q) = 1 this de�nition o-

inides respetivily (at least in non-degenerate ases) with the standard

notions of bistellar ip between triangulations of a point on�guration,

ube-ip between ubial tilings of a zonotope and polygon move between

monotone paths in a polytope (Setion 5).

The struture of the paper is as follows: Setion 1 is a review of the onepts

and previous results in the theory of �ber polytopes and �-indued subdivisions,

and ends with the de�nition of the �-re�nement polytope. Setion 2 ontains the

main results on �-re�nement polytopes and �-oherent re�nements. Setion 3

applies the theory to existene of non-regular triangulations. Setion 4 analyzes

the ase where the �-re�nement polytope is 1-dimensional and Setion 5 is

devoted to the onept of �-ip and its relation to bistellar ips, ube ips

and polygon moves in the ases mentioned above. Several examples and open

questions are inluded throughout the paper.

1 Re�nement polytopes

Subdivisions of a point on�guration

By a point on�guration A in R

d

we mean a �nite labelled subset of R

d

. We

admit A to have repeated points, whih are distinguished by their labels. The

following formalization of polyhedral subdivisions of A omes from [14, Setion

7.2℄. Equivalent ones an be found in [3, 6, 8, 15, 22, 26℄. We will all faes

of A the subsets where aÆne funtionals take their maximum. A and ; are

onsidered faes. Given two subsets B

1

and B

2

of A we say that they interset

properly if the following two onditions hold:

� onv(B

1

)\onv(B

2

) is a fae F of both polytopes onv(B

1

) and onv(B

2

)

(possibly empty).

� F \B

1

= F \B

2

.

A subset of A is said to be full-dimensional if it aÆnely spans A and simpliial

if it is aÆnely independent. Following [8℄ and [14℄ we de�ne:

De�nition 1.1 A (polyhedral) subdivision ofA is a olletion S of full-dimensional

subsets of A whih interset pairwise properly and over onv(A) in the sense

that [

B2S

onv(B) = onv(A). The elements of S are alled ells of the subdi-

vision.

The set of subdivisions of A is partially ordered by the re�nement relation

S

1

� S

2

:() 8B

1

2 S

1

; 9B

2

2 S

2

; B

1

� B

2

:

The poset of subdivisions of A has a unique maximal element whih is the

trivial or improper subdivision fAg. The maximal proper elements are alled

oarse subdivisions and the minimal elements are the subdivisions all of whose

faes are simpliial, whih are alled triangulations of A. The maxima
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Baues posets and �-indued subdivisions

Let P � R

p

be a polytope and � : R

p

! R

q

be an aÆne projetion map. We

denote by vert(P ) the set of verties of P . Let A = �(vert(P )), with eah point

in A labelled by the vertex of P of whih it is onsidered to be the image (A

may have repeated points). A subdivision S of A is said to be �-indued if eah

of its ells equals �(B) for some fae B of the point on�guration vert(P ).

Observe that, sine � is a bijetion between vert(P ) and A, the subdivision

S ompletely desribes whih faes of vert(P ) projet to ells of S, even if

di�erent geometri faes of the polytope P have the same image under �. We

will use the following notation: if S is a �-indued subdivision of A and B is a

ell of S, P

B

will denote the fae of the polytope P for whih �(vert(P

B

)) = B

and P

S

will denote the union of all suh faes, for the di�erent ells in S.

We will all Baues poset of the polytope projetion � : P ! �(P ) the poset

of all �-indued subdivisions of A (exluding the trivial one fAg) partially

ordered by re�nement. We will denote it 
(P; �). Its minimal elements are

alled tight �-indued subdivisions. A �-indued subdivision S is tight if and

only if P

S

has pure dimension equal to the dimension of �(P ). Equivalently,

if for every fae F of P ontained in P

S

one has dim(F ) = dim(�(F )). Faes

with this property will be alled tight faes of P . Observe that the re�nement

ordering in 
(P; �) oinides with the inlusion ordering in the set fP

S

: S is a

�-indued subdivisiong.

The generalized Baues problem posed by Billera, Kapranov and Sturmfels [7℄

asked whether 
(P; �) is always homotopy equivalent to a sphere of dimension

dim(P ) � dim(�(P )). In general the answer is negative, as an example of

Rambau and Ziegler [21℄ showed. The parameters in this example are dim(P ) =

5, dim(�(P )) = 2 and #vert(P ) = 10. However, the ases of P being a simplex

or a hyperube I

d

are speially interesting and still open. In the simplex ase


(P; �) is the poset of all the subdivisions of A = �(vert(P )). In the ube ase

it is the poset of all zonotopal tilings of the zonotope �(I

d

) and it is isomorphi

to the extension spae of the oriented matroid dual to the one realized by the

generators of the zonotope (this isomorphism is the Bohne-Dress theorem on

zonotopal tilings, see [26℄). Positive answers are known for the following ases:

� dim(�(P )) = 1 [7℄ or dim(P )� dim(�(P )) � 2 [21℄.

� P is a simplex and either dim(�(P )) = 2 [13℄ or dim(P )�dim(�(P )) = 3

[4℄.

� P is a ube and either dim(�(P )) = 2 or dim(P )� dim(�(P )) = 3 [21℄.

� P is a yli polytope and � the projetion whih forgets some of the

oordinates (in partiular, A is the vertex set of another yli polytope)

[20, 3℄.

The ube ase is atually equivalent to a speial ase of the simplex ase.

Indeed, the poset of zonotopal tilings of a zonotope of dimension d with n

generators equals the poset of all subdivisions of a ertain Lawrene polytope of

dimension n + d � 1 with 2n verties (see [15℄ and [23, Setion 4℄). It is also
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equivalent to the extension spae onjeture of oriented matroid theory. More

generally, the ase of P being a produt of simplies (in whih 
(A; �) is the

poset of mixed subdivisions of a Minkowski sum of point on�gurations) would

follow from the ase of P being a simplex, via the use of the Cayley trik [15℄.

We will ome bak to this in Setion 5.

Fiber polytopes and �-oherent subdivisions

Every non-zero linear funtional w 2 (R

p

)

�

de�nes a �-indued subdivision as

follows: the map � fators into a map (�;w) : R

p

! R

q

� R and the map � :

R

q

�R! R

q

whih forgets the last oordinate. Let A be the point on�guration

(�;w)(vert(P )) in R

q

� R. A fae of A is alled upper if its outer normal one

ontains a vetor with last oordinate stritly positive. The olletion of upper

faets of A projets onto a subdivision S

w

of A. The subdivision is �-indued,

sine every fae of A is the projetion of the vertex set of a fae of P . We all

S

w

the �-oherent subdivision of A for the funtional w. A subdivision of A is

alled �-oherent if it is the �-oherent subdivision for some funtional.

The following is a di�erent desription of the �-indued subdivision S

w

assoiated to a linear funtional w: for any generi point x 2 onv(A) = �(P )

let (�

�1

(x))

w

be the fae of the �ber �

�1

(x) � P on whih w takes its maximum

and let F

x;w

be the smallest fae of P whih ontains (�

�1

(x))

w

. Then, S

w

=

f�(vert(F

x;w

)) : x 2 onv(A) and x is generig.

Given a �-oherent subdivision S of A, the olletion of all funtionals w

for whih S = S

w

is a relatively open polyhedral onvex one. The olletion

of all these ones for varying S is a polyhedral fan whih overs (R

p

)

�

. In fat,

it is the normal fan of a ertain polytope of dimension dim(P ) � dim(�(P ))

alled the �ber polytope of the projetion �, as proved in [6℄. We will de-

note this polytope �(P; �) and its preise de�nition is as follows: Let �(P; �)

denote the set of all pieewise linear setions s : �(P ) ! P for the proje-

tion �. For eah suh setion, the average

1

vol(�(P ))

R

�(P )

s(x)dx is a point in

the �ber �

�1

(O) � R

p

of � over the entroid O of �(P ). Let �(P; �) :=

n

1

vol(�(P ))

R

�(P )

s(x)dx : s 2 �(P; �)

o

.

Theorem 1.2 ([6℄) �(P; �) is a polytope of dimension dim(P ) � dim(�(P )).

Its faes are in one-to-one orrespondene with the �-oherent subdivisions of

A = �(vert(P )).

If the polytope P is a simplex, the �-oherent subdivisions of A are simply

alled oherent [14℄ or regular [8, 17℄. The �ber polytope is alled the seondary

polytope of the point on�guration A.

Re�nement polytopes

The following statement makes more expliit the bijetion between �-oherent

subdivisions of A and faes of �(P; �):
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Theorem 1.3 Let S be a �-indued subdivision for a ertain polytope projetion

� : P ! �(P ). Let �(S; �) be the subset of �(P; �) onsisting of setions with

image in P

S

. Let

�(S; �) :=

(

1

vol(�(P ))

Z

�(P )

s(x)dx : s 2 �(S; �)

)

:

Then,

1. �(S; �) is the Minkowski average of the �ber polytopes of the di�erent ells

in S. More preisely

�(S; �) =

1

vol(�(P ))

X

B2S

vol(onv(B))�(P

B

; �)

2. If S is the �-oherent subdivision of A for a funtional w, then �(S; �) is

the fae of �(P; �) whih maximizes w.

3. �(S; �) = �(P; �) if and only if S is the trivial subdivision fAg.

4. �(S; �) is a fae of �(A; �) if and only if S is a �-oherent subdivision.

Proof: Deomposing the integral

R

�(P )

s(x)dx via the subdivision S, for eah

setion s 2 �(S; �), gives the formula in part 1.

For part 2, if S is �-oherent for a funtional w 2 (R

p

)

�

, then for eah ell

B 2 S, the maximum value of w(

R

onv(B)

s(x)dx) is taken on and only on the

setions s(x) with image ontained in P

B

. This proves the statement, and also

the following laim whih will be used for part 4: if S

0

is a subdivision with

�(S

0

; �) � �(S; �) and S is �-oherent, then P

S

0

� P

S

and, hene, S

0

re�nes

S.

Part 1 trivially shows that �(fAg; �) = �(P; �). In order to prove part 3,

suppose that S is not the trivial subdivision. Let B be any ell in S and x be

a point in the relative interior of B. Let P

B

be the fae of P orresponding

to B. The fat that S is not trivial implies that P

B

\ �

�1

(x) is a proper fae

of the �ber �

�1

(x). Let w be a funtional whose maximum over �

�1

(x) is not

taken in any point of P

B

\ �

�1

(x). Let S

w

be the �-oherent subdivision for

w. By the proof of part 2, the value of the funtional w over S(P; �) annot be

maximized in any point of �(S; �). In partiular, �(S; �) 6= �(P; �).

The \if" in part 4 is implied by part 2 of the statement. For the \only-

if", suppose that �(S; �) is a fae of �(P; �). Let w be a funtional whose

maximum over �(P; �) is taken preisely in the fae �(S; �). By part 2,

�(S; �) = �(S

w

; �), where S

w

is the �-oherent subdivision of A for w. The

last laim in the proof of part 2 implies that S re�nes S

w

. Sine S is assumed

not to be �-oherent, it is a proper re�ement of S

w

.

�(S

w

; �) is the Minkowski average of the �ber polytopes �(P

B

; �) for the

ells B 2 S

w

. �(S; �) is, by part 3 applied to the di�erent ells of S

w

, a

Minkowski sum of polytopes stritly ontained in them. Thus, �(S; �) is stritly

ontained in �(S

w

; �), whih is a ontradition. 2
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De�nition 1.4 Let S be a �-indued subdivision for a polytope projetion

P ! �(P ). The polytope �(S; �) of Theorem 1.3 will be alled the �-re�nement

polytope of the subdivision S.

Remark 1.5 The projetion � : P

S

! �(P ) indues a map B : �(P ) ! 2

R

p

whih assoiates to every point x 2 �(P ) the restrited �ber �

�1

(x)\P

S

. This

map is an example of what Billera and Sturmfels [6℄ all a polytope bundle

and it is pieewise linear. The �-re�nement polytope �(P; �) is the Minkowski

integral of the polytope bundle. In partiular, Theorem 1.3 and Proposition 1.2

in [6℄ imply, respetively, parts 1 and 2 of the previous theorem.

Remark 1.6 If S is a tight �-indued subdivision then �(S; �) has only one

element and, in partiular, the re�nement polytope �(S; �) is a single point.

This point equals

v

S

:=

P

B2S

vol(onv(B))O

B

vol(�(P ))

;

where O

B

denotes the entroid of the fae P

B

of P .

Suppose, moreover, that P is a simplex with vertex set fe

1

; : : : ; e

p+1

g and

let a

i

= �(e

i

), so that �-indued subdivisions oinide with the polyhedral subdi-

visions of the point on�guration A := fa

1

; : : : ; a

p+1

g. Then, the entroid O

B

of eah fae an be rewritten as the average of its q+1 verties and the formula

above takes the following form

v

S

=

P

p+1

i=1

�

P

a

i

2B2S

vol(onv(B))

�

e

i

(d+ 1)vol(�(P ))

:

In other words, the i-th aÆne oordinate of the vertex v

S

2 R

p

equals, up

to a normalization onstant, the volume of the star of a

i

in S. This is the

standard way to express the vertex of the seondary polytope assoiated to a

regular triangulation of A [8, 14℄.

2 �-oherent re�nements of a �-indued subdivision

We are interested in the poset of �-indued subdivisions of A whih re�ne a

given one S. We will see that this poset behaves in many respets as 
(P; �) and

in partiular that the faes of the above de�ned �-re�nement polytope �(S; �)

are in orrespondene with some �-indued re�nements of S. As it happened

with Theorem 1.3 some of our results an be proved from more general results

onerning polytope bundles as in Setion 1 of [6℄. We will not disuss this in

detail.

Throughout this setion we �x � : R

p

! R

q

to be a linear projetion map,

P a polytope in R

p

and A = �(vert(P )).

For eah �-indued subdivisionS ofA we will all the poset of all re�nements

of S whih are �-indued the �-re�nement poset of S. We denote it 
(S; �). In

other words, 
(S; �) is the lower ideal of S in the poset 
(P; �).

For any linear funtional w 2 (R

p

)

�

and any ell B of a subdivision S it

makes sense to onsider the �-oherent subdivision B

w

of B for the funtional

w.
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De�nition 2.1 Let S be a �-indued subdivision of A. We all the subdivision

Ref(S; �;w) := [

B2S

B

w

the �-re�nement of S for the funtional w. (That

Ref(S; �;w) is indeed a subdivision of A is proved in the next theorem).

A subdivision ofA is alled a �-oherent re�nement of S if it an be obtained

from S in this way.

Theorem 2.2 1. Ref(S; �;w) is a �-indued subdivision of A and re�nes S.

2. If the �-oherent subdivision of A for a ertain funtional w re�nes S,

then it equals Ref(S; �;w).

3. If S is itself �-oherent for a funtional w

0

, then for any w 2 R

p

�

there is

a suÆiently small positive � 2 R suh that Ref(S; �;w) is the �-oherent

subdivision of A for the funtional w

0

+ �w.

Proof: 1. Sine eah B

w

is a re�nement of the ell B of S, the ells in S

w

over A. For the same reason, two ells in the same B

w

interset properly. Let

� 2 B

w

and �

0

2 B

0

w

be ells in the re�nements of B and B

0

, for di�erent ells

B and B

0

in S. Then F = B\B

0

is a ommon fae of B and B

0

and both � \F

and �

0

\ F are ells in the �-oherent subdivision of F indued by w. Thus,

� \ �

0

is a ommon fae of � and �

0

, and S

w

is a subdivision. It is obvious that

S

w

re�nes S. Also, S

w

is �-indued sine the ells in eah B

w

are projetions

of faes of the orresponding P

B

, whih is itself a fae of P .

2. Let S

0

be the �-oherent subdivision of A for w. Suppose that S

0

re�nes

S. This implies that for every ell B 2 S the subset S

0

B

of S

0

onsisting of ells

ontained in B is a subdivision of B. On the other hand, sine S

0

is �-oherent

for w, the subset S

0

B

in question must be the �-oherent subdivision of B for w.

Hene, S

0

ontains all the ells of Ref(S; �;w). Sine two di�erent subdivisions

of A annot be ontained in one another, we onlude that S

0

= Ref(S; �;w).

3. Sine the normal fan of �(P; �) deomposes the line fw

0

+ �w : � 2 Rg

into a �nite olletion of segments, there exists a small positive real � suh that

the polytope (�;w

0

+ �w)(P ) has the same ombinatorial type and the same

upper envelope for every � 2 (0; �℄. We assume � to have this property.

It is lear that in these onditions the fae lattie of (�;w

0

+ �w)(P ) is a

re�nement of the fae lattie of (�;w

0

)(P ). We want to see now that the upper

envelope of (�;w

0

+ �w)(P ) is a re�nement of the upper envelope of (�;w

0

)(P ).

Let F be an upper faet of (�;w

0

+ �w)(P ) and let F

0

be a faet of (�;w

0

)(P )

ontaining F . Sine the exterior normal to F has positive last oordinate, the

exterior normal to F

0

has non-negative last oordinate. The exterior normal to

F

0

annot have zero last oordinate, beause this would imply that �(F

0

) (and

hene �(F )) is not full-dimensional. Thus, F

0

is an upper faet.

The above proves that the �-oherent subdivision of A produed by w

0

+ �w

is a re�nement of S. Part 2 of the statement gives the rest. 2

The following observations are straightforward:

� The �-oherent re�nements of a �-oherent subdivision S are exatly the

�-oherent subdivisions whih re�ne S (this is a onsequene of part 2

of the previous result). In partiular, the �-oherent re�nements of the

trivial subdivision fAg are exatly the �-oherent subdivisions of A.

8



� The �-oherent re�nements of a subdivision whih is not �-oherent may

or may not be �-oherent. A trivial example of this is that a non-oherent

subdivision is a �-oherent re�nement of itself, for the funtional w = 0.

For a non-trivial one, see Example 2.6(b).

� Reiproally, not all the �-indued subdivisions whih re�ne a �-oherent

one are �-oherent. The trivial subdivision gives a trivial example. For a

non-trivial one, see Example 2.6(a).

The seond part of the following result an be rephrased as \the Baues poset


(P; �) is atomi", although the word atomi is usually reserved to latties.

Proposition 2.3 Let � : P ! �(P ) be a polytope projetion. Let S be a �-

indued subdivision. Let d be the dimension of �(P ).

1. Let F be a fae of P of dimension greater than d. If every tight d-fae of

F is ontained in P

S

then F itself is ontained in P

S

.

2. Let S

0

be a �-indued subdivision. If every tight re�nement of S

0

re�nes

S then S

0

re�nes S.

Proof: 1. Let x be a generi point in �(F ). Being generi implies that every

vertex of �

�1

(x) \ F is ontained in the relative interior of a d-fae of F and

that this d-fae is tight. Hene, �

�1

(x)\F is ontained in P

S

. Sine this holds

for any generi point x, F is ontained in P

S

.

2. Let F be a fae of P ontained in P

S

0

. Let F

0

be a tight d-fae of F .

We will prove that F

0

� P

S

, whih implies by part 1 that F � P

S

. Hene

S

0

P

� S

P

and this implies that S

0

re�nes S.

Let w be a vetor in the (relatively open) normal one of the fae F

0

of

F . Then F

0

is a maximal fae in P

Ref(S

0

;�;w)

and it is in P

S

00

for any tight

re�nement S

00

of Ref(S

0

; �; w). By hypothesis, P

S

00

� P

S

. 2

Theorem 2.4 Let S be a �-indued subdivision for a ertain polytope projetion

� : P ! �(P ). Let S

0

be a �-indued re�nement of S. Then,

1. �(S

0

; �) � �(S; �).

2. If S

0

is the �-oherent re�nement of S for a funtional w, then �(S

0

; �)

is the fae of �(S; �) whih maximizes w.

3. �(S; �) = �(S

0

; �) if and only if S = S

0

.

4. �(S

0

; �) is a fae of �(S; �) if and only if S

0

is a �-oherent re�nement

of S.

Proof: Part 1 is trivial sine S

0

� S implies that �(S

0

; �) � �(S; �). In other

words, if a polytope bundle is ontained in a seond one, the Minkowski integral

of the �rst one is ontained in that of the seond.

For parts 2, 3 and 4 the proofs of the analogue statements in Theorem 1.3

are equally valid here, with minor hanges. 2

9



Corollary 2.5 Let S be a �-indued subdivision for a ertain polytope proje-

tion � : P ! �(P ). Then:

1. The map S

0

7! �(S

0

; �) is an isomorphism between the poset of �-oherent

re�nements of S and the poset of non-empty faes of the polytope �(S; �).

Moreover, the normal one of the fae �(S

0

; �) of �(S; �) equals the ol-

letion of vetors w suh that S

0

= Ref(S; �;w).

2. In partiular, the verties of �(S; �) are the points fv

T

: T is a tight

re�nement of Sg. 2

Example 2.6 Let � be the projetion from a 5-simplex to the point on�gura-

tion A = f(4; 0; 0); (0; 4; 0); (0; 0; 4); (2; 1+�; 1��); (1��; 2; 1+�); (1+�; 1��; 2)g,

where � is a suÆiently small real number, possibly zero. This is the smallest

example of a on�guration with non-oherent subdivisions [8, 14, 22, 26℄. If

� = 0, then A onsists of the verties of two homotheti triangles one inside

another. If � 6= 0, then the interior triangle is slightly rotated, but the Baues

poset is independent of this rotation.

Let the points in A be labelled 1; : : : ; 6 in the order we have written them.

Consider the subdivison S = f456; 1245; 2356; 1346g, onsisting of the entral

triangle surrounded by three quadrilaterals. The re�nements of S are obtained

by independently introduing one of the two diagonals in some or all of the

quadrilaterals. Hene, 
(S; �) is isomorphi to the fae poset of a 3-ube.

(a) If � = 0, then S is oherent. Its orresponding fae in the seondary

polytope �(fAg; �) is a hexagon. The two non-regular triangulations (and

some other re�nements of S) are not �-oherent re�nements.

(b) If � 6= 0, then S is not oherent. In the seondary polytope, the former

hexagonal faet is now \inated" to three quadrilateral faets, orrespond-

ing to three re�nements of S. The re�nement polytope of S must ontain

these three faets and, hene, it is three dimensional. On the other hand,

its fae poset is a subposet of 
(S; �), whih is already the fae poset of

a 3-dimensional polytope. Hene, all the re�nements of S are �-oherent,

although some of them are not oherent.

Remark 2.7 Suppose that P is a simplex and let S be a subdivision of a point

on�guration A = �(P ). A re�nement S

0

of S is alled regular deomposition

of S in [1, Setion 2.12℄ and oherent re�nement of S in [24, Setion 4.2℄ if it

satis�es the following onditions:

(i) For eah ell B 2 S there is a lifting funtion w

B

de�ned on B suh that

S

0

restrited to onv(B) equals B

w

B

and

(i) The lifting funtions an be hosen in suh a way that for every B;B

0

2 S,

the funtion w

B

� w

B

0

de�ned on B \B

0

is an aÆne funtion.

Our de�nition of �-oherent re�nement is stronger than this, sine we require

w

B

= w

B

0

on B \B

0

. (This is alled strongly oherent re�nement in [24℄).
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This weaker notion of oherent re�nement gives rise to di�erent \re�ne-

ment polytopes", alled generalized seondary polytopes in [1℄ and [24℄. As

an example, in the subdivision S of Example 2.6 all the re�nements of S are

oherent in this wider sense and hene the generalized seondary polytope is

ombinatorially a 3-ube regardless of the value of �. The generalized seondary

polytopes are speially interesting in onnetion to the tori shemes assoiated

to subdivisions of a point on�guration.

Theorem 2.8 Let S be a �-indued subdivision. Then, the following onditions

are equivalent:

1. S is �-oherent.

2. All �-oherent re�nements of S are �-oherent subdivisions.

3. All �-oherent re�nements of S whih are tight are �-oherent subdivi-

sions.

Proof: For the impliation 1) 2, suppose that S is �-oherent, so that �(S; �)

is a fae of �(P; �). If S

0

is a �-oherent re�nement of S then �(S

0

; �) is a fae

of �(S; �) and, thus, of �(P; �) (we have used parts 2 of Theorem 1.3 and of

Theorem 2.4). By part 4 of Theorem 1.3, S

0

is �-oherent.

The impliation 2) 3 is trivial. Let us prove 3) 1. We will use indution

on the number of proper re�nements of S. Thus, we an assume that the

impliation 3) 1 holds for every proper re�nement of S.

Let S

1

; : : : ; S

k

be the maximal proper �-oherent re�nements of S, whih are

in bijetion with the faets of the �-re�nement polytope �(S; �). By indutive

hypothesis, S

1

; : : : ; S

k

are �-oherent subdivisions.

Let w

1

; : : : ; w

k

2 R

p

�

be linear funtionals so that S

i

is the �-oherent

re�nement of S for w

i

(i = 1; : : : ; k). In partiular, w

i

restrited to the aÆne

span of �(S; �) represents the exterior normal of the i-th faet of �(S; �). Saling

the w

i

with positive onstants we an assume that the funtional w :=

P

k

i=1

w

i

is onstant on �(S; �) and, hene, that the �-oherent re�nement of S for the

funtional w is S itself.

By part 2 of Theorem 1.3, S

i

is the �-oherent subdivision of the projetion

� : P ! �(P ) for the funtional w

i

(i = 1; : : : ; k). We laim that this implies

that S is the �-oherent subdivision for the funtional w. In fat, let us all

S

w

this latter �-oherent subdivision. Sine the �-oherent subdivision for w

i

re�nes S for every i, S

w

re�nes S too (here we are just using that on eah �ber

�

�1

(x)\P the normal one to the fae whih projets to a ell of S is onvex).

Hene, by part 2 of Theorem 2.2, S

w

is the �-oherent re�nement of S for

the funtional w. Sine w is onstant on �(S; �), �(S

w

; �) = �(S; �) and, by

part 3 of Theorem 2.4, S = S

w

. 2

Corollary 2.9 Let P ! �(P ) be a polytope projetion. The following state-

ments are equivalent:

1. Every �-indued subdivision is �-oherent.

11



2. Every tight �-indued subdivision is �-oherent.

3. (The order omplex of) 
(P; �) is homeomorphi to a sphere of dimension

dim(P )� dim(�(P )).

Proof: That ondition 1 implies both 2 and 3 is trivial. The impliation from

2 to 1 is a diret onsequene of Theorem 2.8.

For the impliation from 3 to 1, observe that the subposet of 
(P; �) on-

sisting of �-oherent subdivisions is the poset of proper faes of the polytope

�(P; �), whih is homeomorphi to a sphere of dimension dim(P )�dim(�(P )).

The impliation follows from the fat that a sphere annot be a proper subset

of a sphere of the same dimension (see e.g. [18, p.217, exerise 6.9℄) 2

De�nition 2.10 We will all height of a �-indued subdivision S the maximum

of the lengths of all the re�nement hains of �-indued subdivisions having S

as maximal element (so that tight �-indued subdivisions have height zero and

the height of every other �-indued subdivision equals one plus the maximum

height of its proper �-indued re�nements).

Corollary 2.11 If S is a non-trivial �-indued subdivision with height greater

or equal than the dimension of the �ber polytope, then there exists a tight �-

indued but not �-oherent subdivision whih re�nes S. 2

Question 2.12 Is the onverse of Corollary 2.11 also true? In other words,

does there exist a polytope projetion � whih has non-oherent subdivisions but

in whih all proper �-indued subdivisions have height stritly lower than the

dimension of the �ber polytope? We do not know any suh example.

Example 2.13 Suppose that T is a �-indued subdivision whih re�nes another

�-indued subdivision S and that height(S) � height(T ) > 1. Does this imply

that there is another �-indued subdivision S

0

in between S and T? The answer

is no, as the following example shows.

Let A be the point on�guration onsisting of the twelve verties of a regular

iosahedron together with its entroid. Let � be the natural projetion from a

12-simplex onto A, so that every subdivision of A is �-indued. Let S be the

trivial subdivision, whih has height at least 13� 3� 1 = 9 (in fat, at least 10

as we will see in Example 3.2.2).

The twenty faets of the iosahedron an be divided into six adjaent pairs

and eight single triangles in suh a way that eah pair is adjaent to four single

triangles and eah single triangle to three pairs. (One a pair is formed there is

a unique way to form the other ones). Let T be the subdivision of A obtained

oning the entroid to eah single triangle and to eah pair, so that the ells of

T are eight tetrahedra and six triangular bipyramids. T has height equal to six,

sine eah bipyramid an be re�ned independently and has height 1. However,

it is easy to hek that T is a oarse subdivision of A.
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3 Non-regular triangulations

In this setion we will assume that P is a simplex, and let A = �(vert(P )).

Every polyhedral subdivision of A is �-indued and 
(P; �) is simply denoted


(A). The �-oherent subdivisions in this ase are usually alled regular. The

�ber polytope �(A) assoiated with the projetion from a simplex is the se-

ondary polytope of A [8, 14℄ and has dimension #A� dim(A)� 1.

Corollary 2.9 says that A has non-regular subdivisions if and only if it has

non-regular triangulations. This is interesting sine the triangulations of A are

easier to enumerate than the subdivisions. For example, in [2℄ the authors,

after omputing all the triangulations of the yli polytopes C(7; 3), C(8; 3)

and C(8; 4) and heking that they are regular prove that all the subdivisions

are regular too by somewhat sophistiated arguments (see Lemma 4.6 in [2℄).

Our result saves this part of the work.

In the following we will produe simple proofs of existene of non-regular

triangulations for some partiular point on�gurations.

Lemma 3.1 Let S be a subdivision of a point on�guration A. Let B

1

; : : : ; B

k

be the list of ells of S whih are not simplies. Let h

i

be the dimension of

the seondary polytope of B

i

. Suppose further that the faets of eah B

i

are

simplies, exept perhaps for those ontained in the boundary of onv(A). Then,

S has height at least h

1

+ � � �+ h

k

.

Proof: The onditions on the faets of the B

i

's imply that the ommon fae of

any pair of them is a simplex. Thus, the re�nements of S are obtained re�ning

the B

i

's independently. In partiular, 
(S; �) equals the diret produt of the

Baues posets of eah of the B

i

's, and eah of these has height at least h

i

. 2

Examples 3.2 The following point on�gurations have non-regular triangula-

tions:

1. The six verties of two parallel triangles in the plane, one inside another.

Let T

1

denote the outer triangle and T

2

the inner one. Let a

i

, b

i

and



i

denote the verties of T

i

. Then, the subdivision S = ffa

1

a

2

b

1

b

2

g;

fa

1

a

2



1



2

g; fb

1

b

2



1



2

g; fa

2

b

2



2

gg satis�es the onditions of Lemma 3.1

and has height 3, the dimension of the seondary polytope. This is the

same on�guration and subdivision as in Example 2.6.

2. The verties of any 3-polytope with more verties than faets, together

with an interior point of it.

Let Q be any 3-polytope with more verties than faets and let a be a point

in its interior. Consider the subdivision S obtained oning a to the faets

of Q, whih satis�es the onditions of Lemma 3.1. Calling V , E and F

the numbers of verties, edges and faets of Q, the height of S is easily

seen to be at least 2E � 3F , whih equals 2V �F � 4 by Euler's formula.

By our hypothesis, this number is at least V � 3, the dimension of the

seondary polytope.
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Observe that every simple 3-polytope other than the tetrahedron is a valid

Q for this example. Also, that essentially the same proof applies if Q is

any polytope obtained by a small peturbation of a 3-polytope with more

verties than faets or if Q is an iosahedron. For the iosahedron, divide

its boundary into ten pairs of two adjaent triangles and one these pairs

to the interior point. This produes a subdivision of height 10 while the

seondary polytope has dimenssion 13� 4 = 9. Example 2.13 also implies

that this point on�guration has non-regular triangulations.

3. The on�guration onsisting of the entroids of the 15 non-empty faes of

a 3-dimensional simplex.

Consider the 3-simplex subdivided into four ombinatorial 3-ubes, eah

of them being the star of a vertex in the �rst baryentri subdivision of the

3-simplex. In eah of the four 3-ubes so obtained we ut the inner orner

(inident to the entroid of the 3-simplex). This produes a subdivision

S of the 3-simplex into four 3-simplies and four 3-polytopes with seven

verties and all but the three external faets simpliial. This subdivision

satis�es the onditions of Lemma 3.1 and has height at least 4�(7�3�1) =

12, whih is greater than the dimension 15� 3� 1 = 11 of the seondary

polytope.

4. The verties of a 4-ube.

Let a be a partiular vertex of the 4-ube. The vertex �gure of the 4-ube

at a is preisely a 3-simplex divided into four ombinatorial 3-ubes as in

the previous example. Thus, the 4-ube an be subdivided into four ones

over 3-ubes with apex at a. Cutting verties in these four 3-ubes as we

did in the previous on�guration produes a subdivision of the 4-ube with

eight ells, four of whih are 4-simplies and the other four have eight

verties. This subdivision satis�es the onditions of Lemma 3.1. Again,

this subdivision has height at least 4 � (8 � 4 � 1) = 12, whih is bigger

than 16� 4� 1 = 11.

5. The 3-dimensional on�guration in R

4

onsisting of the 12 points e

i

� e

j

(i; j = 1; 2; 3; 4; i 6= j) together with the origin.

A di�erent (aÆnely equivalent) desription of the point on�guration in

question is that it onsists of the entroid and the 12 verties of a ubo-

taheron, where a ubotahedron is the onvex hull of the mid-points of the

edges of a regular 3-ube. After removing two square pyramids with base at

two opposite square faets and apex at the entroid of the ubotahedron,

the rest of the ubotahedron an be subdivided into four (non-regular) o-

tahedra. This gives a subdivision satisfying the onditions of Lemma 3.1

and of height 2 + 2 + 2 + 2 + 1 + 1 (2 for eah of the four otahedra and

1 for eah of the 2 square pyramids), whih is bigger than 12� 3� 1.

6. The verties of the produt �

3

��

3

of two 3-dimensional simplies.

Let us embed �

3

��

3

in R

4

�R

4

having as verties the 16 points (e

i

; e

j

),

i; j = 1; : : : ; 4. Let A be this set of verties. The projetion � : R

4

�
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R

4

7! R

4

de�ned by (x

1

; x

2

; x

3

; x

4

; y

1

; y

2

; y

3

; y

4

) 7! (x

1

� y

1

; x

2

� y

2

; x

3

�

y

3

; x

4

�y

4

) sends A to the point on�guration A

0

of the previous example,

identifying the four verties (e

i

; e

i

) at the origin O of R

4

. The fat that

dim(A)�dim(A

0

) = 3 = dim(f(e

i

; e

i

) : i = 1; : : : ; 4g)�dim(fOg) implies

that if B [ fOg is a subset of A

0

with k elements and dimension l, then

B [ f(e

i

; e

i

) : i = 1; : : : ; 4g is a subset of A with k + 3 elements and

dimension l+3 (we are slightly abusing notation, identifying Anf(e

i

; e

i

) :

i = 1; : : : ; 4g with A

0

n fOg by the projetion �). Hene, the lifted ell in

A is full-dimensional or simpliial if and only if the ell in A

0

had those

properties. Moreover, if two suh ells in A

0

interset properly then the

orresponding lifted ells interset properly too.

In partiular, the subdivision S

0

of A

0

desribed in the previous example,

onsisting of 4 otahedra and 2 square pyramids, lifts to a family S of

6 full-dimensional ells in A whih interset properly. We want to show

that S is a subdivision satisfying the onditions of Lemma 3.1. If this is

so, then it is lear that it has height 2 + 2 + 2 + 2 + 1 + 1 = 10, whih is

more than the dimension (9) of the seondary polytope of �

3

��

3

.

� S

0

an be re�ned to a triangulation T

0

with 20 simplies, all of them

inident to O. For this, re�ne the square pyramids arbitrarily and

re�ne the otahedra using the diagonal ontaining O. This triangula-

tion T

0

lifts to a olletion T of 20 full-dimensional simplies whih

interset properly in A. Sine �

3

��

3

is a lattie polytope of nor-

malized volume 20, T is a triangulation of A. Sine eah simplex of

T is ontained in a ell of S, S is a subdivision of A.

� The interior ommon faets between ells of S are obtained lifting the

interior ommon faets between ells of S

0

, all of whih are inident

to O and are simplies. This implies that they are also simplies in

S.

Remark 3.3 For most of the point on�gurations in the above list non-regular

triangulations were previously known (see [10℄ for the 4-ube and the produt

of two tetrahedra and [12℄ for the ubotahedron). However, the proof presented

here is probably the simplest existing one. In partiular, our proof relies only

on the ombinatoris and not the geometry of the point on�guration, where by

\ombinatoris" we mean the oriented matroid M(A) of aÆne dependenies

between the points of A. This is interesting sine the Baues poset of A (and in

partiular whether or not A has any non-regular triangulations) depends only

on the oriented matroid M(A), while the regularity of a spei� triangulation

depends also on the geometry.

In partiular, observe that if the example 1 is slightly perturbed so that the

two triangles beome non-parallel, our proof still implies that the on�guration

has non-regular triangulations, while any \geometri" proof would have to be

adapted to the perturbed ase; the on�guration moves from having two di�erent

non-regular triangulations to having only one.
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Example 3.4 Sine the property of having only regular triangulations for a

point on�guration A depends only on its oriented matroid M(A), a natural

question is whether this property is minor losed, i.e., losed under the oriented

matroid operations of deletion and ontration.

It is easy to hek that the property is losed under deletion: if T is a non-

regular triangulation of An fpg then the triangulation T

0

of A obtained joining

to p the faets of T whih are visible from T is non-regular.

However, the property is not losed under ontration: let A � R

3

be the

point on�guration a

1

= (2; 0; 0), a

2

= (0; 2; 0), a

3

= (0; 0; 2), a

4

= (1; 0; 0),

a

5

= (0; 1; 0), a

6

= (0; 0; 1), and a

7

= (�1;�1;�1). The ontration A=a

7

is

(aÆnely equivalent to) the planar point on�guration that we have disussed

in Example 3.2.1. In partiular, A=a

7

has non-regular triangulations. On the

other hand, A has only regular triangulations. Indeed, the following two as-

sertions are easy to hek. Observe that A=a

7

has �ve symmetry lasses of

triangulations, four of them regular:

� Eah regular triangulation of A=a

7

is the link of the point a

7

in a unique

triangulation T

0

of A. This triangulation is regular, by Lemma 2.2 in [11℄

where it is proved that every regular triangulation of A=a is the link of

the point a in at least one regular triangulation of A.

� The two non-regular triangulations of A=a

7

are not links of a

7

in triangu-

lations of A. In other words, the trunated triangular pyramid onv(a

1

; a

2

;

a

3

; a

4

; a

5

; a

6

) annot be triangulated so that the triangulation of its bound-

ary agrees with the non-regular triangulations of A=a

7

.

This shows that although the arguments in Examples 3.2.4 and 3.2.6 are

based in a ontration tehnique, the ontration alone is not enough.

Question 3.5 We an further ask whether the property of not having non-

regular triangulations an be haraterized by a �nite list of exluded minors.

Sine the property is not losed under ontration, we ask this for eah �xed

dimension.

The answer is yes if d � 3 for point on�gurations A in general position,

meaning by this that any dim(A) + 1 points are independent, as a ombination

of the following two results:

1. The following higher dimensional generalization of Erd�os-Szekeres Theo-

rem [9, Proposition 9.4.7℄: for any �xed dimension d and any integer n

there is an integer N suh that any point on�guration in R

d

ontaining

at least N points in general position ontains as a minor the oriented

matroid of a yli polytope C(n; d).

2. The existene of non-regular triangulations of any yli polytope C(n; d)

with d � 3 and n � d+ 6 [2℄.

These two results imply that any point on�guration in d � 3 with enough

points in general position has non-regular triangulations. This is learly not

true in d = 2, sine the vertex set of any n-gon has only regular triangulations.
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For d = 2 we onjeture that any 2-dimensional point on�guration whih has

non-regular triangulations ontains either an 8-element or a 6-element subon-

�guration whih has non-regular triangulations.

4 The Baues poset for almost-�ne subdivisions. Flips

De�nition 4.1 Let S be a �-indued subdivision for a polytope projetion

� : P ! �(P ). We will all rank of S the dimension of the �-re�nement

polytope �(S; �).

It is lear from Theorem 2.2 that the height of any �-indued subdivision

is greater or equal than its rank. Also, that a �-indued subdivision has rank

0 if and only if it has height 0 (and if and only if it is tight). In this setion we

will be interested in the �-re�nement posets of subdivisions of rank 1. Let us

�rst see how to ompute the rank of a subdivision:

Proposition 4.2 Let S be a �-indued subdivision of a polytope projetion � :

P ! �(P ). For eah B 2 S, let L

B

be the linear subspae parallel to a �ber

�

�1

(x) \ P

B

of the projetion � : P

B

! onv(B) for any x in the relative

interior of onv(B) and let

L

S

:=

X

B2S

L

B

Then, L

S

is the linear subspae parallel to �(S; �). In partiular, the rank of S

equals dim(L

S

).

ProofI:f S is the trivial subdivision, this is a well known fat (the aÆne span of

the �ber polytope equals the �ber over the entroid of �(P )). For a non-trivial

S, the statement follows from the deomposition of the �-re�nement polytope

�(S; �) as a Minkowski sum of the �ber polytopes of the ells B 2 S (Theorem

1.3.1). 2

Theorem 4.3 Let S be a �-indued subdivision of rank 1. Then the poset


(S; �) of �-indued re�nements of S is isomorphi to the poset of proper non-

empty faes of a ube of dimension height(S). In partiular, it is homeomorphi

to a sphere of dimension height(S)� 1.

Proof: Throughout this proof let jSj represent the polyhedral omplex indued

by a polyhedral subdivision S. jSj is a olletion of polytopes whih overs �(P )

and whih is losed under taking faes. Its maximal elements are the onvex

hulls of the ells in S.

By Proposition 4.2 the �ber �

�1

(x) \ P

S

of every point x 2 �(P ) is either

a point or a segment parallel to �(S; �). Let U denote the subset of �(P )

onsisting of points whose �ber is a segment.

� Claim 1: U is open in �(P ). Proof: Let C be the union of the (losed)

ells of jSj whih do not interset U . C is learly losed and disjoint from

U . Moreover, the relative interior of every ell F of jSj is ontained in
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either C or U , depending on whether F is the projetion of a fae of P

of the same dimension or of one dimension more. Hene, U and C are

omplements of eah other and U is open.

Let us globally hoose a positive and negative diretion in the �bers of the

points in U . Every re�nement S

0

of S is haraterized by the map �

S

0

: U !

f�; 0;+g whih to a point x 2 U assoiates the sign � or + if �

�1

(x) \ P

S

0

is

the negative or positive end of the segment �

�1

(x) \ P

S

(respetively) or 0 if

�

�1

(x) \ P

S

0

= �

�1

(x) \ P

S

.

� Claim 2: �

S

0

is ontinuous in U for every �-indued re�nement S

0

of

S. Proof: Let us all U

0

, U

+

and U

�

the inverse images by �

S

0

of 0, +

and �. U

0

is open in �(P ) (and hene in U) by Claim 1 applied to the

subdivision S

0

. That U

+

and U

�

are open in �(P ) (and hene in U) an

be proved with the same argument: if x is a point in U

+

then the relative

interior of any fae of jSj ontaining x is ontained in U

+

(and the same

for U

�

).

Saying that �

S

0

: U ! f�; 0;+g is ontinuous is equivalent to saying that it

is onstant on eah onneted omponent of U . Moreover, the following onverse

of Claim 2 is trivial: any loally onstant map � : U ! f�; 0;+g represents a

�-indued re�nement of S. Thus, the set of �-indued re�nements of S is in

bijetion with the set of maps from fU

1

; : : : ; U

k

g to f+; 0;�g, where U

1

; : : : ; U

k

are the onneted omponents of U (whih are learly a �nite number). This

set of maps is in natural bijetion with the faes of a ube of dimension k, and

this bijetion indues a poset isomorphism between 
(S; �) and the poset of

proper non-empty faes of the k-dimensional ube. The rest of the statement

is trivial. 2

It is interesting to observe that the proof above is valid also if S has loal

rank equal to 1, meaning by this that for any B 2 S, L

B

has dimension 0 or 1

(or, equivalently, dim(P

B

) � dim(B) + 1). This ours in Example 2.13. The

only hange needed in the proof is that the hoie of a positive and negative

diretion for eah �ber is loal, i.e., made independently in eah onneted

omponent of U .

Question 4.4 In what other ases is it posible to prove that the poset 
(S; �)

is homeomorphi or at least homotopy equivalent to a sphere? It would be

interesting to prove it for the ases dim(A) = 1 or rank(S) = 2. It might be

that the existing proofs for projetions from a simplex [7, 21℄ an be adapted

here.

Corollary 4.5 Let S be a �-indued subdivision. Then, S has height 1 if and

only if it has exatly two proper re�nements: In this ase the two re�nements

are tight.

Proof: If S has height 0 then it has no proper re�nements. If S has height at

least 2, then it has rank at least 1 and at least three proper re�nements: at
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least two tight ones (verties of �(S; �)) and at least one non-tight one, in a

hain of length at least two.

Finally, if S has height 1, then it has rank 1 beause height(S) � rank(S)

and rank 0 would imply height 0. In this ase, the previous result says that


(S; �) is the poset of faes of a segment. 2

Example 4.6 We will see in Setion 5 that if P is a simplex or a ube (more

generally, any produt of simplies) then rank 1 implies height 1. This is not

true in general. For example, the natural projetion between the yli polytopes

C(6; 4) and C(6; 2) has �-indued subdivisions of rank 1 and height 2 (in a

ertain oordinatization), as shown in [2, Setion 6℄.

It is even easy to onstrut subdivisions of rank 1 and arbitrarily large

height: Let P

0

be the regular prism over an n-gon for an even n, i.e., the

3-polytope with the following 2n verties: a

k

=

�

os(

2�k

n

); sin(

2�k

n

); 1

�

and

b

k

=

�

os(

2�k

n

); sin(

2�k

n

);�1

�

, for k = 0; : : : ; n � 1. Let P be the slightly non-

regular antiprism obtained trunating P

0

, whose verties are the a

i

's and the

mid-points of onseutive b

i

's. Let 

i

= (b

i

+ b

i+1

)=2 be suh a mid-point for

eah i = 0; : : : ; n� 1, where it is understood that b

n

= b

0

. Let � be the proje-

tion (x; y; z) 7! x whih maps P to the segment [�1; 1℄. Let S be the subdivision

onsisting of the ells f�(a

i

); �(

i

); �(a

i+1

)g, for i = 0; : : : ;

n

2

� 1. Then, S has

rank 1 (L

S

is a vertial segment) and height n=2.

De�nition 4.7 Let S

1

and S

2

be two tight �-indued subdivisions. We will

say that they di�er by a �-ip if they are the two proper re�nements of a

ertain �-indued subdivision of height 1. We will all �-ips the �-indued

subdivisions of height 1.

We will all graph of tight �-indued subdivisions the graph whose verties

are the tight �-indued subdivisions and whose edges are the �-ips onneting

them. We denote it G(P; �). For any �-indued subdivision S, we will denote

G(S; �) the subgraph of G(P; �) indued by the tight re�nements of S.

If S

0

is a �-ip and S

1

and S

2

are its two tight re�nements, then any �-

indued subdivision oarser than S

1

and S

2

is oarser than S

0

as well, by part 2

of Proposition 2.3. This implies that G(S; �) is homeomorphi to the subgraph

of the 1-skeleton of 
(S; �) indued by subdivisions of height at most 1. The

following result is analogue to Lemma 8 in [22℄.

Proposition 4.8 Let � : P ! �(P ) be a polytope projetion. Let S be a �-

indued subdivision. The following onditions are equivalent:

1. The graph G(S

0

; �) is onneted for every �-indued re�nement S

0

of S.

2. The re�nement poset 
(S

0

; �) is onneted for every �-indued re�nement

S

0

of S.

Proof: (1))(2) For any partiular subdivision S

0

, if the graph G(S

0

; �) is on-

neted then all the tight �-indued subdivisions are onneted in 
(S

0

; �) by

�-ips. Any non-tight subdivision an be re�ned to a tight one.
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(2))(1) We want to show that if S

0

; : : : ; S

k

is a path in 
(S

0

; �) onneting

two tight re�nements S

0

and S

k

of S then there is a path onneting S

0

and

S

k

and using only subdivisions of height 0 or 1 (i.e., tight subdivisions or ips).

Let h be the maximum height of a subdivision in the path S

0

; : : : ; S

k

. We will

use indution on h.

Any subdivision S

i

of height h in the path is between two subdivisions S

i�1

and S

i+1

of height lower than h whih re�ne S

i

. By part (2) applied to S

i

,

there is a path onneting S

i�1

and S

i+1

in 
(S

i

; �) and this path onsists of

subdivisions of height less than h. Replaing eah subdivision of height h for

suh a path we obtain a path from S

0

to S

k

with subdivisions of height less

than h. 2

5 Speial ases

Here we study ips in the partiular ases of P being a simplex, P being a

ube and dim(�(P )) = 1. In these thre ases �-ips are equal (at least in

generi situations) to geometri bistellar ips, ube-ips and polygon moves,

respetively.

Triangulations and geometri bistellar ips

We onsider here the ase where P is a simplex. An interesting feature of this

ase is that the bad behaviour exhibited in Example 4.6 annot our:

Proposition 5.1 Let � : P ! �(P ) be a polytope projetion. If P is a simplex

then any �-indued subdivision S of rank 1 has height 1.

Proof: Let C be the intersetion of all the faes of the simplex P whih ontain

a segment parallel to the 1-dimensional vetor spae L

S

. Sine P is a simplex,

C is a fae of P and ontains a segment parallel to L

S

. For eah B 2 S, L

B

is

either trivial or equals L

S

, and the latter happens if and only if P

B

ontains C.

Observe that dim(C) = dim(�(C)) + 1 and, hene, the projetion C !

�(C) indues two non-trivial subdivisions of �(C), whih orrespond to two

re�nements of S. Conversely, any re�nement of a non-tight ell B of S indues

a �-indued subdivision of the projetion C ! �(C). Clearly, in a re�nement

of S all the non-tight ells are re�ned induing the same �-indued subdivision

of the projetion � : C ! �(C).

Hene, the proper re�nements of S are in bijetion with the subdivisions

indued by the projetion � : C ! �(C). This means that S has two proper

re�nements and, by Corollary 4.5, it has height 1. 2

The following is the standard de�nition of geometri bistellar ip in a trian-

gulation, see [14, Chapter 7℄ or [8, 12, 22℄. We intend to show that this notion

oinides with our notion of �-ip.

Let A be a point on�guration. Using the terminology of matroid theory,

we all a minimal aÆnely dependent subset of A a iruit (see [9℄ or [26℄ for

details). The unique (up to a salar fator) dependene equation in a iruit

divides its elements into two parts Z = Z

+

[ Z

�

ontaining respetively the
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elements with positive and negative oeÆient in the equation. These two parts

are sometimes referred to as the Radon partition of Z and the pair (Z

+

; Z

�

) is

alled an oriented iruit. A iruit Z an be triangulated in exatly two ways:

T

+

(Z) := fonv(Z � fpg) : p 2 Z

+

g T

�

(Z) = fonv(Z � fpg) : p 2 Z

�

g:

De�nition 5.2 Let T be a triangulation of A (i.e., a tight �-indued subdivi-

sion for the anonial projetion � whih sends the verties of a simplex P to

the elements of A) and (Z

+

; Z

�

) � A an oriented iruit of A. Suppose that

the following onditions are satis�ed:

1. The triangulation T

+

(Z) is a subomplex of T .

2. All the maximum-rank simplies of T

+

(Z) have the same link L in T . In

partiular, T

+

(Z) � L is a subomplex of T . Here and in what follows we

denote by A � B the join of two simpliial omplexes A and B, i.e., the

simpliial omplex fa [ b : a 2 A; b 2 Bg.

In these onditions we an obtain a new triangulation T

0

of A by replaing

the subomplex T

+

(Z) � L of T with the omplex T

�

(Z) � L. This operation

of hanging the triangulation is alled a geometri bistellar ip (or a ip, for

short) supported on the iruit (Z

+

; Z

�

). We say that T and T

0

are geometri

bistellar neighbors. We all the ip of type (k; l) if Z

+

and Z

�

have k and l

elements respetively.

Proposition 5.3 Let � : P ! �(P ) be a polytope projetion where P is a

simplex and let A = �(vert(P )). Then, two triangulations T and T

0

of A di�er

by a bistellar ip if and only if they di�er by a �-ip.

Proof: Suppose �rst that T and T

0

di�er by a bistellar ip. Using the notation

of De�nition 5.2, we have that S := T n (T

+

(Z) � L) [ (Z � L) = T

0

n (T

�

(Z) �

L) [ (Z � L) is a subdivision of A re�ned by both T and T

0

. Let us see that

it has no other re�nements. Any non-simpliial ell in S is of the form Z � �

for an aÆnely independent set �. Its only two re�nements are T

+

(Z) � � and

T

�

(Z) � �. Moreover, if a non-simpliial ell of S is re�ned using T

+

(Z) then

any other non-simpliial ell is re�ned in the same way (and the same happens

for T

�

(Z)). Hene, T and T

0

are the only two re�nements of S and S has height

1 by Corollary 4.5.

Reiproally, suppose that S is a height 1 subdivision and that T and T

0

are

its proper re�nements. We want to prove that T and T

0

satisfy the onditions

of De�nition 5.2. Let B any non-simpliial ell of S. Sine L

B

has dimension 1,

P

B

is a simplex of dimension d+1, hene B has d+2 elements and it ontains

a unique iruit Z. Moreover, this iruit Z is independent of the hoie of B.

In fat, let C be the minimal fae of P ontaining a segment parallel to L

S

, as

in the proof of Proposition 5.1. We saw there that dim(C) � dim(�(C)) = 1

and that C is ontained in P

B

for any non-simpliial ell B of S. In partiular,

�(vert(C)) ontains the iruit Z ontained in any non-simpliial ell B.

As a onlusion, the non-simpliial part of S has the form Z �L where L is

a simpliial subomplex of S, T and T

0

. Hene, T and T

0

di�er by a bistellar

ip on the iruit Z. 2
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Mixed subdivisions. The Cayley Trik

Let P

1

� R

p

1

; : : : ; P

r

� R

p

r

be a �nite family of polytopes. Let �

M

: P

1

�� � ��

P

r

! �

M

(P

1

� � � � � P

r

) be a projetion of the produt of these polytopes. If

O

i

denotes the origin in R

p

i

we an deompose �

M

into the projetions

�

i

: P

i

! �

i

(P

i

)

x 7! �

M

(O

1

; : : : ; O

i�1

; x;O

i+1

; : : : ; O

r

)

We have that �

M

(P

1

� � � ��P

r

) = M(�

1

(P

1

); : : : ; �

r

(P

r

)) where M denotes the

Minkowski sum of polytopes.

On the other hand, we all Cayley embedding of �

1

(P

1

); : : : ; �

r

(P

r

) the fol-

lowing point on�guration in R

r�1

�R

d

. Let e

1

; : : : ; e

r

be a �xed aÆne basis in

R

r�1

and �

i

: R

d

! R

r�1

�R

d

be the aÆne inlusion given by �

i

(x) = (e

i

; x).

Then we de�ne

C(�

1

(P

1

); : : : ; �

r

(P

r

)) := onv ([

r

i=1

�

i

(�

i

(P

i

)))

The Cayley embedding of polytopes from omplementary aÆne subspaes

equals the join produt of them. (For our purposes the join produt P

1

� � � � �P

r

of several polytopes with P

i

� R

p

i

an be de�ned to be their Cayley embed-

ding C(P

1

; : : : ; P

r

) � R

r�1

� R

p

1

� � � � � R

p

r

.) We have the following natural

projetion.

�

C

: P

1

� : : : � P

r

! C(�

1

(P

1

); : : : ; �

r

(P

r

));

(e

i

; p

i

) 7! (e

i

; �

i

(p

i

)):

The Cayley trik is a natural bijetion between the subdivisions indued by

the projetions �

M

and �

C

. The bijetion is easier to state and understand

looking at the family P

S

of faes of P assoiated to a subdivision indued by a

projetion � : P ! �(P ).

Theorem 5.4 ([15℄) Let �

M

: P

1

� � � � � P

r

! M(�

1

(P

1

); : : : ; �

r

(P

r

)) and

�

C

: P

1

� � � � � P

r

! C(�

1

(P

1

); : : : ; �

r

(P

r

)) be two polytope projetions in the

onditions above.

1. If S is a �

M

-indued subdivision then every maximal fae in (P

1

� � � � �

P

r

)

S

is of the form F

1

� � � � � F

r

for ertain faes F

i

of eah P

i

and

moreover the family of faes

fF

1

� � � � � F

r

: F

1

� � � � � F

r

2 (P

1

� � � � � P

r

)

S

g

equals (P

1

� � � � � P

r

)

S

0

for a ertain �

C

-indued subdivision S

0

.

2. Conversely, if S is a �

C

-indued subdivision then every maximal fae in

(P

1

� � � � � P

r

)

S

is of the form F

1

� � � � � F

r

for ertain faes F

i

of eah P

i

and moreover the family of faes

fF

1

� � � � � F

r

: F

1

� � � � � F

r

2 (P

1

� � � � � P

r

)

S

g

equals (P

1

� � � � � P

r

)

S

0

for a ertain �

M

-indued subdivision S

0

.
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2

Suppose now that eah P

i

is a simplex. Then the join produt P

1

� � � � � P

r

is also a simplex and, in partiular, every �

C

-indued subdivision of rank 1 has

height 1. Sine the Baues posets of the projetions �

M

and �

C

are isomorphi

by Theorem 5.4 it is natural to expet that also every �

M

-indued subdivision

of rank 1 has height 1. This follows from the following result, based on [25,

Theorem 5.1℄.

Proposition 5.5 Suppose that P

1

; : : : ; P

r

are simplies. Let �

M

: P

1

� � � � �

P

r

! M(�

1

(P

1

); : : : ; �

r

(P

r

)) and �

C

: P

1

� � � � � P

r

! C(�

1

(P

1

); : : : ; �

r

(P

r

))

be two polytope projetions in the onditions above. Let S be a �

M

-indued

subdivision and S

0

a �

C

-indued subdivision whih orrespond to eah other

as in Theorem 5.4. Then the polytopes �(S;�

M

) and �(S

0

;�

C

) are normally

equivalent. In partiular, they have the same dimension.

Before going into the proof, let us reall that two polytopes are said to

be normally equivalent [6℄ or strongly isomorphi [25℄ if they lie in the same

aÆne spae and they have the same normal fan. The polytopes �(S;�

M

)

and �(S

0

;�

C

) of the previous statement an be onsidered to lie in the same

aÆne spae sine the �bers of the projetions �

M

and �

C

are both anonially

isomorphi to the produts of the �bers of the projetions �

i

.

Proof: If S and S

0

are the trivial subdivisions then the statement is just The-

orem 5.1 in [25℄. For arbitrary subdivisions, reall that �(S;�

M

) equals the

Minkowski sum of the �ber polytopes �(B;�

M

) for the di�erent ells B 2 S

(and the same for S

0

). Sine eah �(B;�

M

) is normally equivalent to the or-

responding �(B

0

;�

C

) and sine the normal fan of a Minkowski sum equals the

ommon re�nement of the normal fans of the summands, the result holds.

Remark: In the statement of [25, Theorem 5.1℄ the parameter r (number of

polytopes P

i

) equals the parameter d (dimension of the ambient spae of the

projetions �

i

(P

i

)). However, this assumption is not used in the proof and it is

posed beause the ase d = r is interesting for the ontext of that paper. Even

more, the same proof works also without the assumption that the polytopes P

i

are simplies. 2

Zonotopal tilings and ubial ips

Here we assume that P is a ube, i.e., a produt of segments. This is a partiular

ase of the previous one so, in partiular, it will be still true that rank 1 implies

height 1, by Proposition 5.5.

If P is a ube of some dimension r, then its projetion �(P ) is the Minkowski

sum of r segments, i.e., a zonotope. The �-indued subdivisions oinide with

the zonotopal tilings of �(P ). The tight ones are the ubial tilings, i.e., the

subdivisions of �(P ) all of whih ells are ubes. The natural notion of ele-

mentary hange between ubial tilings is that of a ube-ip (see [22℄) whih is

usually de�ned as follows: Let S be a ubial tiling of a zonotope �(P ) and let

d = dim(�(P )). Suppose that there is an interior vertex v of S whih is inident
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to exatly d + 1 ells. Then these ells form a onvex zonotope of dimension

d with d + 1 generators, whih has exatly two ubial tilings. One of them is

ontained in S. Swithing to the other one produes a new ubial tiling S

0

of

�(P ), and S and S

0

are said to di�er by a ube-ip. For example, ube-ips

in dimension 2 orrespond to swithing between the two deompositions of a

hexagon into three parallelograms and in dimension 3 to swithing between the

two dissetions of a rhombi dodeahedron into four ombinatorial 3-ubes.

Let us say that a �-ip S for a polytope projetion � : P ! �(P ) is non-

degenerate if there is only one non-tight ell in S and all of its faets are tight.

Proposition 5.6 Let P ! �(P ) be a polytope projetion where P is a ube.

Then, two ubial tilings di�er by a ube-ip if and only if they di�er by a

non-degenerate �-ip.

Proof: The `only-if' is trivial: the d+ 1 ubes in whih a ube-ip is made are

a subdivision of a non-tight ell all of whose faets are tight. For the `if', let

S be the �-ip between T and T

0

. Let B be its unique non-tight ell. It has

dim(L

B

) = 1, sine S has rank 1, and hene, P

B

is a (d + 1)-ube. Beause

of non-degeneray, the projetion � : P

B

! B has (d + 1) upper faets and

(d + 1) lower faets, i.e., B has two ubial tilings both with d + 1 ells, as in

the de�nition of a ube-ip. 2

The question arises of what \degenerate ube-ips" look like. Suppose that

a ubial tiling T of �(P ) ontains one of the two ubial tilings of a zonotope

Z of dimension k with k + 1 minimally dependent generators. What are the

onditions neessary for the swith at the zonotope Z to be possible? As in the

ase of triangulations, the ondition is related to the links, with the following

de�nition:

De�nition 5.7 Let Z be a zonotope of dimension d generated by the segments

a

1

; : : : ; a

r

. For any subset B � fa

1

; : : : ; a

r

g we will denote Z

B

the Minkowski

sum of its elements. Let S be a zonotopal tiling of Z. Let Z

B

be a Minkowski

sum of a subset B of fa

1

; : : : ; a

r

g. We all zonotopal link of B in S the set

link

S

(B) := fW : Z

B

+ Z

W

is a ell of Sg:

Let k � d be an integer and let B

1

; : : : ; B

k+1

be di�erent independent

subsets of fa

1

; : : : ; a

r

g of ardinality k. If

1. [

k+1

i=1

B

i

has k + 1 elements (i.e., if

P

k+1

i=1

B

i

is a zonotope generated by

k + 1 elements of fa

1

; : : : ; a

r

g) and

2. All the B

i

have the same zonotopal link L in S,

then removing from S all the ells B

i

+W , i = 1; : : : ; k + 1 and W 2 L and

inserting the ells B

0

i

+ W , where B

0

1

; : : : ; B

0

k+1

is the other ubial tiling of

P

k+1

i=1

B

i

one gets a new zonotopal tiling S

0

. We say that S and S

0

di�er by a

zonotopal ip.

With this de�nition it is easy to prove that:
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Proposition 5.8 Let � : P ! �(P ) be the projetion from a ube P to a

zonotope �(P ). Two ubial tilings S

1

and S

2

of �(P ) di�er by a �-ip if and

only if they di�er by a zonotopal ip. The �-ip is non-degenerate (i.e, the

zonotopal ip is a ube ip) if and only if the parameter k of De�nition 5.7

equals the dimension of �(P ). 2

Monotone paths and polygon ips

Here we suppose that dim(�(P )) = 1. There is a unique (up to a onstant)

linear funtional f on P whih is onstant on eah �ber of the projetion �. The

�-indued subdivisions are the ellular strings on the polytope P with respet

to f and the tight ones are the monotone paths in the diretion of f (see [7℄).

The standard notion of elementary move between two monotone paths is that of

a polygon move (see [22℄): two monotone paths di�er by a polygon move if they

are di�erent only in the boundary of a 2-fae of P . As it happened in the ase of

zonotopal tilings, polygon moves orrespond exatly to non-degenerate �-ips,

but there are also some \degenerate polygon moves" whih onsist essentially

in simultaneously moving through a family of 2-faes of P all of whih have

an edge parallel to a ommon diretion. For example, let P be the otahedron

f(x; y; z) 2 R

3

: jxj+ jyj+ jzj � 1g and let � : (x; y; z) 7! z be the projetion to

a vertial segment. There are four monotone paths, all of them �-oherent, but

no non-degenerate polygon ip at all. Any �-ip involves two di�erent 2-faes

of P .

In this ase �-indued subdivisions of rank 1 may have height greater than

1, as Example 4.6 shows.
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