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Abstrat

We show that the exat number of triangulations of the stan-

dard yli polytope C(n; n � 4) is (n + 4)2

n�4

2

� n if n is even and

�

3n+11

2

�

2

n�5

2

� n if n is odd. These formulas were previously onje-

tured by the seond author.

Our tehniques are based on Gale duality and the onept of virtual

hamber. They further provide formulas for the number of triangula-

tions whih use a spei� simplex. We also ompute the maximum

number of regular triangulations among all the realizations of the ori-

ented matroid of C(n; n� 4).

Introdution

By a triangulation of a �nite point set A � R

d

we mean a simpliial omplex

geometrially realized in R

d

with vertex set ontained in A and whih overs

the onvex hull of A. If A is the vertex set of a polytope P this de�nition

agrees with the standard de�nition of triangulation of P . The olletion of

all triangulations of a �xed point set has attrated attention in reent years

for its onnetions to algebrai geometry [18℄, ombinatorial topology [5, 16℄

and optimization [8℄.

The yli polytope C(n; d) of dimension d and with n verties (n > d)

is the onvex hull of any n distint points on the aÆne moment urve of

degree d, de�ned as �

d

(t) := (t; t

2

; : : : ; t

d

) 2 R

d

, t 2 R . Cyli polytopes

play a entral role in geometri ombinatoris for several reasons: They are

�
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neighborly, whih implies that they have the maximum possible number of

faes of eah dimension among all polytopes of dimension d with n verties

[19, Theorem 8.23℄. They are universal in the sense that for eah �xed n

and d there is a number N(n; d) suh that any N(n; d) points in general po-

sition in R

d

will ontain n points whih are the verties of a yli polytope

C(n; d) (and no other polytope has this property) [7, Proposition 9.4.7℄. In

a ontext loser to this paper, the set of triangulations of a yli poly-

tope has a bit more struture than the set of triangulations of an arbitrary

polytope. Edelman and Reiner de�ned two (onjetured to be isomorphi)

poset strutures on this set [10℄, Rambau proved that all triangulations of

C(n; d) are onneted under bistellar operations [13℄ (while point on�g-

urations and polytopes without this property exist [17℄), and the so-alled

generalized Baues problem in the ase of yli polytopes is essentially solved

[1, 2, 15℄.

Our main result in this paper is a proof of the following losed formula

for the number of triangulations of the yli polytope C(n; n � 4). This

formula had previously been onjetured by the seond author. As pointed

out by Reiner [16, page 325℄, this and the well-known Catalan number for the

number of triangulations of a onvex polygon are the only known nontrivial

losed formulas ounting triangulations of a polytope.

Theorem 1 The number of triangulations of the yli polytope C(n; n�4)

is:

� (n+ 4)2

n�4

2

� n, if n is even (Theorem 2.6) and

�

�

3n+11

2

�

2

n�5

2

� n, if n is odd (Theorem 2.9).

The odd ase formula an be written in a way formally loser to the even

ase as (�n+ �) 2

n�4

2

� n, with � =

3

2

p

2

= 1:061 and � =

11

2

p

2

= 3:889. It

is interesting to relate our result to the following numbers of triangulations

for other parameters of the yli polytope:

� C(n; 0) (n opies of the same point) has n triangulations, if multiple

points are dealt with in the natural way.

� C(n; 1) (n di�erent points along a line) has 2

n�2

triangulations.

� C(n; 2) (a onvex n-gon) has

1

n�1

�

2n�4

n�2

�

= �

�

2

2n

n

3=2

�

triangulations.

� C(n; n� 4) (this paper) has �

�

n2

n=2

�

triangulations.

� C(n; n� 3), C(n; n� 2) and C(n; n� 1) have, respetively, n, 2 and 1

triangulations. The ase of C(n; n� 3) follows from [11℄. The others

are trivial.
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Conerning C(n; n� 5), its number of triangulations for n up to 12 ap-

pears in [1, 15℄. The numbers for C(13; 8), C(14; 9), C(15; 10) and C(16; 11)

are, respetively, 35 789, 159 613, 499 900 and 2 677 865. We thank J�org

Rambau for these numbers, omputed by him with his publi software

TOPCOM [14℄. Dividing the number of triangulations of C(n; n � 5) by the

number of triangulations of C(n; 2) gives, for n from 5 to 16, the following

intriguing sequene:

1; :875; 1; :96; 1:20; 1:16; 1:48; 1:33; 1:64; 1:30; 1:49; 0:9987:

The sequene stays surprisingly lose to 1, and is neither dereasing nor

inreasing, even if we separate odd and even values of n.

�

Our methods are based on Gale duality and oriented matroid theory.

More preisely, on the onept of virtual hamber introdued in [8, Setion 5℄.

This same tool was used in [4℄ to prove that the ip-graph of triangulations

of d+ 4 points in dimension d is always onneted.

Let A = fa

1

; : : : ; a

n

g be a �nite point on�guration in R

d

. We ho-

mogenise A, whih means that we embed R

d

as an aÆne hyperplane not

passing through the origin in R

d+1

and onsider A as a vetor on�guration

in R

d+1

. We say that d+ 1 is the rank of A and n� d� 1 its orank.

De�nition 2 A triangulation of a vetor on�guration A is any olletion of

linear bases ontained in A whose positive spans are (the maximal elements

of) a simpliial fan overing the positive span of A.

For a vetor on�guration obtained by homogenisation of a point on-

�guration, the de�nitions of triangulation in the vetor and point ontexts

agree.

Let B be a Gale transform of A. This is any vetor on�guration B =

fb

1

; : : : ; b

n

g � R

n�d�1

suh that the kernels of the linear maps e

i

7! a

i

and

e

i

7! b

i

are orthogonal omplements of one another (fe

1

; : : : ; e

n

g denotes

the standard basis in R

n

). Equivalently, suh that

P

n

i=1

a

i


 b

i

= 0 in

R

d+1


 R

n�d�1

. Observe that there is an impliit bijetion between A and

B in this de�nition, given by the labels.

IfA and B are Gale transforms of eah other, then a vetor (�

1

; : : : ; �

n

) is

the sequene of values of a linear funtional on one of them if and only if it is

the sequene of oeÆients of a linear dependene in the other. In partiular,

the oriented matroids of A and B are dual to eah other and, hene, any

information ofA whih depends only on its underlying oriented matroid suh

as the set of triangulations of A (see [8℄) an be retrieved from the oriented

matroid of B. In the ase of interest to us, this translates our orank 3

problem into a rank 3 one, but we have to haraterize triangulations of A in

terms of B. This is done with the onept of virtual hamber, de�ned below.

Observe that, by Gale duality, eah linear basis of A is the omplement
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of a linear basis of B and vie-versa, under the identi�ation between the

elements of A and B by their labels.

De�nition 3 ([8, Setion 5℄) Let A and B be vetor on�gurations whih

are dual to eah other. A virtual hamber of B is a olletion of linear bases

of B whose omplements form a triangulation of A.

In the following result, being in general position for a vetor on�guration

of rank k means that every k elements form a basis. Our on�guration B

will have this property sine the property holds for the vertex set of a yli

polytope and is preserved by Gale duality.

Lemma 4 ([8℄) Let C be a olletion of linear bases of a vetor on�gura-

tion B in general position. Then, the following two onditions are equivalent:

(i) C is a virtual hamber of B.

(ii) C shares exatly one basis with every triangulation of B.

The impliation from (i) to (ii) holds without the general position as-

sumption. This impliation, in a sense, explains the name \virtual ham-

ber". The hamber fan of the vetor on�guration B is the ommon re�ne-

ment of all its triangulations. The same de�nition for a point on�guration

gives what is known as the hamber omplex of the on�guration. The

hambers are the maximal ells in either ase. For any given hamber, the

olletion of linear bases of B whose positive spans ontain that hamber are

a partiular example of virtual hamber and two di�erent hambers produe

di�erent virtual hambers. Hene, a hamber an be onsidered as a speial

ase of virtual hamber. In fat, hambers of B are the virtual hambers

orresponding to the so-alled regular triangulations of A [6, 11℄, of interest

to us in Setion 4.

Following the analogy with (geometri) hambers, when a basis � is

an element of a virtual hamber C we will say that C lies on � . With

this, Lemma 4 an be rephrased as \C is a virtual hamber of B if and

only if it lies on exatly one maximal simplex of every triangulation of B".

As a onsequene, for every triangulation T of B, one has that the num-

ber of virtual hambers of B equals

P

�2T

℄fvirtual hambers lying on �g.

�

The struture of this paper is as follows. Setion 1 outlines our method

and translates the problem of ounting triangulations of a orank 3 point

on�guration A to that of ounting ideals in ertain posets arising from the

Gale transform of A. Setion 2 makes use of the speially nie struture

of the Gale transform of C(n; n� 4) to prove Theorem 1. In Setion 3 we

ompute, for even n, the number of triangulations of C(n; n� 4) whih use

any spei� full-dimensional simplex (Theorem 3.3). Finally, in Setion 4,
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we ompute the exat maximum number of regular triangulations of point

on�gurations having the same oriented matroid as C(n; n � 4) (Theorem

4.3). This number is a polynomial of degree four (as follows from [6, The-

orem 5.7℄) and ontrasts with the exponential number of all triangulations.

The polynomial versus exponential behaviour of regular versus non-regular

triangulations of C(n; n � 4) had already been pointed out in [8, Setion

5℄, although the exponential lower bound for the number of triangulations

stated there is 
(2

n=4

), instead of the �

�

n2

n=2

�

proved here.

1 Counting virtual hambers in rank 3

Virtual hambers in rank 3

Let B be a rank 3 vetor on�guration in general position, suh as the Gale

transform of the vertex set of C(n; n� 4). The oriented matroid of a vetor

on�guration does not hange under a positive saling of an element. Hene,

without loss of generality we may assume that all the elements of B lie on the

unit 2-sphere S

2

. The positive span of a subset S � B is then substituted

by its spherial onvex hull (i.e. the intersetion of the positive span with

the unit sphere) and we denote it onv(S). This motivates that we all

triangles the bases of B. We will often refer to independent sets (i.e. subsets

of bases) as simplies. We all the simplies with one and two elements,

points (or verties) and edges, respetively. In this setting, a triangulation

of B is a geometri triangulation of onv(B) � S

2

by (spherial) triangles of

the on�guration.

The relative interior of a subset S of B is the sphere S

2

interseted with

the relatively open one of stritly positive linear ombinations of elements

of S. We say that two simplies of a on�guration overlap if their relative

interiors have nonempty intersetion. If two edges l

1

and l

2

of B overlap,

then their relative interiors meet in a single point. We say that l

1

and l

2

ross eah other.

A simplex � of B is said to be empty if onv(�) \B = �. It is lear that

if an empty edge l overlaps an empty triangle � , then either l rosses two

edges of � or l\ � is a vertex of both l and � and l rosses the opposite edge

of � . Note also that sine B is in general position, all its edges are empty.

De�nition 1.1 Let B be a rank 3 on�guration. An empty triangle � of B

is said to be admissible with respet to one of its verties p if no edge of B

whih overlaps � has p as a vertex.

Remark 1.2 If � has an edge l whih is not rossed by any other edge of

the on�guration, then � is admissible with respet to the vertex opposite

to l. The onverse is not true.
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An edge l of B de�nes two sides, whih are the two hemispheres in whih

S

2

is divided by the unique great irle whih ontains l. A virtual hamber

C will be said to lie on a ertain side of an edge l if there is a triangle of

C ontained in that (losed) side of l. By part (i) of the following Lemma,

a virtual hamber annot lie on both sides of an edge. But it an lie on

neither of the two sides of it.

Lemma 1.3 Let C be a virtual hamber of a rank 3 on�guration B in gen-

eral position. Then:

(i) Any two triangles of C overlap.

(ii) If S � B ontains a triangle of C, then any triangulation of S ontains

an element of C.

(iii) If an edge l overlaps an empty triangle of C, then C lies on some side

of l.

Proof: Parts (i) and (iii) are Lemma 1.4 and Proposition 3.2 in [4℄, respe-

tively. Part (ii) is the speialization of Lemma 2.7 in [3℄ to triangulations. 2

Virtual hambers in rank 3 as poset ideals

Given a poset (partially ordered set) (P; <) and two subsets I; F � P, we

say that I is an ideal if for every pair of elements x; y 2 P with x < y and

y 2 I, it holds that x 2 I.

Let � := fp; q; rg be a triangle of a rank 3 on�guration B, admissible

with respet to p. We denote by 
(�) the set of edges whih overlap � and

we de�ne the following binary relation in 
(�): l

1

�

p

l

2

if l

1

6= l

2

and l

2

does not overlap the triangle l

1

[fpg. Observe that if l

1

�

p

l

2

, then the rays

from p through q and from p through r meet onv(l

1

) before onv(l

2

). The

onverse is not true, but this property implies that the relation �

p

does not

have yles. Hene, its transitive losure is a partial order, that we denote

<

p

. If l

1

<

p

l

2

we say that l

1

is loser to p than l

2

. A hain l

1

<

p

� � � <

p

l

k

of edges in (
(�); <

p

) will be alled a strong hain if every onseutive pair

of edges share a vertex.

Let C be a virtual hamber lying on � . By part (iii) of Lemma 1.3, C lies

on a side of every edge of 
(�). Let I(C) be the set of edges in 
(�) whih

have p and C on opposite sides. Equivalently, I(C) := fl 2 
(�) : l[fpg 62 Cg.

Proposition 1.4 For every virtual hamber C lying on � , I(C) is an ideal

of (
(�); <

p

). Moreover, the orrespondene C 7! I(C) is a bijetion between

virtual hambers whih lie on � and ideals of (
(�); <

p

).
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Proof: Let us see that I(C) is an ideal. Let l

1

; l

2

2 
(�) with l

1

<

p

l

2

and let

l

2

2 I(C). First suppose that l

1

�

p

l

2

. We onsider a triangulation T of �[l

2

whih uses the triangle l

2

[fpg. The remaining triangles of T are ontained

in the side of l

2

opposite to p. Sine C lies on the side of l

2

opposite to p, C

lies on some of the remaining triangles. The ondition l

1

�

p

l

2

implies that

none of the remaining triangles overlaps l

1

[ fpg, whih implies l

1

2 I(C).

Hene, C 7! I(C) is a well-de�ned map from virtual hambers lying on � to

ideals in (
(�); <

p

).

Conversely, for eah ideal I of 
(�), let C(I) be the following olletion

of triangles of B: (a) Triangles whose onvex hull ontains � . (b) Triangles

ontaining p in their onvex hulls and with exatly one edge in 
(�) n I. ()

Triangles not ontaining p in their onvex hulls and with exatly one edge

in 
(�) \ I. We laim that C(I) is a virtual hamber, i.e. that it ontains

one triangle from eah triangulation T of B.

If no edge of a triangulation T overlaps � , then the triangle of T ontain-

ing � in its onvex hull is the only triangle of T in C(I). Otherwise, sine

� is empty and admissible with respet to p, the olletion of edges of T

whih overlap � forms a a strong hain l

1

<

p

� � � <

p

l

k

. Observe that there

is a unique triangle � of T ontaining p in its onvex hull and overlapping � ,

that � must have a unique edge in 
(�) and that suh an edge must be l

1

.

If l

1

62 I then � is the only triangle of T in C(I). Finally, if l

1

2 I then let i

be the biggest index suh that l

i

2 I. Clearly, the triangle of T inident to

l

i

on the side opposite to p is the only triangle of T in C(I).

The fat that the orrespondenes C 7! I(C) and I 7! C(I) are inverse of

eah other is straightforward. 2

Remark 1.5 As a onlusion, there is a bijetion between ideals in the

poset (
(�); <

p

) and triangulations of A using the simplex A n � . We will

not work out the details, but this bijetion extends to a bijetion between

polyhedral subdivisions of A that use A n � and pairs of ideals I

1

� I

2

suh

that I

2

n I

1

is an antihain.

Remark 1.6 Proposition 1.4 translates the problem of ounting virtual

hambers in an admissible triangle to ounting ideals in a ertain poset.

This will suÆe for ounting triangulations of orank 3 yli polytopes

sine, as we will see, their Gale transforms an be triangulated with admis-

sible triangles.

But, in fat, the tehnique an be modi�ed to deal with non-admissible

triangles as well. Let � be a non-admissible triangle in a rank 3 on�guration

B. We an assume that � is empty, otherwise we triangulate its onvex hull

by empty triangles. Let p be a vertex of � and let l = fq; rg be the opposite

edge. We onsider the ordered sequene (from q to r) of edges fp; p

i

g,

i = 2; : : : ; k whih overlap � . Set p

1

:= q and p

k+1

:= r. The triangles



8 Miguel Azaola and Franiso Santos

�

i

:= fp; p

i

; p

i+1

g, i = 1; : : : ; k � 1 are admissible with respet to p, they

interset properly and, sine � is empty, they over � . In rank 3, any set of

triangles whih interset properly an be ompleted to a triangulation, whih

implies that eah virtual hamber of B lying on � lies on exatly one of the

triangles �

i

. Moreover, the bijetion between virtual hambers of B lying on

�

i

and ideals of (
(�

i

); <

p

) restrits to a bijetion between virtual hambers

lying both on �

i

and � and ideals of (
(�

i

); <

p

) not ontaining l. Summing

up, we an ount virtual hambers in � by adding the numbers of ideals of

(
(�

i

); <

p

) whih do not ontain the edge l. An analogous generalization

an be done for the ase of subdivisions and pairs of ideals mentioned in the

previous remark.

2 Counting virtual hambers of C(n; n� 4)

�

Combinatorial struture of C(n; n� 4)

�

A sign sequene of length n is any element of f�1; 0;+1g

n

. The support of

a sign sequene is its set of non-zero oordinates. Reall that in oriented

matroid theory the iruits of a vetor on�guration A are the sign sequenes

with minimal support produed by the oeÆients of linear dependenes in

A, and the oiruits of A are the sign sequenes with minimal support

produed by the values of non-zero linear funtionals on A. Either iruits or

oiruits suÆe to haraterize the oriented matroid of A and two oriented

matroids are dual to eah other if and only if the iruits of one are the

oiruits of the other.

Let C(n; n� 4) = fa

1

; : : : ; a

n

g denote the vertex set of a yli polytope

of dimension n � 4 with n verties. Let p

1

; : : : ; p

n

be points in a non-

great irle  in S

2

, taken in order along the irle. Let C(n; n � 4)

�

:=

fb

1

; : : : ; b

n

g, where b

i

:= (�1)

i

p

i

, for i = 1; : : : ; n. Part (ii) of the following

statement appears in [19, Exerise 6.13℄, and part (i) is essentially Gale

evenness riterion for yli polytopes.

Lemma 2.1 (i) For eah quadruple fb

i

1

; b

i

2

; b

i

3

; b

i

4

g with i

1

< i

2

< i

3

<

i

4

the signs sign(b

i

j

) = (�1)

i

j

+j

, j 2 f1; 2; 3; 4g give one of the two

(opposite) iruits with support in that quadruple.

(ii) The oriented matroids of C(n; n�4) and C(n; n�4)

�

are dual to eah

other. 2

Observe that, in general, C(n; n�4)

�

is not going to be a Gale transform

of C(n; n� 4) aording to our de�nition, in whih the points of C(n; n� 4)

are taken along the moment urve. But it has the same oriented matroid

as a Gale transform, and hene the same olletion of triangulations and

virtual hambers.
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To simplify the notation, from now on we will refer to eah point b

i

2

C(n; n � 4)

�

by its label i 2 f1; : : : ; ng. C(n; n � 4)

�

is ontained in two

opposite irles in S

2

one with the set of \odd points" f1; 3; 5; : : :g and the

other with the \even points" f2; 4; 6; : : :g. The points in eah irle de�ne a

spherial polygon, so that the sphere is divided into two polygons (odd and

even) plus a topologial band between them.

A triangle � of C(n; n� 4)

�

will be said to lie on one of the polygons if

its onvex hull is ontained in that polygon and will be said to lie on the

band if its onvex hull is ontained in the band.

Lemma 2.2 (i) An edge in the boundary of one of the polygons is rossed

by no other edge of C(n; n � 4)

�

. In partiular, it overlaps no empty

triangle.

(ii) Every triangulation of C(n; n � 4)

�

by empty triangles uses all the

boundary edges of the two polygons. Hene, all its triangles lie either

on one of the polygons or on the band.

(iii) A triangle lies on one of the polygons if and only if its three verties

are in that polygon.

(iv) For a triangle � whih has two verties in one polygon and the third

in the other polygon the following onditions are equivalent:

(a) � is admissible with respet to this third vertex.

(b) � is empty.

() � lies on the band.

(d) � has one edge in the boundary of one of the polygons and � is not

one of the following triangles: fi; i+1; i+2g with i 2 f1; : : : ; n�2g

or, if n is even, fn; 1; 2g or fn� 1; n; 1g.

Proof: That an edge l in the boundary of the polygons does not ross any

other edge an be proved geometrially. Or it an be derived from Lemma

2.1 that l annot be the positive part of a iruit of C(n; n�4)

�

. The seond

part of part (i) holds beause any edge overlapping an empty triangle must

ross at least one of the edges of the triangle.

Part (ii) is a onsequene of part (i): let l be a boundary edge of one

of the polygons and let x be a point in the relative interior of l. If T is

a triangulation by empty simplies, x must lie on the relative interior of a

unique simplex of T . This simplex annot be a triangle or an edge other

than l itself, by part (i).

Part (iii) is trivial. In part (iv), the equivalene of (d) with any of (a),

(b) or () is easy to establish: let l be the edge of � having its two verties

in the same polygon. For � to be either empty, admissible or to lie on the

band it is learly neessary that l be an edge of that polygon. The onverse
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is true unless � is one of the triangles exluded in part (d), whose onvex

hull ontains the whole polygon. 2

Let C be a virtual hamber and let T be a triangulation of C(n; n� 4)

�

all of whose triangles lie either on one of the polygons or on the band (we

will see later that suh triangulations exist). We say that C lies on the odd

polygon, on the even polygon or on the band if it lies on a triangle of T on the

odd polygon, the even polygon, or the band, respetively. Aording to part

(ii) of Lemma 1.3 applied to the two polygons this de�nition is independent

of T . In what follows we will ount the number of virtual hambers on eah

polygon and on the band.

Virtual hambers of a polygon

Let M be the on�guration onsisting of the verties of one of the two

polygons of C(n; n� 4)

�

.

Lemma 2.3 There is a natural bijetion between virtual hambers of C(n; n�

4)

�

lying on M and virtual hambers of M (as a on�guration by itself).

Proof: By part (i) of Lemma 2.2, every triangle of M ontaining an edge in

the boundary of M is admissible with respet to the opposite vertex, both

in M and in C(n; n� 4)

�

. Clearly, M an be triangulated with triangles of

that type: take any point p in M and triangulate M by oning p to every

boundary edge of M not ontaining p.

Moreover, only edges in M overlap onv(M) and, hene, for those trian-

gles, the poset 
(�) is the same in M and in C(n; n� 4)

�

. By Proposition

1.4 the number of virtual hambers of M and of C(n; n� 4)

�

lying on eah

of those triangles is the same. 2

Lemma 2.3 allows us to forget C(n; n� 4)

�

for a while and speak rather

of a polygon P whose verties are labelled from 1 to m. We will ompute

the number of virtual hambers in P by adding the virtual hambers whih

lie on the triangles �

i

:= f1; i � 1; ig for i = 3; : : : ;m sine these triangles

are admissible with respet to 1 and de�ne a triangulation of P . In 
(�

i

) we

onsider the ordering <

1

of \being loser to 1". Our task is to ount ideals

of (
(�

i

); <

1

).

Note that


(�

i

) = ffj; kg : 2 � j � i� 1; i � k � mg n ffi � 1; igg;

with the partial order fj; kg �

1

fj

0

; k

0

g if and only if j � j

0

and k � k

0

.

We extend 
(�

i

) to a larger poset

d


(�

i

) := 
(�

i

) [ ffi � 1; igg by setting

fi � 1; ig as the maximum of

d


(�

i

). The ideals of

d


(�

i

) are those of 
(�

i

)

plus

d


(�

i

) itself. The Hasse diagram of

d


(�

i

) is shown in part (a) of Figure

1.
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{2,m}

(a) (c)

{i-1,m}

{i-1,i}

{2,i}

(b)

Figure 1: Part (a) is the Hasse diagram of the poset

d


(�

i

). Part (b) rep-

resents an ideal of

d


(�

i

) as a path through the edges of its Hasse diagram

(blak dots). The ideal is the set of elements below the path. It orre-

sponds to a path through the verties of the \dual diagram" (white dots)

represented in ().

Proposition 2.4 (i) The poset 
(�

i

) has

�

m�1

i�2

�

� 1 ideals.

(ii) A polygon with m verties has 2

m�1

�m virtual hambers.

Proof: Ideals in

d


(�

i

) are in bijetion with maximal left-to-right monotone

paths through the lattie points in a (i�2)� (m� i+1) retangle as shown

in Figure 1. The number of suh paths is

�

(m�i+1)+(i�2)

i�2

�

=

�

m�1

i�2

�

. This

proves part (i). For part (ii), add the virtual hambers in eah triangle �

i

,

i.e., the number of ideals in eah poset 
(�

i

). 2

The number 2

m�1

�m equals the number of maximal straightline thrak-

les with verties in a onvex m-gon, omputed in [9℄. There is atually a

bijetion between these thrakles and virtual hambers in the polygon, in

whih edges of the thrakle orrespond to \ippable edges" of the virtual

hamber.

Virtual hambers on the band: the even ase

We now assume n to be even and let m = n=2. All indies will be regarded

modulo n. Let T

even

be the following set of triangles, all lying on the band

aording to part (iv) of Lemma 2.2.

T

even

= ff2i + 1; 2i + 2; 2i+ 4g; f2i + 1; 2i + 3; 2i + 4g : 0 � i � m� 1g:

These triangles form a triangulation of the band, by whih we mean

that adding to them triangulations of the odd and even polygons we get a

triangulation of C(n; n� 4)

�

.

Figure 2 displays T

even

. In this �gure and the subsequent ones, the

following attened, twisted, planar representation of the band is used: the

odd and even points are plaed on two parallel lines in the plane, with 2i�1
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and 2i faing eah other. The sequene of points is meant to be repeated

in�nitely, or the left and right ends of the �gure be identi�ed. For a given

odd and a given even vertex there are di�erent ways to draw a straight line

segment joining them. We hoose to take the one of greatest positive slope,

onsidering a vertial line as having in�nite positive slope. With this hoie,

two edges ross in the representation if and only if they ross in C(n; n�4)

�

.

2m-3 2m-1 3 5

6422m2m-2

1

Figure 2: The set of triangles T

even

in our twisted representation of the

band.

Sine T

even

is a \triangulation of the band", in order to ount the virtual

hambers in the band we just add the virtual hambers in the triangles of

T

even

. Due to the simmetry of T

even

, this gives the same result as multiplying

by 2m the number of virtual hambers in f1; 2; 4g.

As stated in Lemma 2.2, the triangle � = f1; 2; 4g is admissible with

respet to the vertex 1. Therefore, our task is to ompute the number of

ideals of (
(�); <

1

). Figure 3 represents the triangle � (withm = 5) and the

edges in 
(�). These edges are those rossing either f1; 2g or f1; 4g whih,

by Lemma 2.1, are respetively ff2i; 2j + 1g : 2 � i � j � m � 1g and

ff2i; 2j + 1g : 3 � i � j � m� 1g. Sine the seond set is ontained in the

�rst, we have


(�) = ff2i; 2j + 1g : 2 � i � j � m� 1g

7531975

6 8 10 2 4 6 8

Figure 3: All the edges whih ross f1; 2; 4g for m = 5.

The poset struture in 
(�) is that (2i; 2j+1) �

1

(2i

0

; 2j

0

+1) if and only

if i � i

0

and j � j

0

. Hene, the Hasse diagram of (
(�); <

1

) is as depited

in part (a) of Figure 4.
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{4,2m-1}

{4,5}

{2m-2,2m-1}

(c)(a) (b)

Figure 4: Part (a) is the Hasse diagram of 
(�). Parts (b) and () represent

the same as in �gure 1 but for this new poset.

Proposition 2.5 (i) The number of virtual hambers lying on the trian-

gle f1; 2; 4g of C(2m; 2m� 4)

�

is 2

m�2

.

(ii) The number of virtual hambers of C(2m; 2m � 4)

�

lying on the band

is m2

m�1

.

(iii) The total number of virtual hambers of C(2m; 2m � 4)

�

is (m +

2)2

m�1

� 2m.

Proof: Let � = f1; 2; 4g. Ideals of (
(�); <

1

) are in bijetion with maximal

left-to-right monotone paths in the \dual diagram" shown in part () of

Figure 4. These, in turn, are in bijetion with maximal monotone paths

in the omplete binary tree of depth m � 2. This proves part (i) and the

symmetry remarks stated above prove part (ii).

For part (iii) we have to add the m2

m�1

virtual hambers on the band to

the 2

m�1

�m on eah of the two polygons, whih gives the stated number. 2

Theorem 2.6 The yli polytope C(2m; 2m � 4) has (m + 2)2

m�1

� 2m

triangulations. 2

Virtual hambers on the band: the odd ase

The on�guration C(2m� 1; 2m� 5)

�

(up to oriented matroid equivalene)

an be obtained from C(2m; 2m�4)

�

by deleting the element 2m. We intend

to apply the same tehnique to C(2m� 1; 2m� 5)

�

as in the even ase. We

start by hoosing a triangulation of the band (see Figure 5):

T

odd

= ff2i + 1; 2i + 2; 2i + 4g; f2i + 1; 2i + 3; 2i + 4g : 0 � i � m� 3g[

[ff2m� 3; 2m� 2; 2g; f2m � 3; 2m� 1; 2g; f2m � 1; 1; 2gg
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2m

2m-2 2

2m-3 2m-12m-52m-7 1 3

42m-6 2m-4

Figure 5: The set of triangles T

odd

. The deleted vertex 2m has been drawn

in white. Dashed lines show the edges of T

even

whih were inident to 2m.

The triangles of T

odd

are all admissible (this is automati, by Lemma

2.2(iv)). Hene, we an ompute the number of virtual hambers in eah

triangle of T

odd

using Proposition 1.4. The only new diÆulty with respet

to the even ase is that T

odd

is not preserved under any non-trivial oriented

matroid symmetry of C(2m� 1; 2m � 5)

�

. In fat, C(2m� 1; 2m� 5)

�

has

only one non-trivial symmetry: the reversal of indies.

Lemma 2.7 The number of virtual hambers of C(2m�1; 2m�5)

�

in eah

triangle of T

odd

is:

(i) 2

m�2

�

P

i�1

k=0

�

m�3

k

�

for f2i+1; 2i+2; 2i+4g, with i 2 f0; : : : ;m� 3g.

(ii) 2

m�2

�

P

i

k=0

�

m�3

k

�

for f2i+1; 2i+3; 2i+4g, with i 2 f0; : : : ;m� 3g.

(iii) 2

m�2

for f2m� 1; 1; 2g.

(iv) 2

m�3

for f2m� 3; 2m � 2; 2g and for f2m� 3; 2m � 1; 2g.

Proof: C(2m�1; 2m�5)

�

an be obtained from C(2m; 2m�4)

�

by deleting

any element. Triangles of parts (i), (ii) and (iii) belong to T

even

, so we an

assume them to be f1; 2; 4g as long as we hoose the appropriate vertex to

be removed (instead of 2m). That is, we remove the element 2m � 2i for

(i), 2i + 5 for (ii) and 3 for (iii). In eah ase, the poset of edges rossing

f1; 2; 4g is the same as in the even ase, exept for the edges using the

removed element, whih are missing.

For part (i), the Hasse diagram is in fat the same one obtained by

removing the edges f2j; 2j + 1g for m� i � j � m� 1, as shown in Figure

6. Consider the verties of its dual diagram. Some of the ones whih would

have two rightwards neighbours in the even ase, now have one or none.

We label them from 0 to i � 1, as shown in Figure 6(). For eah path

ending at one of the labelled verties there would be two ways of extending

it rightwards in the even ase. Thus now the number of paths is obtained by

subtrating to 2

m�2

the number of paths whih end at eah labelled vertex.
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=~

{4,5}

{2m-2i,2m-2i+1}

{2m-2,2m-1}

{2m-2i,2m-2i+1}

{4,5}

{2m-2,2m-1}

(c)(b)(a)

{4,2m-1}

{2m-2i,2m-1}

{4,2m-1}

...
...

i-1

k

0

Figure 6: Part (a) shows the Hasse diagram of 
(�) for the triangles of ase

(i) (in blak) together with the missing elements with respet to the even

ase (in white). This poset is isomorphi to the one obtained by removing

the elements f2j; 2j + 1g, for m � i � j � m � 1, represented in part (b).

Ideals of the poset are in bijetion with monotone left-to-right paths through

the white dots in (). Some of these dots, whih we label from 0 to i � 1,

had two rightwards neighbours in the even ase, while now they have one or

none.

For the k-th vertex this number is

�

m�3

k

�

. This �nishes part (i). Parts (ii)

and (iii) are analogous.

For part (iv), let �

1

= f2m� 3; 2m� 2; 2g. The edges overlapping �

1

are

exatly those rossing the edge f2m�3; 2m�2g. By Lemma 2.1, the edges of

C(2m�1; 2m�5)

�

rossing f2m�3; 2m�2g are those of the form f2i; 2j+1g

with 1 � i � j � m � 3. The order is f2i; 2j + 1g �

2m�3

f2i

0

; 2j

0

+ 1g if

and only if i � i

0

and j � j

0

. This is the same poset we would have for the

triangle f1; 2; 4g in C(2m� 2; 2m� 6)

�

, exept for a shift of two units in all

the indies. Hene, the number of ideals is 2

m�3

. 2

Proposition 2.8 The number of virtual hambers of C(2m � 1; 2m � 5)

�

lying on triangles of T

odd

is (3m� 2)2

m�3

.

Proof: By Lemma 2.7 the number N of virtual hambers in T

odd

is

m�3

X

i=0

 

2

m�2

+ 2

m�2

�

i

X

k=0

  

m� 3

k

!

+

 

m� 3

k � 1

!!!

+ 2

m�2

+ 2 � 2

m�3

=

= (4m� 4)2

m�3

�

m�3

X

i=0

i

X

k=0

 

m� 2

k

!

If we all

A

i

=

i

X

k=0

 

m� 2

k

!
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we have 2

m�2

= A

i

+ A

m�i�3

whih implies (m � 2)2

m�2

= 2(

P

m�3

i=0

A

i

).

Hene

N = (4m� 4)2

m�3

� (m� 2)2

m�3

= (3m� 2)2

m�3

:

2

Theorem 2.9 The number of triangulations of the yli polytope C(2m�

1; 2m� 5) is (3m+ 4)2

m�3

� (2m� 1).

Proof: To the number obtained in Proposition 2.8 we have to add the num-

bers of virtual hambers of the two polygons de�ned by C(2m�1; 2m�5)

�

,

whih have m and m � 1 verties, respetively. By Proposition 2.4, these

numbers are 2

m�1

�m and 2

m�2

� (m� 1), respetively. 2

3 Triangulations of C(2m; 2m�4) whih use a �xed

simplex

In this setion we will ount the number of virtual hambers in any parti-

ular triangle of C(2m; 2m � 4)

�

, although the tehnique will still use some

partiular properties of this on�guration rather than the general method

outlined in Remark 1.6. One an do analogous alulations in the ase of

C(2m � 1; 2m � 5)

�

but there are many more ases to be studied due to

muh less symmetry, so we prefer to restrit our study to the even ase.

We �rst prove two additional results:

Lemma 3.1 Let M be a onvex m-gon. Let S be a subon�guration on-

sisting of k onseutive verties of M . Then, the number of virtual hambers

of M lying on S (i.e. lying on triangles of any triangulation of S) equals

k�2

X

l=0

 

m� 1

l

!

� (k � 1):

Proof: Consider the verties of M labelled from 1 to m, and without loss of

generality suppose that S = f1; : : : kg. Then, the following is a triangulation

of S:

ff1; l � 1; lg : l 2 f3; : : : ; kgg:

By Proposition 2.4, the triangle f1; l�1; lg ontains

�

m�1

l�2

�

�1 virtual ham-

bers of M . Adding this number for l from 3 to k gives

k

X

l=3

 

m� 1

l � 2

!

� (k � 2) =

k�2

X

l=1

 

m� 1

l

!

� (k � 2)

whih oinides with the number stated. 2
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Lemma 3.2 Let � be any empty triangle in C(2m; 2m � 4)

�

not ontained

in one of the polygons. Then, there are exatly 2

m�2

virtual hambers of

C(2m; 2m� 4)

�

in � .

Proof: The subgroup of ombinatorial symmetries of C(2m; 2m � 4)

�

gen-

erated by i 7! i + 2 and i 7! 2m � i + 1 (whih has 2m elements), applied

to � , produes 2m empty triangles not ontained in either of the polygons,

i.e. lying on the band by Lemma 2.2. It is easy to hek that these 2m

triangles form a triangulation of the band, very similar to the triangulation

T

even

depited in Figure 2. By symmetry, all the 2m triangles ontain the

same number of virtual hambers, i.e. the m2

m�1

virtual hambers in the

band divided by 2m. 2

Theorem 3.3 Let � be a triangle in C(2m; 2m� 4)

�

.

(i) If � is ontained in one of the two polygons, let � = fi; j; kg with

i < j < k. The number of virtual hambers of C(2m; 2m � 4)

�

lying

on � equals

2

m�1

�

a

X

l=0

 

m� 1

l

!

�

b

X

l=0

 

m� 1

l

!

�



X

l=0

 

m� 1

l

!

;

where a, b and  are the numbers of points in the polygon and between

eah two verties of � . I.e., a =

j�i

2

�1, b =

k�j

2

�1 and  =

2m+i�k

2

�1.

(ii) If � does not lie on either of the polygons, then there is a ombinatorial

symmetry of C(2m; 2m� 4)

�

whih sends � to a triangle �

0

= fi; j; kg

with i < j < k and with i odd and j and k even. Then the number of

virtual hambers of C(2m; 2m� 4)

�

lying on � equals

�

k � j

2

�

(2

m�2

� 1) +

k�j

2

�1

X

l=0

 

m� 1

l

!

Proof: The ase of � lying on a polygon is easy in the light of Lemma 3.1:

Joining to � triangulations of three on�gurations as the one in Lemma 3.1

with the parameter k taking the values a + 2, b + 2 and  + 2 produes a

triangulation of the whole polygon, whih has 2

m�1

�m virtual hambers.

Hene, the number of virtual hambers in � equals

2

m�1

�m�

a

X

l=0

 

m� 1

l

!

+ (a+ 1)�

�

b

X

l=0

 

m� 1

l

!

+ (b+ 1)�



X

l=0

 

m� 1

l

!

+ (+ 1);
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as desired sine a+ b+  = m� 3.

In part (ii), � has two verties in one polygon and the third vertex in the

other polygon. The ombinatorial symmetry of the statement an be taken

as one of the two whih send this third vertex to the vertex 1. Without loss

of generality we assume in the rest of the proof that � = fi; j; kg with i odd,

j and k even and i < j < k.

A point l is in the interior of the triangle � exatly when the iruit with

support in fi; j; k; lg has the same sign in i, j and k and the opposite sign

in l. By Lemma 2.1 this happens if and only if l is even and between j and

k. We onsider the subon�guration S = fi; j; j +2; j +4; : : : ; kg onsisting

of the verties of � and its interior points. We an triangulate the part of

onv(S) in the even polygon as in Lemma 3.1, whih gives

k�j

2

�1

X

l=0

 

m� 1

l

!

�

k � j

2

virtual hambers, and the part in the band with the

k�j

2

empty triangles

ffi; l; l + 2g : l 2 fj; j + 2; j + 4; : : : ; k � 2gg, eah ontaining 2

m�2

virtual

hambers by Lemma 3.2. 2

Hene, the following table gives the number of triangulations of the yli

polytope C(2m; 2m�4) whih use the simplex C(2m; 2m�4)nfi; j; kg under

the assumption that i < j < k and depending on the parities of k � j and

j � i. The �rst two rows are just the formulas in Theorem 3.3, where the

value of a, b and  an be found. The last two rows are the translation of

the seond row to the ase in whih k � j is odd.

j � i and k � j even 2

m�1

�

P

a

l=0

�

m�1

l

�

�

P

b

l=0

�

m�1

l

�

�

P



l=0

�

m�1

l

�

j � i odd, k � j even

k�j

2

(2

m�2

� 1) +

P

k�j

2

�1

l=0

�

m�1

l

�

j � i even, k � j odd

j�i

2

(2

m�2

� 1) +

P

j�i

2

�1

l=0

�

m�1

l

�

j � i odd, k � j odd

2m+i�k

2

(2

m�2

� 1) +

P

2m+i�k

2

�1

l=0

�

m�1

l

�

4 Regular triangulations of C(n; n� 4)

A regular triangulation of a d-dimensional point on�guration A is a tri-

angulation of A whih an be obtained as the orthogonal projetion of the

lower envelope of a (d+1)-dimensional polytope (see [6℄ or [19℄ for details).

The bijetion between triangulations of A and virtual hambers of its Gale

transform B sends the regular triangulations to the geometri hambers of

B, i.e. the full-dimensional ones in the hamber fan that we de�ned in the

introdution.

The hamber fan of a on�guration does not depend only on the oriented

matroid. We intend here to ompute the maximum possible number of
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hambers among all the oordinatizations of the oriented matroid of C(n; n�

4)

�

. That is to say, the maximum possible number of regular triangulations

of a polytope realizing the oriented matroid of C(n; n� 4).

For the next lemma, we reall that in oriented matroid theory a vetor

on�guration is alled totally yli if its positive span is the whole spae.

The statement holds equally if B is not totally yli, exept that the formula

hanges by 1 beause of the use of Euler's formula for a ball instead of a

sphere.

Lemma 4.1 Let B be a rank 3 totally yli vetor on�guration in general

position. Let N be the number of (opposite pairs of) iruits of B having

two positive and two negative elements. Then, the maximum number of

hambers produed by realizations of the oriented matroid of B is

N +

 

n

2

!

� n+ 2:

Moreover, the maximum is ahieved in any realization in whih no three

edges ross in a ommon point. This happens if B is suÆiently generi

among the realizations of its oriented matroid.

Proof: We �rst prove that there is a realization of the oriented matroid

of B in whih no three edges have a ommon rossing. Indeed, let k be

the number of triplets of edges rossing in a point. If k � 1 then a slight

perturbation of the oordinates of one of the six verties involved in a triple

rossing dereases the number of suh rossings, and does not hange the

oriented matroid beause of our general position assumption. On the other

hand, if k = 0 then suÆiently small perturbations annot reate triple

rossings. This proves the assertion.

Next we will prove that if B has no triple rossings then it has exatly

the stated number of hambers. This, together with the fat that small

perturbations annot derease the number of hambers, implies that the

stated number is indeed the maximum.

Embedding B in the 2-sphere as we have done in this paper, the hamber

omplex of B (i.e. the intersetion of the hamber fan with the unit sphere) is

a polyhedral subdivision of the sphere whose numbers of ells of dimensions

2, 1 and 0 we denote f

2

, f

1

and f

0

. The number of hambers equals f

2

. The

number f

0

equals n plus the number of rossing points between edges of B,

whih under the assumption of no triple rossings equals N .

f

0

= N + n:

On the other hand, 2f

1

equals the number of inidenes between 0-ells

and 1-ells in the ell deomposition. That is to say,

2f

1

= 4N + n(n� 1)
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where the term n(n� 1) omes from the fat that n� 1 edges are inident

at eah point of B. By Euler's formula for the 2-sphere,

f

2

= f

1

� f

0

+2 = N �n+

 

n

2

!

+2: 2

Proposition 4.2 The number of (pairs of) iruits with two elements of

eah sign in C(n; n� 4)

�

equals

� 6

�

m

4

�

+ 3

�

m

3

�

if n = 2m is even, and

� 6

�

m

4

�

+

�

m

2

�

�m+ 1 if n = 2m� 1 is odd.

Proof: Suppose �rst that n = 2m is even. We know that no edge of

C(2m; 2m � 4)

�

rosses the boundary of any of the two polygons de�ned

by C(2m; 2m � 4)

�

, so if two edges ross, then either both are edges of the

band or both are edges of one of the polygons. Let B and P be the numbers

of rossings of edges of the band and of the even polygon, respetively. Then

N = B + 2P:

The number P is the number of rossings between edges of an m-gon,

but any four verties of an m-gon de�ne a unique rossing, so

P =

 

m

4

!

:

For omputing the number B, we �rst ompute the number of edges of

C(2m; 2m � 4)

�

rossing a ertain edge fa; bg of the band. Let us assume

a = 1 and, hene, b = 2j is even, in order that fa; bg be in the band. Let

fa

0

; b

0

g be another edge in the band, and assume that a

0

is odd and b

0

is

even. Aording to Lemma 2.1, under these assumptions f1; bg and fa

0

; b

0

g

ross eah other if and only if 1 < a

0

< b

0

< b or 1 < b < b

0

< a

0

. Taking

into aount the parities of a

0

, b

0

and b, the �rst ase gives

�

j�1

2

�

possibilities

and the seond gives

�

m�j

2

�

(for the �rst number, observe for example that

eah pair of indies 1 � i

0

< j

0

� j � 1 gives the edge having a

0

= 2i

0

+ 1

and b

0

= 2j

0

).

Adding up these numbers for j 2 f1; : : : ;mg we onlude that the total

number of rossings between edges of the band one of whih ontains the

point 1 equals

m

X

j=1

 

j � 1

2

!

+

m

X

j=1

 

m� j

2

!

=

 

m

3

!

+

 

m

3

!

= 2

 

m

3

!

Now, by the symmetries of C(2m; 2m�4)

�

the same is valid for any other

vertex: the number of rossings in the band between edges one of whih



The number of triangulations of the yli polytope C(n; n� 4) 21

ontains any spei� vertex is 2

�

m

3

�

. Sine eah rossing uses 4 verties, the

number of rossings in the band equals

B =

2m

4

2

 

m

3

!

= m

 

m

3

!

= m

 

m� 1

3

!

+m

 

m� 1

2

!

= 4

 

m

4

!

+ 3

 

m

3

!

:

Hene,

N = B + 2P = 6

 

m

4

!

+ 3

 

m

3

!

:

For the odd ase, remember that C(2m�1; 2m�5)

�

an be obtained from

C(2m; 2m� 4)

�

by deleting the point 2m. Then, the number of rossings in

C(2m� 1; 2m� 5)

�

equals the total number of rossings in C(2m; 2m� 4)

�

minus the rossings involving the vertex 2m. This number is 2

�

m

3

�

rossings

in the band plus

�

m�1

3

�

rossings in the even polygon. Hene, in the odd

ase we have

N = 6

 

m

4

!

+ 3

 

m

3

!

� 2

 

m

3

!

�

 

m� 1

3

!

= 6

 

m

4

!

+

 

m

2

!

�m+ 1:

2

Theorem 4.3 The number of regular triangulations of C(n; n � 4) is at

most:

(i) 6

�

m

4

�

+ 3

�

m

3

�

+ 4

�

m

2

�

�m+ 2 if n = 2m for some positive integer

m.

(ii) 6

�

m

4

�

+5

�

m

2

�

� 4m+5 if n = 2m� 1 for some positive integer m.

Moreover, these formulas give the exat number of regular triangula-

tions in any suÆiently generi oordinatization of the oriented matroid of

C(n; n� 4).

Proof: This is straightforward from Lemma 4.1 and Proposition 4.2, taking

into aount that

�

n

2

�

� n+ 2 =

n

2

�3n+4

2

whih if n = 2m gives

2m

2

� 3m+ 2 = 4

 

m

2

!

�m+ 2

and if n = 2m� 1 gives

4m

2

� 4m+ 1� 6m+ 3 + 4

2

= 2m

2

� 5m+ 4 = 4

 

m

2

!

� 3m+ 4:

2
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Remark 4.4 One may ask about the minimal, instead of maximal, number

of regular triangulations in realizations of the oriented matroid of C(n; n�4).

This would orrespond to omputing the number of hambers in the \least

generi" realization of the dual oriented matroid. It is reasonable to think

that, if n = 2m is even, the realization in whih eah half of the points form

a regular m-gon is a good approximation of this \least-generi" ase. The

number of hambers in a regular m-gon has been omputed in [12℄. The

result is

m

4

24

��(m

3

), exatly as in the most-generi ase. This leads to the

onjeture that the number of regular triangulations in every realization of

C(n; n� 4) is

n

4

64

��(n

3

), as in the generi ase.
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