Correction of errors to

On the refinements of a polyhedral subdivision
Francisco Santos, February 2002
What follows is the final version of the paper, as appeared in Collect. Math.

52, 3 (2001), 231-256. But there is a minor error in the proof of Theorem 2.8.
To correct it, in line 25 of page 11 (line 20 of page 241 in the journal) change:

“of S for w; (i =1,...,k). In particular, w; restricted...”
to:

“of m(P) for w; (i =1,...,k). By part 2 of Theorem 2.2, w; restricted...”
Also, delete the following sentence four lines after that:

“By part 2 of Theorem 1.3, S; is the m-coherent subdivision of the projection
7 : P — w(P) for the functional w; (i =1,...,k).”
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Abstract

Let 7 : P — @ be an affine projection map between two polytopes P
and @. Billera and Sturmfels introduced in 1992 the concept of polyhedral
subdivisions of @ induced by m (or m-induced) and the fiber polytope of
the projection: a polytope X(P, 7) of dimension dim(P) — dim(Q) whose
faces are in correspondence with the coherent w-induced subdivisions (or
w-coherent subdivisions).

In this paper we investigate the structure of the poset of m-induced
refinements of a w-induced subdivision. In particular, we define the re-
finement polytope associated to any m-induced subdivision S, which is a
generalization of the fiber polytope and shares most of its properties.

As applications of the theory we prove that if a point configuration
has non-regular subdivisions then it has non-regular triangulations and
we provide simple proofs of the existence of non-regular subdivisions for
many particular point configurations.

Keywords: polytope, polyhedral subdivision, secondary polytope,
fiber polytope, refinement.

Introduction

In 1992, Billera and Sturmfels [6] introduced the concept of polyhedral sub-
divisions of () induced by an affine projection map « : P — (@ between two
polytopes (or w-induced) and the fiber polytope of the projection: a polytope
(P, ) of dimension dim(P) — dim(Q) whose faces are in correspondence with
the coherent m-induced subdivisions (or 7m-coherent subdivisions). See also [26,
Chapter 9]. This was a natural generalization and a clarification of the theory
of secondary polytopes developed by Gelfand, Kapranov and Zelevinsky [8, 14].

There is a certain amount of recent literature concerning this theory (see
2,3,4,5,6,7,10, 12, 13, 15, 19, 20, 21] and the survey article [22]), mainly in
connection with the so-called Baues problem, stated by Billera, Kapranov and
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Sturmfels [7], which asked whether the refinement poset of all proper m-induced
subdivisions of a polytope projection is homotopy equivalent to a sphere. Al-
though a negative example was found by Rambau and Ziegler [21] the particular
and important cases of P being a simplex or a cube remain open.

Here we show that the theory of fiber polytopes generalizes nicely to the
study of lower ideals of the poset of m-induced subdivisions, i.e., to the study
of m-induced refinements of a given w-induced subdivision S. In particular, for
any m-induced subdivision S of () one can define a certain w-refinement polytope
(S, m) (Theorem 1.3) with the following properties:

(a) If S is the trivial subdivision, then 3(S,7) equals the fiber polytope
Y(P,m) (Theorem 1.3, part 3).

(b) The faces of X(S,m) correspond to certain m-induced refinements of S
which we call m-coherent refinements of S (Theorem 2.4, parts 2 and 4)
and which include all the 7m-coherent subdivisions which refine S.

(c) If S is a m-coherent subdivision then ¥(S, ) equals the face of the fiber
polytope corresponding to S (Theorem 1.3, parts 2 and 4).

(d) If S’ refines S then X(S’, ) is strictly contained in X(.S, 7) (Theorem 2.4,
parts 1 and 3 and Corollary 2.5).

It is important to stress that the refinement polytope considered here is not
the same as the generalized secondary polytope of the subdivision S, considered
in [1, Section 2.12] and [24, Section 4.2]. That polytope has properties (a) and
(b) above, but neither (c) nor (d). See more details in Remark 2.7.

With the aid of this theory we are able to prove several nice properties of
the poset (S, m) of m-induced refinements of a m-induced subdivision S, such
as the following ones:

e The poset is “atomic”, meaning by this that any subdivision S is the least
common upper bound of its tight refinements (Proposition 2.3; a w-induced
subdivision is called tight if it has no proper w-induced refinements, i.e.,
if it is an atom in the poset).

e A subdivision S is w-coherent if and only if all of its tight refinements
are m-coherent (Theorem 2.8). In particular, if a polytope projection
produces non-coherent subdivisions, then it produces non-coherent tight
subdivisions (Corollary 2.9). This allows us to give simple proofs of the
existence of non-regular subdivisions for several particular point configu-
rations (Section 3, Examples 3.2).

e If the refinement polytope (S, 7) has dimension 1, then the poset of
proper w-induced refinements of S is isomorphic to the poset of proper
faces of a cube of a certain dimension (Theorem 4.3).

e In particular, the elements of height 1 in the poset have exactly two proper
refinements, which are both tight (Corollary 4.5). This suggests the def-
inition of a w-flip between two tight m-induced subdivisions (Definition



4.7). If P is a simplex, if P is a cube or if dim(Q) = 1 this definition co-
incides respectivily (at least in non-degenerate cases) with the standard
notions of bistellar flip between triangulations of a point configuration,
cube-flip between cubical tilings of a zonotope and polygon move between
monotone paths in a polytope (Section 5).

The structure of the paper is as follows: Section 1 is a review of the concepts
and previous results in the theory of fiber polytopes and m-induced subdivisions,
and ends with the definition of the w-refinement polytope. Section 2 contains the
main results on w-refinement polytopes and m-coherent refinements. Section 3
applies the theory to existence of non-regular triangulations. Section 4 analyzes
the case where the m-refinement polytope is 1-dimensional and Section 5 is
devoted to the concept of w-flip and its relation to bistellar flips, cube flips
and polygon moves in the cases mentioned above. Several examples and open
questions are included throughout the paper.

1 Refinement polytopes

Subdivisions of a point configuration

By a point configuration A in R? we mean a finite labelled subset of RY. We
admit A to have repeated points, which are distinguished by their labels. The
following formalization of polyhedral subdivisions of A comes from [14, Section
7.2]. Equivalent ones can be found in [3, 6, 8, 15, 22, 26]. We will call faces
of A the subsets where affine functionals take their maximum. A and () are
considered faces. Given two subsets By and By of A we say that they intersect
properly if the following two conditions hold:

e conv(B;)Nconv(Bsy) is a face F of both polytopes conv(B;) and conv(B3)
(possibly empty).

e 'NBy =FN Bs.

A subset of A is said to be full-dimensional if it affinely spans A and simplicial
if it is affinely independent. Following [8] and [14] we define:

Definition 1.1 A (polyhedral) subdivision of A is a collection S of full-dimensional
subsets of A which intersect pairwise properly and cover conv(.A) in the sense
that Ugcgconv(B) = conv(A). The elements of S are called cells of the subdi-
vision.

The set of subdivisions of A is partially ordered by the refinement relation
S < 8y = VB € §1, 4By € Sy, By C Bs.

The poset of subdivisions of A has a unique maximal element which is the
trivial or improper subdivision {4}. The maximal proper elements are called
coarse subdivisions and the minimal elements are the subdivisions all of whose
faces are simplicial, which are called ¢riangulations of A. The maxima



Baues posets and m-induced subdivisions

Let P C RP be a polytope and 7 : RP — R? be an affine projection map. We
denote by vert(P) the set of vertices of P. Let A = w(vert(P)), with each point
in A labelled by the vertex of P of which it is considered to be the image (A
may have repeated points). A subdivision S of A is said to be m-induced if each
of its cells equals 7(B) for some face B of the point configuration vert(P).

Observe that, since 7 is a bijection between vert(P) and A, the subdivision
S completely describes which faces of vert(P) project to cells of S, even if
different geometric faces of the polytope P have the same image under . We
will use the following notation: if S is a m-induced subdivision of A and B is a
cell of S, PB will denote the face of the polytope P for which n(vert(P?)) = B
and P° will denote the union of all such faces, for the different cells in S.

We will call Baues poset of the polytope projection 7 : P — 7(P) the poset
of all m-induced subdivisions of A (excluding the trivial one {A}) partially
ordered by refinement. We will denote it Q(P, 7). Its minimal elements are
called tight m-induced subdivisions. A m-induced subdivision S is tight if and
only if P° has pure dimension equal to the dimension of 7(P). Equivalently,
if for every face F of P contained in P° one has dim(F) = dim(n(F)). Faces
with this property will be called tight faces of P. Observe that the refinement
ordering in Q(P, 7) coincides with the inclusion ordering in the set {P° : S is a
m-induced subdivision}.

The generalized Baues problem posed by Billera, Kapranov and Sturmfels [7]
asked whether Q(P, ) is always homotopy equivalent to a sphere of dimension
dim(P) — dim(n(P)). In general the answer is negative, as an example of
Rambau and Ziegler [21] showed. The parameters in this example are dim(P) =
5, dim(w(P)) = 2 and #vert(P) = 10. However, the cases of P being a simplex
or a hypercube I are specially interesting and still open. In the simplex case
Q(P, ) is the poset of all the subdivisions of A = w(vert(P)). In the cube case
it is the poset of all zonotopal tilings of the zonotope m(I?%) and it is isomorphic
to the extension space of the oriented matroid dual to the one realized by the
generators of the zonotope (this isomorphism is the Bohne-Dress theorem on
zonotopal tilings, see [26]). Positive answers are known for the following cases:

e dim(n(P)) =1 [7] or dim(P) — dim(x(P)) < 2 [21].

e P is a simplex and either dim(7(P)) = 2 [13] or dim(P) — dim(n(P)) =3
[4].

e P is a cube and either dim(7w(P)) = 2 or dim(P) — dim(n(P)) = 3 [21].

e P is a cyclic polytope and 7 the projection which forgets some of the
coordinates (in particular, A is the vertex set of another cyclic polytope)
[20, 3].

The cube case is actually equivalent to a special case of the simplex case.
Indeed, the poset of zonotopal tilings of a zonotope of dimension d with n
generators equals the poset of all subdivisions of a certain Lawrence polytope of
dimension n + d — 1 with 2n vertices (see [15] and [23, Section 4]). Tt is also



equivalent to the ezxtension space conjecture of oriented matroid theory. More
generally, the case of P being a product of simplices (in which Q(A, ) is the
poset of mixed subdivisions of a Minkowski sum of point configurations) would
follow from the case of P being a simplex, via the use of the Cayley trick [15].
We will come back to this in Section 5.

Fiber polytopes and w-coherent subdivisions

Every non-zero linear functional w € (RP)* defines a m-induced subdivision as
follows: the map 7 factors into a map (w,w) : RP — R? x R and the map p :
RIx R — R? which forgets the last coordinate. Let A be the point configuration
(m,w)(vert(P)) in RY x R. A face of A is called upper if its outer normal cone
contains a vector with last coordinate strictly positive. The collection of upper
facets of A projects onto a subdivision S, of A. The subdivision is m-induced,
since every face of A is the projection of the vertex set of a face of P. We call
Sy the w-coherent subdivision of A for the functional w. A subdivision of A is
called m-coherent if it is the m-coherent subdivision for some functional.

The following is a different description of the m-induced subdivision S,
associated to a linear functional w: for any generic point z € conv(A) = 7(P)
let (7=1(z))" be the face of the fiber 7=!(z) C P on which w takes its maximum
and let F,,, be the smallest face of P which contains (7 !(z))¥. Then, S, =
{m(vert(Fy)) : © € conv(A) and z is generic}.

Given a w-coherent subdivision S of A, the collection of all functionals w
for which § = S, is a relatively open polyhedral convex cone. The collection
of all these cones for varying S is a polyhedral fan which covers (RP)*. In fact,
it is the normal fan of a certain polytope of dimension dim(P) — dim(7(P))
called the fiber polytope of the projection 7, as proved in [6]. We will de-
note this polytope X(P, ) and its precise definition is as follows: Let T'(P, )
denote the set of all piecewise linear sections s : m(P) — P for the projec-
tion 7. For each such section, the average m fr( P) s(z)dz is a point in

the fiber 7=1(0O) C RP of m over the centroid O of 7(P). Let %(P,m) :=
{Wl(]:\)) Jrpys(z)dz = s € F(P,w)}_

Theorem 1.2 ([6]) X(P,7) is a polytope of dimension dim(P) — dim(n(P)).
Its faces are in one-to-one correspondence with the m-coherent subdivisions of

A = t(vert(P)).

If the polytope P is a simplex, the w-coherent subdivisions of A are simply
called coherent [14] or regular [8, 17]. The fiber polytope is called the secondary
polytope of the point configuration A.

Refinement polytopes

The following statement makes more explicit the bijection between m-coherent
subdivisions of A and faces of (P, 7):



Theorem 1.3 Let S be a m-induced subdivision for a certain polytope projection
w: P — w(P). Let I'(S,m) be the subset of I'(P, ) consisting of sections with
image in PS. Let

1
(8, ) = {W /7r(P) s(z)dz : s € I'(S, 7'(')} .

Then,

1. X(S, ) is the Minkowski average of the fiber polytopes of the different cells
in S. More precisely

1

R )

Z vol(conv(B))X(PB, )
BeS

2. If S is the w-coherent subdivision of A for a functional w, then 3(S, ) is
the face of X(P, ) which mazimizes w.

3. (S, 7) = X(P, ) if and only if S is the trivial subdivision {A}.

4. X(S, ) is a face of (A, ) if and only if S is a w-coherent subdivision.

Proof: Decomposing the integral fﬁ( py s(z)dz via the subdivision S, for each
section s € T'(S, ), gives the formula in part 1.
For part 2, if S is m-coherent for a functional w € (RP)*, then for each cell

B € S, the maximum value of w([,,,p) s(¥)dz) is taken on and only on the

sections s(z) with image contained in PB. This proves the statement, and also
the following claim which will be used for part 4: if S’ is a subdivision with
(8, 7) € £(S,7) and S is w-coherent, then PS" ¢ PS and, hence, S’ refines
S.

Part 1 trivially shows that ¥({A},7) = X(P, 7). In order to prove part 3,
suppose that S is not the trivial subdivision. Let B be any cell in S and z be
a point in the relative interior of B. Let PP be the face of P corresponding
to B. The fact that S is not trivial implies that P® N 7~!(x) is a proper face
of the fiber 7~ 1(z). Let w be a functional whose maximum over 7 !(z) is not
taken in any point of PP N w~!(z). Let S, be the n-coherent subdivision for
w. By the proof of part 2, the value of the functional w over S(P, ) cannot be
maximized in any point of X(S, 7). In particular, £(S,7) # (P, 7).

The “if” in part 4 is implied by part 2 of the statement. For the “only-
if”, suppose that 3(S,7) is a face of 3(P,m). Let w be a functional whose
maximum over (P, m) is taken precisely in the face 3(S,7). By part 2,
Y(S, ) = 3B(Sy, ), where Sy, is the m-coherent subdivision of A for w. The
last claim in the proof of part 2 implies that S refines S,,. Since S is assumed
not to be w-coherent, it is a proper refiement of S,,.

(S, ) is the Minkowski average of the fiber polytopes ¥ (P?, ) for the
cells B € Sy,. X(S,nm) is, by part 3 applied to the different cells of S, a
Minkowski sum of polytopes strictly contained in them. Thus, 3(S, 7) is strictly
contained in ¥(S,, 7), which is a contradiction. 0



Definition 1.4 Let S be a m-induced subdivision for a polytope projection
P — w(P). The polytope %(S, 7) of Theorem 1.3 will be called the 7-refinement
polytope of the subdivision S.

Remark 1.5 The projection © : P° — 7(P) induces a map B : n(P) — 2%
which associates to every point x € w(P) the restricted fiber 7='(x) N PS. This
map is an example of what Billera and Sturmfels [6] call a polytope bundle
and it is piecewise linear. The m-refinement polytope X(P, ) is the Minkowski
integral of the polytope bundle. In particular, Theorem 1.3 and Proposition 1.2
in [6] imply, respectively, parts 1 and 2 of the previous theorem.

Remark 1.6 If S is a tight m-induced subdivision then T'(S,m) has only one
element and, in particular, the refinement polytope 3(S,m) is a single point.
This point equals

_ >.Bes vol(conv(B))OP
vs = ol (m(P)) ’
where OF denotes the centroid of the face PP of P.
Suppose, moreover, that P is a simplex with vertex set {ei,...,ep41} and
let a; = m(e;), so that m-induced subdivisions coincide with the polyhedral subdi-
visions of the point configuration A := {a1,...,ap11}. Then, the centroid OP

of each face can be rewritten as the average of its g+ 1 vertices and the formula
above takes the following form

1
S (Saepes vol(conv(B)) ) e;
v = (d + Dvol(7(P))
In other words, the i-th affine coordinate of the verter vg € RP equals, up
to a normalization constant, the volume of the star of a; in S. This is the

standard way to express the vertex of the secondary polytope associated to a
reqular triangulation of A [8, 14].

2 m-coherent refinements of a m-induced subdivision

We are interested in the poset of m-induced subdivisions of A which refine a
given one S. We will see that this poset behaves in many respects as Q(P, w) and
in particular that the faces of the above defined m-refinement polytope (S, )
are in correspondence with some m-induced refinements of S. As it happened
with Theorem 1.3 some of our results can be proved from more general results
concerning polytope bundles as in Section 1 of [6]. We will not discuss this in
detail.

Throughout this section we fix 7 : RP — RY to be a linear projection map,
P a polytope in RP and A = w(vert(P)).

For each m-induced subdivision S of A we will call the poset of all refinements
of S which are m-induced the m-refinement poset of S. We denote it (S, 7). In
other words, (S, ) is the lower ideal of S in the poset Q(P, 7).

For any linear functional w € (RP)* and any cell B of a subdivision S it
makes sense to consider the m-coherent subdivision B,, of B for the functional
w.



Definition 2.1 Let S be a m-induced subdivision of A. We call the subdivision
Ref(S, m,w) := UpecsBy the m-refinement of S for the functional w. (That
Ref(S, m,w) is indeed a subdivision of A is proved in the next theorem).

A subdivision of A is called a 7-coherent refinement of S if it can be obtained
from S in this way.

Theorem 2.2 1. Ref(S,m, w) is a w-induced subdivision of A and refines S.

2. If the m-coherent subdivision of A for a certain functional w refines S,
then it equals Ref(S, , w).

3. If S is itself w-coherent for a functional wg, then for any w € RP* there is
a sufficiently small positive € € R such that Ref(S, w,w) is the w-coherent
subdivision of A for the functional wy + ew.

Proof: 1. Since each B, is a refinement of the cell B of S, the cells in S,
cover A. For the same reason, two cells in the same B,, intersect properly. Let
T € By, and 7’ € B}, be cells in the refinements of B and B’, for different cells
B and B'in S. Then F = BN B’ is a common face of B and B’ and both TN F
and 7' N F are cells in the m-coherent subdivision of F' induced by w. Thus,
7 N7’ is a common face of 7 and 7/, and S,, is a subdivision. It is obvious that
Sy refines S. Also, S, is m-induced since the cells in each B, are projections
of faces of the corresponding PB, which is itself a face of P.

2. Let S” be the m-coherent subdivision of A for w. Suppose that S’ refines
S. This implies that for every cell B € S the subset S%; of S’ consisting of cells
contained in B is a subdivision of B. On the other hand, since S’ is m-coherent
for w, the subset S in question must be the m-coherent subdivision of B for w.
Hence, S contains all the cells of Ref(S, 7, w). Since two different subdivisions
of A cannot be contained in one another, we conclude that S’ = Ref(S, m, w).

3. Since the normal fan of ¥ (P, ) decomposes the line {wy + ew : € € R}
into a finite collection of segments, there exists a small positive real € such that
the polytope (m,wy + Aw)(P) has the same combinatorial type and the same
upper envelope for every A € (0,¢]. We assume € to have this property.

It is clear that in these conditions the face lattice of (m, wg + ew)(P) is a
refinement of the face lattice of (m,wp)(P). We want to see now that the upper
envelope of (7, wy + ew)(P) is a refinement of the upper envelope of (7, wg)(P).
Let F' be an upper facet of (7, wp + ew)(P) and let Fy be a facet of (m,w)(P)
containing F'. Since the exterior normal to F' has positive last coordinate, the
exterior normal to Fjy has non-negative last coordinate. The exterior normal to
Fy cannot have zero last coordinate, because this would imply that 7(Fp) (and
hence 7(F')) is not full-dimensional. Thus, Fj is an upper facet.

The above proves that the m-coherent subdivision of A produced by wg + ew
is a refinement of S. Part 2 of the statement gives the rest. O

The following observations are straightforward:

e The w-coherent refinements of a 7-coherent subdivision S are exactly the
m-coherent subdivisions which refine S (this is a consequence of part 2
of the previous result). In particular, the m-coherent refinements of the
trivial subdivision {.A} are exactly the m-coherent subdivisions of A.



e The 7-coherent refinements of a subdivision which is not 7-coherent may
or may not be m-coherent. A trivial example of this is that a non-coherent
subdivision is a w-coherent refinement of itself, for the functional w = 0.
For a non-trivial one, see Example 2.6(b).

e Reciprocally, not all the m-induced subdivisions which refine a m-coherent
one are m-coherent. The trivial subdivision gives a trivial example. For a
non-trivial one, see Example 2.6(a).

The second part of the following result can be rephrased as “the Baues poset
Q(P, ) is atomic”, although the word atomic is usually reserved to lattices.

Proposition 2.3 Let 7 : P — 7w(P) be a polytope projection. Let S be a -
induced subdivision. Let d be the dimension of w(P).

1. Let F be a face of P of dimension greater than d. If every tight d-face of
F is contained in P° then F itself is contained in PS.

2. Let S’ be a w-induced subdivision. If every tight refinement of S’ refines
S then S’ refines S.

Proof: 1. Let x be a generic point in 7(F). Being generic implies that every
vertex of 7~ 1(z) N F is contained in the relative interior of a d-face of F' and
that this d-face is tight. Hence, 7~'(2) N F is contained in P*. Since this holds
for any generic point z, F is contained in PS.

2. Let F be a face of P contained in P5". Let F' be a tight d-face of F.
We will prove that F' C P, which implies by part 1 that F C PS. Hence
$'"" c SP and this implies that S’ refines S.

Let w be a vector in the (relatively open) normal cone of the face F’ of
F. Then F' is a maximal face in PREf(S'm) and it is in PS" for any tight
refinement S” of Ref(S’, w, w). By hypothesis, P%" ¢ P, O

Theorem 2.4 Let S be a m-induced subdivision for a certain polytope projection
w: P — w(P). Let S be a m-induced refinement of S. Then,

1. $(8',7) € ©(S, 7).

2. If S" is the w-coherent refinement of S for a functional w, then 3(S', )
is the face of (S, ) which mazimizes w.

3. X(S,m) =2(S",7) if and only if S = S".

4. (8", 7) is a face of X(S, ) if and only if S’ is a w-coherent refinement
of S.

Proof: Part 1 is trivial since S’ < S implies that I'(S’,7) C I'(S, 7). In other
words, if a polytope bundle is contained in a second one, the Minkowski integral
of the first one is contained in that of the second.

For parts 2, 3 and 4 the proofs of the analogue statements in Theorem 1.3
are equally valid here, with minor changes. O



Corollary 2.5 Let S be a m-induced subdivision for a certain polytope projec-
tion m: P — w(P). Then:

1. The map S' — X(S',m) is an isomorphism between the poset of m-coherent
refinements of S and the poset of non-empty faces of the polytope (S, ).
Moreover, the normal cone of the face X(S', ) of (S, m) equals the col-
lection of vectors w such that 8" = Ref(S, m, w).

2. In particular, the vertices of (S, m) are the points {vp : T is a tight
refinement of S}. O

Example 2.6 Let w be the projection from a 5-simplex to the point configura-
tion A = {(4,0,0),(0,4,0),(0,0,4),(2,1+€,1—¢€), (1 —¢,2,14€), (1+€,1—¢,2)},
where € is a sufficiently small real number, possibly zero. This is the smallest
example of a configuration with non-coherent subdivisions [8, 14, 22, 26]. If
e = 0, then A consists of the vertices of two homothetic triangles one inside
another. If € # 0, then the interior triangle is slightly rotated, but the Baues
poset is independent of this rotation.

Let the points in A be labelled 1,...,6 in the order we have written them.
Consider the subdivison S = {456,1245,2356,1346}, consisting of the central
triangle surrounded by three quadrilaterals. The refinements of S are obtained
by independently introducing one of the two diagonals in some or all of the
quadrilaterals. Hence, Q(S, ) is isomorphic to the face poset of a 3-cube.

(a) If € = 0, then S is coherent. Its corresponding face in the secondary
polytope X({A}, ) is a hexagon. The two non-reqular triangulations (and
some other refinements of S) are not w-coherent refinements.

(b) If € # 0, then S is not coherent. In the secondary polytope, the former
hezagonal facet is now “inflated” to three quadrilateral facets, correspond-
ing to three refinements of S. The refinement polytope of S must contain
these three facets and, hence, it is three dimensional. On the other hand,
its face poset is a subposet of Q(S,w), which is already the face poset of
a 8-dimensional polytope. Hence, all the refinements of S are m-coherent,
although some of them are not coherent.

Remark 2.7 Suppose that P is a simplex and let S be a subdivision of a point
configuration A = w(P). A refinement S' of S is called regular decomposition
of S in [1, Section 2.12] and coherent refinement of S in [24, Section 4.2] if it
satisfies the following conditions:

(i) For each cell B € S there is a lifting function wp defined on B such that
S" restricted to conv(B) equals B, and

(i) The lifting functions can be chosen in such a way that for every B,B' € S,
the function wg — wpr defined on BN B' is an affine function.

Our definition of w-coherent refinement is stronger than this, since we require
wp = wg on BN B'. (This is called strongly coherent refinement in [2/]).
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This weaker notion of coherent refinement gives rise to different “refine-
ment polytopes”, called generalized secondary polytopes in [1] and [24]. As
an example, in the subdivision S of Example 2.6 all the refinements of S are
coherent in this wider sense and hence the generalized secondary polytope is
combinatorially a 3-cube regardless of the value of €. The generalized secondary
polytopes are specially interesting in connection to the toric schemes associated
to subdivisions of a point configuration.

Theorem 2.8 Let S be a w-induced subdivision. Then, the following conditions
are equivalent:

1. S is w-coherent.
2. All m-coherent refinements of S are w-coherent subdivisions.

3. All w-coherent refinements of S which are tight are w-coherent subdivi-
sions.

Proof: For the implication 1 = 2, suppose that S is m-coherent, so that (.S, 7)
is a face of (P, 7). If S’ is a m-coherent refinement of S then X(S’, 7) is a face
of (S, ) and, thus, of (P, ) (we have used parts 2 of Theorem 1.3 and of
Theorem 2.4). By part 4 of Theorem 1.3, S’ is w-coherent.

The implication 2 = 3 is trivial. Let us prove 3 = 1. We will use induction
on the number of proper refinements of S. Thus, we can assume that the
implication 3 = 1 holds for every proper refinement of S.

Let Sy, ..., Sk be the maximal proper 7w-coherent refinements of .S, which are
in bijection with the facets of the w-refinement polytope X(S, 7). By inductive
hypothesis, St, ..., S, are m-coherent subdivisions.

Let wi,...,wr € RP* be linear functionals so that S; is the m-coherent
refinement of S for w; (1 = 1,...,k). In particular, w; restricted to the affine
span of ¥(.S, 7) represents the exterior normal of the i-th facet of ¥(S, 7). Scaling
the w; with positive constants we can assume that the functional w := Zle w;
is constant on (S, ) and, hence, that the w-coherent refinement of S for the
functional w is S itself.

By part 2 of Theorem 1.3, S; is the w-coherent subdivision of the projection
7 : P — w(P) for the functional w; (i = 1,...,k). We claim that this implies
that S is the m-coherent subdivision for the functional w. In fact, let us call
S,y this latter m-coherent subdivision. Since the m-coherent subdivision for w;
refines S for every i, Sy, refines S too (here we are just using that on each fiber
7~(z) N P the normal cone to the face which projects to a cell of S is convex).

Hence, by part 2 of Theorem 2.2, S,, is the m-coherent refinement of S for
the functional w. Since w is constant on X(S, ), X(Sy, ) = (S, ) and, by
part 3 of Theorem 2.4, S = §,,,. O

Corollary 2.9 Let P — w(P) be a polytope projection. The following state-
ments are equivalent:

1. FEvery m-induced subdivision is m-coherent.
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2. BEvery tight m-induced subdivision is m-coherent.

3. (The order complex of ) Q(P, ) is homeomorphic to a sphere of dimension
dim(P) — dim(w(P)).

Proof: That condition 1 implies both 2 and 3 is trivial. The implication from
2 to 1 is a direct consequence of Theorem 2.8.

For the implication from 3 to 1, observe that the subposet of Q(P, ) con-
sisting of 7-coherent subdivisions is the poset of proper faces of the polytope
Y (P, ), which is homeomorphic to a sphere of dimension dim(P) — dim(7(P)).
The implication follows from the fact that a sphere cannot be a proper subset
of a sphere of the same dimension (see e.g. [18, p.217, exercise 6.9]) O

Definition 2.10 We will call height of a m-induced subdivision S the maximum
of the lengths of all the refinement chains of m-induced subdivisions having S
as maximal element (so that tight m-induced subdivisions have height zero and
the height of every other w-induced subdivision equals one plus the maximum
height of its proper m-induced refinements).

Corollary 2.11 If S is a non-trivial w-induced subdivision with height greater
or equal than the dimension of the fiber polytope, then there exists a tight -
induced but not m-coherent subdivision which refines S. O

Question 2.12 Is the converse of Corollary 2.11 also true? In other words,
does there exist a polytope projection ™ which has non-coherent subdivisions but
in which all proper m-induced subdivisions have height strictly lower than the
dimension of the fiber polytope? We do not know any such example.

Example 2.13 Suppose that T is a m-induced subdivision which refines another
m-induced subdivision S and that height(S) — height(T) > 1. Does this imply
that there is another m-induced subdivision S’ in between S and T'? The answer
s no, as the following example shows.

Let A be the point configuration consisting of the twelve vertices of a reqular
icosahedron together with its centroid. Let m be the natural projection from a
12-simplex onto A, so that every subdivision of A is w-induced. Let S be the
trivial subdivision, which has height at least 13 —3 —1 =9 (in fact, at least 10
as we will see in Example 3.2.2).

The twenty facets of the icosahedron can be divided into siz adjacent pairs
and eight single triangles in such a way that each pair is adjacent to four single
triangles and each single triangle to three pairs. (Once a pair is formed there is
a unique way to form the other ones). Let T be the subdivision of A obtained
coning the centroid to each single triangle and to each pair, so that the cells of
T are eight tetrahedra and six triangular bipyramids. T has height equal to siz,
since each bipyramid can be refined independently and has height 1. However,
it is easy to check that T is a coarse subdivision of A.
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3 Non-regular triangulations

In this section we will assume that P is a simplex, and let A = 7 (vert(P)).
Every polyhedral subdivision of A is w-induced and Q(P, ) is simply denoted
Q(A). The m-coherent subdivisions in this case are usually called regular. The
fiber polytope ¥ (A) associated with the projection from a simplex is the sec-
ondary polytope of A [8, 14] and has dimension #.A4 — dim(A) — 1.

Corollary 2.9 says that A has non-regular subdivisions if and only if it has
non-regular triangulations. This is interesting since the triangulations of A are
easier to enumerate than the subdivisions. For example, in [2] the authors,
after computing all the triangulations of the cyclic polytopes C(7,3), C(8,3)
and C(8,4) and checking that they are regular prove that all the subdivisions
are regular too by somewhat sophisticated arguments (see Lemma 4.6 in [2]).
Our result saves this part of the work.

In the following we will produce simple proofs of existence of non-regular
triangulations for some particular point configurations.

Lemma 3.1 Let S be a subdivision of a point configuration A. Let By,..., By
be the list of cells of S which are not simplices. Let h; be the dimension of
the secondary polytope of B;. Suppose further that the facets of each B; are
simplices, except perhaps for those contained in the boundary of conv(A). Then,
S has height at least hy + --- + hy.

Proof: The conditions on the facets of the B;’s imply that the common face of
any pair of them is a simplex. Thus, the refinements of S are obtained refining
the B;’s independently. In particular, Q(S,7) equals the direct product of the
Baues posets of each of the B;’s, and each of these has height at least h;. O

Examples 3.2 The following point configurations have non-reqular triangula-
tions:

1. The six vertices of two parallel triangles in the plane, one inside another.

Let Ty denote the outer triangle and Ts the inner one. Let a;, b; and
¢; denote the vertices of T;. Then, the subdivision S = {{ajasb1bs},
{arazcica}, {bibacica}, {asbaca}} satisfies the conditions of Lemma 3.1
and has height 3, the dimension of the secondary polytope. This is the
same configuration and subdivision as in Example 2.6.

2. The vertices of any 3-polytope with more vertices than facets, together
with an interior point of it.

Let @ be any 3-polytope with more vertices than facets and let a be a point
in its interior. Consider the subdivision S obtained coning a to the facets
of Q, which satisfies the conditions of Lemma 8.1. Calling V, E and F
the numbers of vertices, edges and facets of Q, the height of S is easily
seen to be at least 2E — 3F, which equals 2V — F — 4 by Fuler’s formula.
By our hypothesis, this number is at least V — 3, the dimension of the
secondary polytope.
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Observe that every simple 3-polytope other than the tetrahedron is a valid
Q for this example. Also, that essentially the same proof applies if () is
any polytope obtained by a small peturbation of a 3-polytope with more
vertices than facets or if Q) is an icosahedron. For the icosahedron, divide
its boundary into ten pairs of two adjacent triangles and cone these pairs
to the interior point. This produces a subdivision of height 10 while the
secondary polytope has dimenssion 13 —4 = 9. Example 2.13 also implies
that this point configuration has non-reqular triangulations.

. The configuration consisting of the centroids of the 15 non-empty faces of
a 3-dimensional simplex.

Consider the 3-simplex subdivided into four combinatorial 3-cubes, each
of them being the star of a vertex in the first barycentric subdivision of the
3-simplex. In each of the four 3-cubes so obtained we cut the inner corner
(incident to the centroid of the 3-simplex). This produces a subdivision
S of the 3-simplex into four 3-simplices and four 3-polytopes with seven
vertices and all but the three external facets simplicial. This subdivision
satisfies the conditions of Lemma 3.1 and has height at least 4x (7T—3—1) =
12, which is greater than the dimension 15 — 3 — 1 = 11 of the secondary

polytope.
. The vertices of a 4-cube.

Let a be a particular vertex of the 4-cube. The vertex figure of the 4-cube
at a is precisely a 3-simplex divided into four combinatorial 3-cubes as in
the previous example. Thus, the /-cube can be subdivided into four cones
over 3-cubes with apex at a. Cutting vertices in these four 3-cubes as we
did in the previous configuration produces a subdivision of the 4-cube with
eight cells, four of which are j-simplices and the other four have eight
vertices. This subdivision satisfies the conditions of Lemma 5.1. Again,
this subdivision has height at least 4 x (8 —4 — 1) = 12, which is bigger
than 16 —4 — 1 =11.

. The 3-dimensional configuration in R* consisting of the 12 points e; — e;
(1,7 =1,2,3,4;1 # j) together with the origin.

A different (affinely equivalent) description of the point configuration in
question is that it consists of the centroid and the 12 vertices of a cuboc-
taheron, where a cuboctahedron is the convex hull of the mid-points of the
edges of a regular 3-cube. After removing two square pyramids with base at
two opposite square facets and apex at the centroid of the cuboctahedron,
the rest of the cuboctahedron can be subdivided into four (non-regular) oc-
tahedra. This gives a subdivision satisfying the conditions of Lemma 3.1
and of height 2+2+2 42+ 1+ 1 (2 for each of the four octahedra and
1 for each of the 2 square pyramids), which is bigger than 12 — 3 — 1.

. The vertices of the product Az x Az of two 3-dimensional simplices.

Let us embed Az x Az in R* x R* having as vertices the 16 points (e;, e;),
i,j = 1,...,4. Let A be this set of vertices. The projection I : R* x
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R~ R" defined by (x1, 72,23, T4, y1,Y2,Y3,y4) — (T1 — y1, T2 — Y2, T3 —
Y3, x4 —Yq) sends A to the point configuration Ay of the previous example,
identifying the four vertices (e;,e;) at the origin O of R*. The fact that
dim(A) —dim(Ap) =3 = dim({(es,e;) : i = 1,...,4}) —dim({O}) implies
that if BU{O} is a subset of Ay with k elements and dimension I, then
B U {(ei,e;) i = 1,...,4} is a subset of A with k + 3 elements and
dimension [+ 3 (we are slightly abusing notation, identifying A\{(e;,e;) :
i=1,...,4} with Ay \ {O} by the projection I1). Hence, the lifted cell in
A is full-dimensional or simplicial if and only if the cell in Ag had those
properties. Moreover, if two such cells in Ay intersect properly then the
corresponding lifted cells intersect properly too.

In particular, the subdivision Sy of Ay described in the previous example,
consisting of 4 octahedra and 2 square pyramids, lifts to a family S of
6 full-dimensional cells in A which intersect properly. We want to show
that S is a subdivision satisfying the conditions of Lemma 3.1. If this is
so, then it is clear that it has height 2+ 2+ 2+ 241+ 1 = 10, which is
more than the dimension (9) of the secondary polytope of Asg x As.

e Sy can be refined to a triangulation Ty with 20 simplices, all of them
incident to O. For this, refine the square pyramids arbitrarily and
refine the octahedra using the diagonal containing O. This triangula-
tion Ty lifts to a collection T of 20 full-dimensional simplices which
intersect properly in A. Since A3z x Asz is a lattice polytope of nor-
malized volume 20, T is a triangulation of A. Since each simplex of
T is contained in a cell of S, S is a subdivision of A.

e The interior common facets between cells of S are obtained lifting the
interior common facets between cells of Sy, all of which are incident
to O and are simplices. This implies that they are also simplices in

S.

Remark 3.3 For most of the point configurations in the above list non-regular
triangulations were previously known (see [10] for the j-cube and the product
of two tetrahedra and [12] for the cuboctahedron). However, the proof presented
here is probably the simplest existing one. In particular, our proof relies only
on the combinatorics and not the geometry of the point configuration, where by
“combinatorics” we mean the oriented matroid M(A) of affine dependencies
between the points of A. This is interesting since the Baues poset of A (and in
particular whether or not A has any non-regular triangulations) depends only
on the oriented matroid M(A), while the regularity of a specific triangulation
depends also on the geomeltry.

In particular, observe that if the example 1 is slightly perturbed so that the
two triangles become non-parallel, our proof still implies that the configuration
has non-regular triangulations, while any “geometric” proof would have to be
adapted to the perturbed case; the configuration moves from having two different
non-reqular triangulations to having only one.

15



Example 3.4 Since the property of having only regular triangulations for a
point configuration A depends only on its oriented matroid M(A), a natural
question is whether this property is minor closed, i.e., closed under the oriented
matroid operations of deletion and contraction.

It is easy to check that the property is closed under deletion: if T is a non-
reqular triangulation of A\ {p} then the triangulation T" of A obtained joining
to p the facets of T which are visible from T is non-regular.

However, the property is not closed under contraction: let A C R> be the
point configuration a1 = (2,0,0), as = (0,2,0), a3 = (0,0,2), as = (1,0,0),
as = (0,1,0), ag = (0,0,1), and a7 = (—1,—1,—1). The contraction A/ay is
(affinely equivalent to) the planar point configuration that we have discussed
in Example 3.2.1. In particular, A/a7 has non-reqular triangulations. On the
other hand, A has only regular triangulations. Indeed, the following two as-
sertions are easy to check. Observe that A/az has five symmetry classes of
triangulations, four of them regular:

e Fach regular triangulation of A/az is the link of the point a7 in a unique
triangulation T' of A. This triangulation is regular, by Lemma 2.2 in [11]
where it is proved that every regular triangulation of A/a is the link of
the point a in at least one reqular triangulation of A.

e The two non-regular triangulations of A/az are not links of a7 in triangu-
lations of A. In other words, the truncated triangular pyramid conv(aq, az,
as, a4, a5, ag) cannot be triangulated so that the triangulation of its bound-
ary agrees with the non-regular triangulations of A/az.

This shows that although the arguments in FExamples 3.2./ and 3.2.6 are
based in a contraction technique, the contraction alone is not enough.

Question 3.5 We can further ask whether the property of not having non-
reqular triangulations can be characterized by a finite list of excluded minors.
Since the property is not closed under contraction, we ask this for each fixed
dimension.

The answer is yes if d > 3 for point configurations A in general position,
meaning by this that any dim(A) + 1 points are independent, as a combination
of the following two results:

1. The following higher dimensional generalization of FErdos-Szekeres Theo-
rem [9, Proposition 9.4.7]: for any fized dimension d and any integer n
there is an integer N such that any point configuration in R® containing
at least N points in general position contains as a minor the oriented
matroid of a cyclic polytope C(n,d).

2. The existence of non-regular triangulations of any cyclic polytope C(n,d)
with d >3 and n > d+6 [2].

These two results imply that any point configuration in d > 3 with enough
points in general position has non-reqular triangulations. This is clearly not
true in d = 2, since the vertez set of any n-gon has only reqular triangulations.
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For d = 2 we conjecture that any 2-dimensional point configuration which has
non-reqular triangulations contains either an 8-element or a 6-element subcon-
figuration which has non-reqular triangulations.

4 The Baues poset for almost-fine subdivisions. Flips

Definition 4.1 Let S be a m-induced subdivision for a polytope projection
m: P — w(P). We will call rank of S the dimension of the m-refinement
polytope X(S, 7).

It is clear from Theorem 2.2 that the height of any w-induced subdivision
is greater or equal than its rank. Also, that a m-induced subdivision has rank
0 if and only if it has height 0 (and if and only if it is tight). In this section we
will be interested in the w-refinement posets of subdivisions of rank 1. Let us
first see how to compute the rank of a subdivision:

Proposition 4.2 Let S be a w-induced subdivision of a polytope projection m :
P — w(P). For each B € S, let Lp be the linear subspace parallel to a fiber
71 (z) N PB of the projection = : PB — conv(B) for any = in the relative
interior of conv(B) and let

Ls:=> Lg

BeS

Then, Lg is the linear subspace parallel to (S, ). In particular, the rank of S
equals dim(Lg).

ProofI:f S is the trivial subdivision, this is a well known fact (the affine span of
the fiber polytope equals the fiber over the centroid of 7(P)). For a non-trivial
S, the statement follows from the decomposition of the m-refinement polytope
(S, ) as a Minkowski sum of the fiber polytopes of the cells B € S (Theorem
1.3.1). O

Theorem 4.3 Let S be a m-induced subdivision of rank 1. Then the poset
Q(S, ) of m-induced refinements of S is isomorphic to the poset of proper non-
empty faces of a cube of dimension height(S). In particular, it is homeomorphic
to a sphere of dimension height(S) — 1.

Proof: Throughout this proof let | S| represent the polyhedral complex induced
by a polyhedral subdivision S. |S| is a collection of polytopes which covers 7 (P)
and which is closed under taking faces. Its maximal elements are the convex
hulls of the cells in S.

By Proposition 4.2 the fiber 771 (x) N P of every point z € m(P) is either
a point or a segment parallel to (S, 7). Let U denote the subset of 7(P)
consisting of points whose fiber is a segment.

e Claim 1: U is open in w(P). Proof: Let C be the union of the (closed)
cells of |S| which do not intersect U. C is clearly closed and disjoint from
U. Moreover, the relative interior of every cell F' of |S| is contained in
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either C' or U, depending on whether F' is the projection of a face of P
of the same dimension or of one dimension more. Hence, U and C are
complements of each other and U is open.

Let us globally choose a positive and negative direction in the fibers of the
points in U. Every refinement S’ of S is characterized by the map ¢g : U —
{—,0,+} which to a point z € U associates the sign — or + if 7' (z) N P is
the negative or positive end of the segment 7—!(z) N P° (respectively) or 0 if
Y z)NPY =~ (z) N PS.

e Claim 2: ¢g is continuous in U for every m-induced refinement S' of
S. Proof: Let us call Uy, Uy and U_ the inverse images by ¢g of 0, +
and —. Up is open in m(P) (and hence in U) by Claim 1 applied to the
subdivision S’. That U; and U_ are open in w(P) (and hence in U) can
be proved with the same argument: if = is a point in U, then the relative
interior of any face of |S| containing z is contained in U (and the same
for U_).

Saying that ¢g : U — {—,0,+} is continuous is equivalent to saying that it
is constant on each connected component of U. Moreover, the following converse
of Claim 2 is trivial: any locally constant map ¢ : U — {—,0,+} represents a
m-induced refinement of S. Thus, the set of m-induced refinements of S is in
bijection with the set of maps from {Uy,...,Ux} to {+,0,—}, where Uy,..., Uy
are the connected components of U (which are clearly a finite number). This
set of maps is in natural bijection with the faces of a cube of dimension k&, and
this bijection induces a poset isomorphism between (S, 7) and the poset of
proper non-empty faces of the k-dimensional cube. The rest of the statement
is trivial. O

It is interesting to observe that the proof above is valid also if S has local
rank equal to 1, meaning by this that for any B € S, Lp has dimension 0 or 1
(or, equivalently, dim(P?) > dim(B) + 1). This occurs in Example 2.13. The
only change needed in the proof is that the choice of a positive and negative
direction for each fiber is local, i.e., made independently in each connected
component of U.

Question 4.4 In what other cases is it posible to prove that the poset Q(S, )
is homeomorphic or at least homotopy equivalent to a sphere? It would be
interesting to prove it for the cases dim(A) = 1 or rank(S) = 2. It might be
that the existing proofs for projections from a simplex [7, 21] can be adapted
here.

Corollary 4.5 Let S be a m-induced subdivision. Then, S has height 1 if and
only if it has ezxactly two proper refinements: In this case the two refinements
are tight.

Proof: If S has height 0 then it has no proper refinements. If S has height at
least 2, then it has rank at least 1 and at least three proper refinements: at
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least two tight ones (vertices of X(S,7)) and at least one non-tight one, in a
chain of length at least two.

Finally, if S has height 1, then it has rank 1 because height(S) > rank(S)
and rank 0 would imply height 0. In this case, the previous result says that
Q(S, ) is the poset of faces of a segment. O

Example 4.6 We will see in Section 5 that if P is a simplex or a cube (more
generally, any product of simplices) then rank 1 implies height 1. This is not
true in general. For example, the natural projection between the cyclic polytopes
C(6,4) and C(6,2) has w-induced subdivisions of rank 1 and height 2 (in a
certain coordinatization), as shown in [2, Section 6].

It is even easy to construct subdivisions of rank 1 and arbitrarily large
height: Let Py be the regular prism over an n-gon for an even m, i.e., the
3-polytope with the following 2n wvertices: ap = (cos(%),sin(%),l) and
b = (cos(%),sin(%), —1), for k=0,...,n—1. Let P be the slightly non-
reqular antiprism obtained truncating Py, whose vertices are the a;’s and the
mid-points of consecutive b;’s. Let ¢; = (b; + biy1)/2 be such a mid-point for
each 1 =0,...,n — 1, where it is understood that b, = by. Let m be the projec-
tion (z,y, z) — = which maps P to the segment [—1,1]. Let S be the subdivision
consisting of the cells {m(a;),n(c;), m(aiy1)}, fori=0,...,5 —1. Then, S has
rank 1 (Lg is a vertical segment) and height n/2.

Definition 4.7 Let S; and Sy be two tight m-induced subdivisions. We will
say that they differ by a w-flip if they are the two proper refinements of a
certain m-induced subdivision of height 1. We will call 7-flips the m-induced
subdivisions of height 1.

We will call graph of tight w-induced subdivisions the graph whose vertices
are the tight m-induced subdivisions and whose edges are the 7w-flips connecting
them. We denote it G(P,w). For any 7m-induced subdivision S, we will denote
G(S, ) the subgraph of G(P, ) induced by the tight refinements of S.

If Sy is a w-flip and S; and Ss are its two tight refinements, then any -
induced subdivision coarser than S; and S5 is coarser than Sy as well, by part 2
of Proposition 2.3. This implies that G(S, 7) is homeomorphic to the subgraph
of the 1-skeleton of (S, ) induced by subdivisions of height at most 1. The
following result is analogue to Lemma 8 in [22].

Proposition 4.8 Let 7 : P — 7w(P) be a polytope projection. Let S be a -
induced subdivision. The following conditions are equivalent:

1. The graph G(S',7) is connected for every m-induced refinement S’ of S.

2. The refinement poset Q(S', ) is connected for every m-induced refinement

S" of S.
Proof: (1)=(2) For any particular subdivision S’, if the graph G(S’, ) is con-

nected then all the tight m-induced subdivisions are connected in Q(S’, 7) by
m-flips. Any non-tight subdivision can be refined to a tight one.
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(2)=(1) We want to show that if Sy, ..., S is a path in Q(S’, 7) connecting
two tight refinements Sy and Sy of S then there is a path connecting Sy and
Sk and using only subdivisions of height 0 or 1 (i.e., tight subdivisions or flips).
Let h be the maximum height of a subdivision in the path Sp,...,Sk. We will
use induction on h.

Any subdivision S; of height h in the path is between two subdivisions S; 1
and S;11 of height lower than h which refine S;. By part (2) applied to S;,
there is a path connecting S; 1 and S;;1 in Q(S;, 7) and this path consists of
subdivisions of height less than h. Replacing each subdivision of height h for
such a path we obtain a path from Sy to Sx with subdivisions of height less
than h. O

5 Special cases

Here we study flips in the particular cases of P being a simplex, P being a
cube and dim(w(P)) = 1. In these thre cases m-flips are equal (at least in
generic situations) to geometric bistellar flips, cube-flips and polygon moves,
respectively.

Triangulations and geometric bistellar flips

We consider here the case where P is a simplex. An interesting feature of this
case is that the bad behaviour exhibited in Example 4.6 cannot occur:

Proposition 5.1 Let w: P — w(P) be a polytope projection. If P is a simplex
then any m-induced subdivision S of rank 1 has height 1.

Proof: Let C be the intersection of all the faces of the simplex P which contain
a segment parallel to the 1-dimensional vector space Lg. Since P is a simplex,
C is a face of P and contains a segment parallel to Lg. For each B € S, Lp is
either trivial or equals Lg, and the latter happens if and only if P? contains C.

Observe that dim(C) = dim(w(C)) + 1 and, hence, the projection C' —
7(C) induces two non-trivial subdivisions of m(C), which correspond to two
refinements of S. Conversely, any refinement of a non-tight cell B of S induces
a m-induced subdivision of the projection C' — 7(C). Clearly, in a refinement
of S all the non-tight cells are refined inducing the same m-induced subdivision
of the projection 7 : C — «(C).

Hence, the proper refinements of S are in bijection with the subdivisions
induced by the projection 7 : C' — 7w(C'). This means that S has two proper
refinements and, by Corollary 4.5, it has height 1. O

The following is the standard definition of geometric bistellar flip in a trian-
gulation, see [14, Chapter 7] or [8, 12, 22]. We intend to show that this notion
coincides with our notion of 7-flip.

Let A be a point configuration. Using the terminology of matroid theory,
we call a minimal affinely dependent subset of A a circuit (see [9] or [26] for
details). The unique (up to a scalar factor) dependence equation in a circuit
divides its elements into two parts Z = Z, U Z_ containing respectively the
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elements with positive and negative coefficient in the equation. These two parts
are sometimes referred to as the Radon partition of Z and the pair (Z1,7_) is
called an oriented circuit. A circuit Z can be triangulated in exactly two ways:

To(2) = {cono(Z — {p}) :p € 2o} T_(2) = {eonv(Z — {p}) :p € Z_}.

Definition 5.2 Let T be a triangulation of A (i.e., a tight m-induced subdivi-
sion for the canonical projection m which sends the vertices of a simplex P to
the elements of A) and (Z;,Z_) C A an oriented circuit of A. Suppose that
the following conditions are satisfied:

1. The triangulation 7'y (7) is a subcomplex of T'.

2. All the maximum-rank simplices of T (Z) have the same link L in 7. In
particular, T'y (Z) = L is a subcomplex of T'. Here and in what follows we
denote by A x B the join of two simplicial complexes A and B, i.e., the
simplicial complex {a Ub:a € A,b € B}.

In these conditions we can obtain a new triangulation 7' of A by replacing
the subcomplex T, (Z) * L of T with the complex T_(Z) x L. This operation
of changing the triangulation is called a geometric bistellar flip (or a flip, for
short) supported on the circuit (Z,,Z_). We say that T and T' are geometric
bistellar neighbors. We call the flip of type (k,[) if Z; and Z_ have k and [
elements respectively.

Proposition 5.3 Let m# : P — w(P) be a polytope projection where P is a
simplez and let A = w(vert(P)). Then, two triangulations T and T" of A differ
by a bistellar flip if and only if they differ by a w-flip.

Proof: Suppose first that T and T" differ by a bistellar flip. Using the notation
of Definition 5.2, we have that S:=T \ (T (Z)« L)U(Z* L) =T'\ (T_(Z) *
L)U(Z x L) is a subdivision of A refined by both 7" and T". Let us see that
it has no other refinements. Any non-simplicial cell in S is of the form Z * o
for an affinely independent set o. Its only two refinements are T, (Z) * o and
T_(Z) * 0. Moreover, if a non-simplicial cell of S is refined using T, (Z) then
any other non-simplicial cell is refined in the same way (and the same happens
for T_(Z)). Hence, T and T" are the only two refinements of S and S has height
1 by Corollary 4.5.

Reciprocally, suppose that S is a height 1 subdivision and that T and T" are
its proper refinements. We want to prove that T and T" satisfy the conditions
of Definition 5.2. Let B any non-simplicial cell of S. Since Lp has dimension 1,
PP is a simplex of dimension d + 1, hence B has d 4+ 2 elements and it contains
a unique circuit Z. Moreover, this circuit Z is independent of the choice of B.
In fact, let C be the minimal face of P containing a segment parallel to Lg, as
in the proof of Proposition 5.1. We saw there that dim(C) — dim(7(C)) = 1
and that C is contained in PP for any non-simplicial cell B of S. In particular,
m(vert(C)) contains the circuit Z contained in any non-simplicial cell B.

As a conclusion, the non-simplicial part of S has the form Z % L where L is
a simplicial subcomplex of S, T and T'. Hence, T and T" differ by a bistellar
flip on the circuit Z. O

21



Mixed subdivisions. The Cayley Trick

Let P, C RP',..., P, C RP" be a finite family of polytopes. Let IIps : Py X - -+ X
P, — I (P x -+ X P.) be a projection of the product of these polytopes. If
O; denotes the origin in RPi we can decompose Il into the projections

mi P — mi(F;)
T HM(Ol,...,Oi_l,x,OiH,...,O,,)

We have that Iy, (P X -+ x P,) = M(m(Py),...,m(P.)) where M denotes the
Minkowski sum of polytopes.

On the other hand, we call Cayley embedding of ©1(Py), ..., (P,) the fol-
lowing point configuration in R"~! x R%. Let eq,..., e, be a fixed affine basis in
R and p; : RY — R"~! x R be the affine inclusion given by p;(z) = (e;, ).
Then we define

C(mi(P1),...,mr(Py)) := conv (Uj_; ui(mi(P;)))

The Cayley embedding of polytopes from complementary affine subspaces
equals the join product of them. (For our purposes the join product P; *---x P,
of several polytopes with P, C RPi can be defined to be their Cayley embed-
ding C(Py,...,P,) C R"~! x RP* x --- x RPr.) We have the following natural

projection.
e: Prx...x P, — C(m(Py),...,m(F)),
(eispi) — (e, mi(pi))-

The Cayley trick is a natural bijection between the subdivisions induced by
the projections IIy; and IIz. The bijection is easier to state and understand
looking at the family P° of faces of P associated to a subdivision induced by a
projection 7w : P — w(P).

Theorem 5.4 ([15]) Let Iy : P X -+- x P, — M(m(Py),...,7(P.)) and
e : Prx--x P — C(m(Py),...,m(P)) be two polytope projections in the
conditions above.

1. If S is a Mys-induced subdivision then every mazimal face in (Py X - -+ X
P,)S is of the form Fy x --- x F, for certain faces F; of each P; and
moreover the family of faces

{Fix---xF,:Fi x---xF. € (P x--- xPr)S}
equals (Py * -« * P,n)s’ for a certain Ilc-induced subdivision S'.

2. Conversely, if S is a Hg-induced subdivision then every mazimal face in
(P % ---x P,)% is of the form Fy * ---x F, for certain faces F; of each P;
and moreover the family of faces

{Fix - -XF.:Fi%---%F.€ (P - %P)%}

equals (P, x --- x P)S" for a certain Ty-induced subdivision S'.
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Suppose now that each P; is a simplex. Then the join product P; * - -- x P,
is also a simplex and, in particular, every Ilo-induced subdivision of rank 1 has
height 1. Since the Baues posets of the projections [13; and II¢ are isomorphic
by Theorem 5.4 it is natural to expect that also every II/-induced subdivision
of rank 1 has height 1. This follows from the following result, based on [25,
Theorem 5.1].

Proposition 5.5 Suppose that Py,..., P, are simplices. Let TIp; : Pp X -++ X
P. — M(m(Py),...,m-(P;)) and e : Py % --- % P, — C(m(Py),...,7(P))
be two polytope projections in the conditions above. Let S be a Ilpr-induced
subdivision and S" a Ilg-induced subdivision which correspond to each other
as in Theorem 5.4. Then the polytopes (S, Tpr) and (S, Tl¢) are normally
equivalent. In particular, they have the same dimension.

Before going into the proof, let us recall that two polytopes are said to
be normally equivalent [6] or strongly isomorphic [25] if they lie in the same
affine space and they have the same normal fan. The polytopes X(S,1I,/)
and (S, TI¢) of the previous statement can be considered to lie in the same
affine space since the fibers of the projections II;; and Il are both canonically
isomorphic to the products of the fibers of the projections ;.

Proof: Tf S and S’ are the trivial subdivisions then the statement is just The-
orem 5.1 in [25]. For arbitrary subdivisions, recall that ¥(S,II5s) equals the
Minkowski sum of the fiber polytopes 3(B,11,,) for the different cells B € S
(and the same for S’). Since each X(B,II)s) is normally equivalent to the cor-
responding 3(B’,TI¢) and since the normal fan of a Minkowski sum equals the
common refinement of the normal fans of the summands, the result holds.
Remark: In the statement of [25, Theorem 5.1] the parameter r (number of
polytopes P;) equals the parameter d (dimension of the ambient space of the
projections 7;(P;)). However, this assumption is not used in the proof and it is
posed because the case d = r is interesting for the context of that paper. Even
more, the same proof works also without the assumption that the polytopes P;
are simplices. O

Zonotopal tilings and cubical flips

Here we assume that P is a cube, i.e., a product of segments. This is a particular
case of the previous one so, in particular, it will be still true that rank 1 implies
height 1, by Proposition 5.5.

If P is a cube of some dimension 7, then its projection 7 (P) is the Minkowski
sum of r segments, i.e., a zonotope. The 7-induced subdivisions coincide with
the zonotopal tilings of w(P). The tight ones are the cubical tilings, i.e., the
subdivisions of 7(P) all of which cells are cubes. The natural notion of ele-
mentary change between cubical tilings is that of a cube-flip (see [22]) which is
usually defined as follows: Let S be a cubical tiling of a zonotope 7(P) and let
d = dim(w(P)). Suppose that there is an interior vertex v of S which is incident
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to exactly d 4+ 1 cells. Then these cells form a convex zonotope of dimension
d with d + 1 generators, which has exactly two cubical tilings. One of them is
contained in S. Switching to the other one produces a new cubical tiling S" of
7(P), and S and S’ are said to differ by a cube-flip. For example, cube-flips
in dimension 2 correspond to switching between the two decompositions of a
hexagon into three parallelograms and in dimension 3 to switching between the
two dissections of a rhombic dodecahedron into four combinatorial 3-cubes.
Let us say that a m-flip S for a polytope projection 7 : P — w(P) is non-
degenerate if there is only one non-tight cell in S and all of its facets are tight.

Proposition 5.6 Let P — w(P) be a polytope projection where P is a cube.
Then, two cubical tilings differ by a cube-flip if and only if they differ by a
non-degenerate m-flip.

Proof: The ‘only-if’ is trivial: the d + 1 cubes in which a cube-flip is made are
a subdivision of a non-tight cell all of whose facets are tight. For the ‘if’, let
S be the w-flip between T and T". Let B be its unique non-tight cell. Tt has
dim(Lg) = 1, since S has rank 1, and hence, P? is a (d + 1)-cube. Because
of non-degeneracy, the projection = : PP — B has (d 4+ 1) upper facets and
(d + 1) lower facets, i.e., B has two cubical tilings both with d 4+ 1 cells, as in
the definition of a cube-flip. O

The question arises of what “degenerate cube-flips” look like. Suppose that
a cubical tiling T" of w(P) contains one of the two cubical tilings of a zonotope
Z of dimension k£ with k£ + 1 minimally dependent generators. What are the
conditions necessary for the switch at the zonotope Z to be possible? As in the
case of triangulations, the condition is related to the links, with the following
definition:

Definition 5.7 Let Z be a zonotope of dimension d generated by the segments
ai,...,ay. For any subset B C {ai,...,a,} we will denote Zp the Minkowski
sum of its elements. Let S be a zonotopal tiling of Z. Let Zp be a Minkowski
sum of a subset B of {a,...,a,}. We call zonotopal link of B in S the set

linkg(B) :={W : Zp + Zy is a cell of S}.

Let £ < d be an integer and let Bj,..., By be different independent
subsets of {a1,...,a,} of cardinality k. If

1. UfillBi has k + 1 elements (i.e., if Zf:’ll B; is a zonotope generated by
k + 1 elements of {a,...,a,}) and

2. All the B; have the same zonotopal link L in S,

then removing from S all the cells B; + W, 4+ =1,...,k+1and W € L and
inserting the cells B; + W, where Bi,...,B)_ is the other cubical tiling of
fill B; one gets a new zonotopal tiling S’. We say that S and S’ differ by a

zonotopal flip.

With this definition it is easy to prove that:
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Proposition 5.8 Let m : P — w(P) be the projection from a cube P to a
zonotope w(P). Two cubical tilings S1 and Se of w(P) differ by a w-flip if and
only if they differ by a zonotopal flip. The w-flip is non-degenerate (i.e, the
zonotopal flip is a cube flip) if and only if the parameter k of Definition 5.7
equals the dimension of w(P). O

Monotone paths and polygon flips

Here we suppose that dim(w(P)) = 1. There is a unique (up to a constant)
linear functional f on P which is constant on each fiber of the projection 7. The
m-induced subdivisions are the cellular strings on the polytope P with respect
to f and the tight ones are the monotone paths in the direction of f (see [7]).
The standard notion of elementary move between two monotone paths is that of
a polygon move (see [22]): two monotone paths differ by a polygon move if they
are different only in the boundary of a 2-face of P. As it happened in the case of
zonotopal tilings, polygon moves correspond exactly to non-degenerate w-flips,
but there are also some “degenerate polygon moves” which consist essentially
in simultaneously moving through a family of 2-faces of P all of which have
an edge parallel to a common direction. For example, let P be the octahedron
{(z,y,2) € R®: ||+ |y| +|2| <1} and let 7 : (z,y, z) — z be the projection to
a vertical segment. There are four monotone paths, all of them 7-coherent, but
no non-degenerate polygon flip at all. Any m-flip involves two different 2-faces
of P.

In this case m-induced subdivisions of rank 1 may have height greater than
1, as Example 4.6 shows.
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