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Abstra
t

We show that the exa
t number of triangulations of the stan-

dard 
y
li
 polytope C(n; n � 4) is (n + 4)2

n�4

2

� n if n is even and

�

3n+11

2

�

2

n�5

2

� n if n is odd. These formulas were previously 
onje
-

tured by the se
ond author.

Our te
hniques are based on Gale duality and the 
on
ept of virtual


hamber. They further provide formulas for the number of triangula-

tions whi
h use a spe
i�
 simplex. We also 
ompute the maximum

number of regular triangulations among all the realizations of the ori-

ented matroid of C(n; n� 4).

Introdu
tion

By a triangulation of a �nite point set A � R

d

we mean a simpli
ial 
omplex

geometri
ally realized in R

d

with vertex set 
ontained in A and whi
h 
overs

the 
onvex hull of A. If A is the vertex set of a polytope P this de�nition

agrees with the standard de�nition of triangulation of P . The 
olle
tion of

all triangulations of a �xed point set has attra
ted attention in re
ent years

for its 
onne
tions to algebrai
 geometry [18℄, 
ombinatorial topology [5, 16℄

and optimization [8℄.

The 
y
li
 polytope C(n; d) of dimension d and with n verti
es (n > d)

is the 
onvex hull of any n distin
t points on the aÆne moment 
urve of

degree d, de�ned as �

d

(t) := (t; t

2

; : : : ; t

d

) 2 R

d

, t 2 R . Cy
li
 polytopes

play a 
entral role in geometri
 
ombinatori
s for several reasons: They are

�
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neighborly, whi
h implies that they have the maximum possible number of

fa
es of ea
h dimension among all polytopes of dimension d with n verti
es

[19, Theorem 8.23℄. They are universal in the sense that for ea
h �xed n

and d there is a number N(n; d) su
h that any N(n; d) points in general po-

sition in R

d

will 
ontain n points whi
h are the verti
es of a 
y
li
 polytope

C(n; d) (and no other polytope has this property) [7, Proposition 9.4.7℄. In

a 
ontext 
loser to this paper, the set of triangulations of a 
y
li
 poly-

tope has a bit more stru
ture than the set of triangulations of an arbitrary

polytope. Edelman and Reiner de�ned two (
onje
tured to be isomorphi
)

poset stru
tures on this set [10℄, Rambau proved that all triangulations of

C(n; d) are 
onne
ted under bistellar operations [13℄ (while point 
on�g-

urations and polytopes without this property exist [17℄), and the so-
alled

generalized Baues problem in the 
ase of 
y
li
 polytopes is essentially solved

[1, 2, 15℄.

Our main result in this paper is a proof of the following 
losed formula

for the number of triangulations of the 
y
li
 polytope C(n; n � 4). This

formula had previously been 
onje
tured by the se
ond author. As pointed

out by Reiner [16, page 325℄, this and the well-known Catalan number for the

number of triangulations of a 
onvex polygon are the only known nontrivial


losed formulas 
ounting triangulations of a polytope.

Theorem 1 The number of triangulations of the 
y
li
 polytope C(n; n�4)

is:

� (n+ 4)2

n�4

2

� n, if n is even (Theorem 2.6) and

�

�

3n+11

2

�

2

n�5

2

� n, if n is odd (Theorem 2.9).

The odd 
ase formula 
an be written in a way formally 
loser to the even


ase as (�n+ �) 2

n�4

2

� n, with � =

3

2

p

2

= 1:061 and � =

11

2

p

2

= 3:889. It

is interesting to relate our result to the following numbers of triangulations

for other parameters of the 
y
li
 polytope:

� C(n; 0) (n 
opies of the same point) has n triangulations, if multiple

points are dealt with in the natural way.

� C(n; 1) (n di�erent points along a line) has 2

n�2

triangulations.

� C(n; 2) (a 
onvex n-gon) has

1

n�1

�

2n�4

n�2

�

= �

�

2

2n

n

3=2

�

triangulations.

� C(n; n� 4) (this paper) has �

�

n2

n=2

�

triangulations.

� C(n; n� 3), C(n; n� 2) and C(n; n� 1) have, respe
tively, n, 2 and 1

triangulations. The 
ase of C(n; n� 3) follows from [11℄. The others

are trivial.



The number of triangulations of the 
y
li
 polytope C(n; n� 4) 3

Con
erning C(n; n� 5), its number of triangulations for n up to 12 ap-

pears in [1, 15℄. The numbers for C(13; 8), C(14; 9), C(15; 10) and C(16; 11)

are, respe
tively, 35 789, 159 613, 499 900 and 2 677 865. We thank J�org

Rambau for these numbers, 
omputed by him with his publi
 software

TOPCOM [14℄. Dividing the number of triangulations of C(n; n � 5) by the

number of triangulations of C(n; 2) gives, for n from 5 to 16, the following

intriguing sequen
e:

1; :875; 1; :96; 1:20; 1:16; 1:48; 1:33; 1:64; 1:30; 1:49; 0:9987:

The sequen
e stays surprisingly 
lose to 1, and is neither de
reasing nor

in
reasing, even if we separate odd and even values of n.

�

Our methods are based on Gale duality and oriented matroid theory.

More pre
isely, on the 
on
ept of virtual 
hamber introdu
ed in [8, Se
tion 5℄.

This same tool was used in [4℄ to prove that the 
ip-graph of triangulations

of d+ 4 points in dimension d is always 
onne
ted.

Let A = fa

1

; : : : ; a

n

g be a �nite point 
on�guration in R

d

. We ho-

mogenise A, whi
h means that we embed R

d

as an aÆne hyperplane not

passing through the origin in R

d+1

and 
onsider A as a ve
tor 
on�guration

in R

d+1

. We say that d+ 1 is the rank of A and n� d� 1 its 
orank.

De�nition 2 A triangulation of a ve
tor 
on�guration A is any 
olle
tion of

linear bases 
ontained in A whose positive spans are (the maximal elements

of) a simpli
ial fan 
overing the positive span of A.

For a ve
tor 
on�guration obtained by homogenisation of a point 
on-

�guration, the de�nitions of triangulation in the ve
tor and point 
ontexts

agree.

Let B be a Gale transform of A. This is any ve
tor 
on�guration B =

fb

1

; : : : ; b

n

g � R

n�d�1

su
h that the kernels of the linear maps e

i

7! a

i

and

e

i

7! b

i

are orthogonal 
omplements of one another (fe

1

; : : : ; e

n

g denotes

the standard basis in R

n

). Equivalently, su
h that

P

n

i=1

a

i


 b

i

= 0 in

R

d+1


 R

n�d�1

. Observe that there is an impli
it bije
tion between A and

B in this de�nition, given by the labels.

IfA and B are Gale transforms of ea
h other, then a ve
tor (�

1

; : : : ; �

n

) is

the sequen
e of values of a linear fun
tional on one of them if and only if it is

the sequen
e of 
oeÆ
ients of a linear dependen
e in the other. In parti
ular,

the oriented matroids of A and B are dual to ea
h other and, hen
e, any

information ofA whi
h depends only on its underlying oriented matroid su
h

as the set of triangulations of A (see [8℄) 
an be retrieved from the oriented

matroid of B. In the 
ase of interest to us, this translates our 
orank 3

problem into a rank 3 one, but we have to 
hara
terize triangulations of A in

terms of B. This is done with the 
on
ept of virtual 
hamber, de�ned below.

Observe that, by Gale duality, ea
h linear basis of A is the 
omplement
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of a linear basis of B and vi
e-versa, under the identi�
ation between the

elements of A and B by their labels.

De�nition 3 ([8, Se
tion 5℄) Let A and B be ve
tor 
on�gurations whi
h

are dual to ea
h other. A virtual 
hamber of B is a 
olle
tion of linear bases

of B whose 
omplements form a triangulation of A.

In the following result, being in general position for a ve
tor 
on�guration

of rank k means that every k elements form a basis. Our 
on�guration B

will have this property sin
e the property holds for the vertex set of a 
y
li


polytope and is preserved by Gale duality.

Lemma 4 ([8℄) Let C be a 
olle
tion of linear bases of a ve
tor 
on�gura-

tion B in general position. Then, the following two 
onditions are equivalent:

(i) C is a virtual 
hamber of B.

(ii) C shares exa
tly one basis with every triangulation of B.

The impli
ation from (i) to (ii) holds without the general position as-

sumption. This impli
ation, in a sense, explains the name \virtual 
ham-

ber". The 
hamber fan of the ve
tor 
on�guration B is the 
ommon re�ne-

ment of all its triangulations. The same de�nition for a point 
on�guration

gives what is known as the 
hamber 
omplex of the 
on�guration. The


hambers are the maximal 
ells in either 
ase. For any given 
hamber, the


olle
tion of linear bases of B whose positive spans 
ontain that 
hamber are

a parti
ular example of virtual 
hamber and two di�erent 
hambers produ
e

di�erent virtual 
hambers. Hen
e, a 
hamber 
an be 
onsidered as a spe
ial


ase of virtual 
hamber. In fa
t, 
hambers of B are the virtual 
hambers


orresponding to the so-
alled regular triangulations of A [6, 11℄, of interest

to us in Se
tion 4.

Following the analogy with (geometri
) 
hambers, when a basis � is

an element of a virtual 
hamber C we will say that C lies on � . With

this, Lemma 4 
an be rephrased as \C is a virtual 
hamber of B if and

only if it lies on exa
tly one maximal simplex of every triangulation of B".

As a 
onsequen
e, for every triangulation T of B, one has that the num-

ber of virtual 
hambers of B equals

P

�2T

℄fvirtual 
hambers lying on �g.

�

The stru
ture of this paper is as follows. Se
tion 1 outlines our method

and translates the problem of 
ounting triangulations of a 
orank 3 point


on�guration A to that of 
ounting ideals in 
ertain posets arising from the

Gale transform of A. Se
tion 2 makes use of the spe
ially ni
e stru
ture

of the Gale transform of C(n; n� 4) to prove Theorem 1. In Se
tion 3 we


ompute, for even n, the number of triangulations of C(n; n� 4) whi
h use

any spe
i�
 full-dimensional simplex (Theorem 3.3). Finally, in Se
tion 4,
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we 
ompute the exa
t maximum number of regular triangulations of point


on�gurations having the same oriented matroid as C(n; n � 4) (Theorem

4.3). This number is a polynomial of degree four (as follows from [6, The-

orem 5.7℄) and 
ontrasts with the exponential number of all triangulations.

The polynomial versus exponential behaviour of regular versus non-regular

triangulations of C(n; n � 4) had already been pointed out in [8, Se
tion

5℄, although the exponential lower bound for the number of triangulations

stated there is 
(2

n=4

), instead of the �

�

n2

n=2

�

proved here.

1 Counting virtual 
hambers in rank 3

Virtual 
hambers in rank 3

Let B be a rank 3 ve
tor 
on�guration in general position, su
h as the Gale

transform of the vertex set of C(n; n� 4). The oriented matroid of a ve
tor


on�guration does not 
hange under a positive s
aling of an element. Hen
e,

without loss of generality we may assume that all the elements of B lie on the

unit 2-sphere S

2

. The positive span of a subset S � B is then substituted

by its spheri
al 
onvex hull (i.e. the interse
tion of the positive span with

the unit sphere) and we denote it 
onv(S). This motivates that we 
all

triangles the bases of B. We will often refer to independent sets (i.e. subsets

of bases) as simpli
es. We 
all the simpli
es with one and two elements,

points (or verti
es) and edges, respe
tively. In this setting, a triangulation

of B is a geometri
 triangulation of 
onv(B) � S

2

by (spheri
al) triangles of

the 
on�guration.

The relative interior of a subset S of B is the sphere S

2

interse
ted with

the relatively open 
one of stri
tly positive linear 
ombinations of elements

of S. We say that two simpli
es of a 
on�guration overlap if their relative

interiors have nonempty interse
tion. If two edges l

1

and l

2

of B overlap,

then their relative interiors meet in a single point. We say that l

1

and l

2


ross ea
h other.

A simplex � of B is said to be empty if 
onv(�) \B = �. It is 
lear that

if an empty edge l overlaps an empty triangle � , then either l 
rosses two

edges of � or l\ � is a vertex of both l and � and l 
rosses the opposite edge

of � . Note also that sin
e B is in general position, all its edges are empty.

De�nition 1.1 Let B be a rank 3 
on�guration. An empty triangle � of B

is said to be admissible with respe
t to one of its verti
es p if no edge of B

whi
h overlaps � has p as a vertex.

Remark 1.2 If � has an edge l whi
h is not 
rossed by any other edge of

the 
on�guration, then � is admissible with respe
t to the vertex opposite

to l. The 
onverse is not true.
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An edge l of B de�nes two sides, whi
h are the two hemispheres in whi
h

S

2

is divided by the unique great 
ir
le whi
h 
ontains l. A virtual 
hamber

C will be said to lie on a 
ertain side of an edge l if there is a triangle of

C 
ontained in that (
losed) side of l. By part (i) of the following Lemma,

a virtual 
hamber 
annot lie on both sides of an edge. But it 
an lie on

neither of the two sides of it.

Lemma 1.3 Let C be a virtual 
hamber of a rank 3 
on�guration B in gen-

eral position. Then:

(i) Any two triangles of C overlap.

(ii) If S � B 
ontains a triangle of C, then any triangulation of S 
ontains

an element of C.

(iii) If an edge l overlaps an empty triangle of C, then C lies on some side

of l.

Proof: Parts (i) and (iii) are Lemma 1.4 and Proposition 3.2 in [4℄, respe
-

tively. Part (ii) is the spe
ialization of Lemma 2.7 in [3℄ to triangulations. 2

Virtual 
hambers in rank 3 as poset ideals

Given a poset (partially ordered set) (P; <) and two subsets I; F � P, we

say that I is an ideal if for every pair of elements x; y 2 P with x < y and

y 2 I, it holds that x 2 I.

Let � := fp; q; rg be a triangle of a rank 3 
on�guration B, admissible

with respe
t to p. We denote by 
(�) the set of edges whi
h overlap � and

we de�ne the following binary relation in 
(�): l

1

�

p

l

2

if l

1

6= l

2

and l

2

does not overlap the triangle l

1

[fpg. Observe that if l

1

�

p

l

2

, then the rays

from p through q and from p through r meet 
onv(l

1

) before 
onv(l

2

). The


onverse is not true, but this property implies that the relation �

p

does not

have 
y
les. Hen
e, its transitive 
losure is a partial order, that we denote

<

p

. If l

1

<

p

l

2

we say that l

1

is 
loser to p than l

2

. A 
hain l

1

<

p

� � � <

p

l

k

of edges in (
(�); <

p

) will be 
alled a strong 
hain if every 
onse
utive pair

of edges share a vertex.

Let C be a virtual 
hamber lying on � . By part (iii) of Lemma 1.3, C lies

on a side of every edge of 
(�). Let I(C) be the set of edges in 
(�) whi
h

have p and C on opposite sides. Equivalently, I(C) := fl 2 
(�) : l[fpg 62 Cg.

Proposition 1.4 For every virtual 
hamber C lying on � , I(C) is an ideal

of (
(�); <

p

). Moreover, the 
orresponden
e C 7! I(C) is a bije
tion between

virtual 
hambers whi
h lie on � and ideals of (
(�); <

p

).
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Proof: Let us see that I(C) is an ideal. Let l

1

; l

2

2 
(�) with l

1

<

p

l

2

and let

l

2

2 I(C). First suppose that l

1

�

p

l

2

. We 
onsider a triangulation T of �[l

2

whi
h uses the triangle l

2

[fpg. The remaining triangles of T are 
ontained

in the side of l

2

opposite to p. Sin
e C lies on the side of l

2

opposite to p, C

lies on some of the remaining triangles. The 
ondition l

1

�

p

l

2

implies that

none of the remaining triangles overlaps l

1

[ fpg, whi
h implies l

1

2 I(C).

Hen
e, C 7! I(C) is a well-de�ned map from virtual 
hambers lying on � to

ideals in (
(�); <

p

).

Conversely, for ea
h ideal I of 
(�), let C(I) be the following 
olle
tion

of triangles of B: (a) Triangles whose 
onvex hull 
ontains � . (b) Triangles


ontaining p in their 
onvex hulls and with exa
tly one edge in 
(�) n I. (
)

Triangles not 
ontaining p in their 
onvex hulls and with exa
tly one edge

in 
(�) \ I. We 
laim that C(I) is a virtual 
hamber, i.e. that it 
ontains

one triangle from ea
h triangulation T of B.

If no edge of a triangulation T overlaps � , then the triangle of T 
ontain-

ing � in its 
onvex hull is the only triangle of T in C(I). Otherwise, sin
e

� is empty and admissible with respe
t to p, the 
olle
tion of edges of T

whi
h overlap � forms a a strong 
hain l

1

<

p

� � � <

p

l

k

. Observe that there

is a unique triangle � of T 
ontaining p in its 
onvex hull and overlapping � ,

that � must have a unique edge in 
(�) and that su
h an edge must be l

1

.

If l

1

62 I then � is the only triangle of T in C(I). Finally, if l

1

2 I then let i

be the biggest index su
h that l

i

2 I. Clearly, the triangle of T in
ident to

l

i

on the side opposite to p is the only triangle of T in C(I).

The fa
t that the 
orresponden
es C 7! I(C) and I 7! C(I) are inverse of

ea
h other is straightforward. 2

Remark 1.5 As a 
on
lusion, there is a bije
tion between ideals in the

poset (
(�); <

p

) and triangulations of A using the simplex A n � . We will

not work out the details, but this bije
tion extends to a bije
tion between

polyhedral subdivisions of A that use A n � and pairs of ideals I

1

� I

2

su
h

that I

2

n I

1

is an anti
hain.

Remark 1.6 Proposition 1.4 translates the problem of 
ounting virtual


hambers in an admissible triangle to 
ounting ideals in a 
ertain poset.

This will suÆ
e for 
ounting triangulations of 
orank 3 
y
li
 polytopes

sin
e, as we will see, their Gale transforms 
an be triangulated with admis-

sible triangles.

But, in fa
t, the te
hnique 
an be modi�ed to deal with non-admissible

triangles as well. Let � be a non-admissible triangle in a rank 3 
on�guration

B. We 
an assume that � is empty, otherwise we triangulate its 
onvex hull

by empty triangles. Let p be a vertex of � and let l = fq; rg be the opposite

edge. We 
onsider the ordered sequen
e (from q to r) of edges fp; p

i

g,

i = 2; : : : ; k whi
h overlap � . Set p

1

:= q and p

k+1

:= r. The triangles
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�

i

:= fp; p

i

; p

i+1

g, i = 1; : : : ; k � 1 are admissible with respe
t to p, they

interse
t properly and, sin
e � is empty, they 
over � . In rank 3, any set of

triangles whi
h interse
t properly 
an be 
ompleted to a triangulation, whi
h

implies that ea
h virtual 
hamber of B lying on � lies on exa
tly one of the

triangles �

i

. Moreover, the bije
tion between virtual 
hambers of B lying on

�

i

and ideals of (
(�

i

); <

p

) restri
ts to a bije
tion between virtual 
hambers

lying both on �

i

and � and ideals of (
(�

i

); <

p

) not 
ontaining l. Summing

up, we 
an 
ount virtual 
hambers in � by adding the numbers of ideals of

(
(�

i

); <

p

) whi
h do not 
ontain the edge l. An analogous generalization


an be done for the 
ase of subdivisions and pairs of ideals mentioned in the

previous remark.

2 Counting virtual 
hambers of C(n; n� 4)

�

Combinatorial stru
ture of C(n; n� 4)

�

A sign sequen
e of length n is any element of f�1; 0;+1g

n

. The support of

a sign sequen
e is its set of non-zero 
oordinates. Re
all that in oriented

matroid theory the 
ir
uits of a ve
tor 
on�guration A are the sign sequen
es

with minimal support produ
ed by the 
oeÆ
ients of linear dependen
es in

A, and the 
o
ir
uits of A are the sign sequen
es with minimal support

produ
ed by the values of non-zero linear fun
tionals on A. Either 
ir
uits or


o
ir
uits suÆ
e to 
hara
terize the oriented matroid of A and two oriented

matroids are dual to ea
h other if and only if the 
ir
uits of one are the


o
ir
uits of the other.

Let C(n; n� 4) = fa

1

; : : : ; a

n

g denote the vertex set of a 
y
li
 polytope

of dimension n � 4 with n verti
es. Let p

1

; : : : ; p

n

be points in a non-

great 
ir
le 
 in S

2

, taken in order along the 
ir
le. Let C(n; n � 4)

�

:=

fb

1

; : : : ; b

n

g, where b

i

:= (�1)

i

p

i

, for i = 1; : : : ; n. Part (ii) of the following

statement appears in [19, Exer
ise 6.13℄, and part (i) is essentially Gale

evenness 
riterion for 
y
li
 polytopes.

Lemma 2.1 (i) For ea
h quadruple fb

i

1

; b

i

2

; b

i

3

; b

i

4

g with i

1

< i

2

< i

3

<

i

4

the signs sign(b

i

j

) = (�1)

i

j

+j

, j 2 f1; 2; 3; 4g give one of the two

(opposite) 
ir
uits with support in that quadruple.

(ii) The oriented matroids of C(n; n�4) and C(n; n�4)

�

are dual to ea
h

other. 2

Observe that, in general, C(n; n�4)

�

is not going to be a Gale transform

of C(n; n� 4) a

ording to our de�nition, in whi
h the points of C(n; n� 4)

are taken along the moment 
urve. But it has the same oriented matroid

as a Gale transform, and hen
e the same 
olle
tion of triangulations and

virtual 
hambers.
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To simplify the notation, from now on we will refer to ea
h point b

i

2

C(n; n � 4)

�

by its label i 2 f1; : : : ; ng. C(n; n � 4)

�

is 
ontained in two

opposite 
ir
les in S

2

one with the set of \odd points" f1; 3; 5; : : :g and the

other with the \even points" f2; 4; 6; : : :g. The points in ea
h 
ir
le de�ne a

spheri
al polygon, so that the sphere is divided into two polygons (odd and

even) plus a topologi
al band between them.

A triangle � of C(n; n� 4)

�

will be said to lie on one of the polygons if

its 
onvex hull is 
ontained in that polygon and will be said to lie on the

band if its 
onvex hull is 
ontained in the band.

Lemma 2.2 (i) An edge in the boundary of one of the polygons is 
rossed

by no other edge of C(n; n � 4)

�

. In parti
ular, it overlaps no empty

triangle.

(ii) Every triangulation of C(n; n � 4)

�

by empty triangles uses all the

boundary edges of the two polygons. Hen
e, all its triangles lie either

on one of the polygons or on the band.

(iii) A triangle lies on one of the polygons if and only if its three verti
es

are in that polygon.

(iv) For a triangle � whi
h has two verti
es in one polygon and the third

in the other polygon the following 
onditions are equivalent:

(a) � is admissible with respe
t to this third vertex.

(b) � is empty.

(
) � lies on the band.

(d) � has one edge in the boundary of one of the polygons and � is not

one of the following triangles: fi; i+1; i+2g with i 2 f1; : : : ; n�2g

or, if n is even, fn; 1; 2g or fn� 1; n; 1g.

Proof: That an edge l in the boundary of the polygons does not 
ross any

other edge 
an be proved geometri
ally. Or it 
an be derived from Lemma

2.1 that l 
annot be the positive part of a 
ir
uit of C(n; n�4)

�

. The se
ond

part of part (i) holds be
ause any edge overlapping an empty triangle must


ross at least one of the edges of the triangle.

Part (ii) is a 
onsequen
e of part (i): let l be a boundary edge of one

of the polygons and let x be a point in the relative interior of l. If T is

a triangulation by empty simpli
es, x must lie on the relative interior of a

unique simplex of T . This simplex 
annot be a triangle or an edge other

than l itself, by part (i).

Part (iii) is trivial. In part (iv), the equivalen
e of (d) with any of (a),

(b) or (
) is easy to establish: let l be the edge of � having its two verti
es

in the same polygon. For � to be either empty, admissible or to lie on the

band it is 
learly ne
essary that l be an edge of that polygon. The 
onverse
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is true unless � is one of the triangles ex
luded in part (d), whose 
onvex

hull 
ontains the whole polygon. 2

Let C be a virtual 
hamber and let T be a triangulation of C(n; n� 4)

�

all of whose triangles lie either on one of the polygons or on the band (we

will see later that su
h triangulations exist). We say that C lies on the odd

polygon, on the even polygon or on the band if it lies on a triangle of T on the

odd polygon, the even polygon, or the band, respe
tively. A

ording to part

(ii) of Lemma 1.3 applied to the two polygons this de�nition is independent

of T . In what follows we will 
ount the number of virtual 
hambers on ea
h

polygon and on the band.

Virtual 
hambers of a polygon

Let M be the 
on�guration 
onsisting of the verti
es of one of the two

polygons of C(n; n� 4)

�

.

Lemma 2.3 There is a natural bije
tion between virtual 
hambers of C(n; n�

4)

�

lying on M and virtual 
hambers of M (as a 
on�guration by itself).

Proof: By part (i) of Lemma 2.2, every triangle of M 
ontaining an edge in

the boundary of M is admissible with respe
t to the opposite vertex, both

in M and in C(n; n� 4)

�

. Clearly, M 
an be triangulated with triangles of

that type: take any point p in M and triangulate M by 
oning p to every

boundary edge of M not 
ontaining p.

Moreover, only edges in M overlap 
onv(M) and, hen
e, for those trian-

gles, the poset 
(�) is the same in M and in C(n; n� 4)

�

. By Proposition

1.4 the number of virtual 
hambers of M and of C(n; n� 4)

�

lying on ea
h

of those triangles is the same. 2

Lemma 2.3 allows us to forget C(n; n� 4)

�

for a while and speak rather

of a polygon P whose verti
es are labelled from 1 to m. We will 
ompute

the number of virtual 
hambers in P by adding the virtual 
hambers whi
h

lie on the triangles �

i

:= f1; i � 1; ig for i = 3; : : : ;m sin
e these triangles

are admissible with respe
t to 1 and de�ne a triangulation of P . In 
(�

i

) we


onsider the ordering <

1

of \being 
loser to 1". Our task is to 
ount ideals

of (
(�

i

); <

1

).

Note that


(�

i

) = ffj; kg : 2 � j � i� 1; i � k � mg n ffi � 1; igg;

with the partial order fj; kg �

1

fj

0

; k

0

g if and only if j � j

0

and k � k

0

.

We extend 
(�

i

) to a larger poset

d


(�

i

) := 
(�

i

) [ ffi � 1; igg by setting

fi � 1; ig as the maximum of

d


(�

i

). The ideals of

d


(�

i

) are those of 
(�

i

)

plus

d


(�

i

) itself. The Hasse diagram of

d


(�

i

) is shown in part (a) of Figure

1.
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{2,m}

(a) (c)

{i-1,m}

{i-1,i}

{2,i}

(b)

Figure 1: Part (a) is the Hasse diagram of the poset

d


(�

i

). Part (b) rep-

resents an ideal of

d


(�

i

) as a path through the edges of its Hasse diagram

(bla
k dots). The ideal is the set of elements below the path. It 
orre-

sponds to a path through the verti
es of the \dual diagram" (white dots)

represented in (
).

Proposition 2.4 (i) The poset 
(�

i

) has

�

m�1

i�2

�

� 1 ideals.

(ii) A polygon with m verti
es has 2

m�1

�m virtual 
hambers.

Proof: Ideals in

d


(�

i

) are in bije
tion with maximal left-to-right monotone

paths through the latti
e points in a (i�2)� (m� i+1) re
tangle as shown

in Figure 1. The number of su
h paths is

�

(m�i+1)+(i�2)

i�2

�

=

�

m�1

i�2

�

. This

proves part (i). For part (ii), add the virtual 
hambers in ea
h triangle �

i

,

i.e., the number of ideals in ea
h poset 
(�

i

). 2

The number 2

m�1

�m equals the number of maximal straightline thra
k-

les with verti
es in a 
onvex m-gon, 
omputed in [9℄. There is a
tually a

bije
tion between these thra
kles and virtual 
hambers in the polygon, in

whi
h edges of the thra
kle 
orrespond to \
ippable edges" of the virtual


hamber.

Virtual 
hambers on the band: the even 
ase

We now assume n to be even and let m = n=2. All indi
es will be regarded

modulo n. Let T

even

be the following set of triangles, all lying on the band

a

ording to part (iv) of Lemma 2.2.

T

even

= ff2i + 1; 2i + 2; 2i+ 4g; f2i + 1; 2i + 3; 2i + 4g : 0 � i � m� 1g:

These triangles form a triangulation of the band, by whi
h we mean

that adding to them triangulations of the odd and even polygons we get a

triangulation of C(n; n� 4)

�

.

Figure 2 displays T

even

. In this �gure and the subsequent ones, the

following 
attened, twisted, planar representation of the band is used: the

odd and even points are pla
ed on two parallel lines in the plane, with 2i�1



12 Miguel Azaola and Fran
is
o Santos

and 2i fa
ing ea
h other. The sequen
e of points is meant to be repeated

in�nitely, or the left and right ends of the �gure be identi�ed. For a given

odd and a given even vertex there are di�erent ways to draw a straight line

segment joining them. We 
hoose to take the one of greatest positive slope,


onsidering a verti
al line as having in�nite positive slope. With this 
hoi
e,

two edges 
ross in the representation if and only if they 
ross in C(n; n�4)

�

.

2m-3 2m-1 3 5

6422m2m-2

1

Figure 2: The set of triangles T

even

in our twisted representation of the

band.

Sin
e T

even

is a \triangulation of the band", in order to 
ount the virtual


hambers in the band we just add the virtual 
hambers in the triangles of

T

even

. Due to the simmetry of T

even

, this gives the same result as multiplying

by 2m the number of virtual 
hambers in f1; 2; 4g.

As stated in Lemma 2.2, the triangle � = f1; 2; 4g is admissible with

respe
t to the vertex 1. Therefore, our task is to 
ompute the number of

ideals of (
(�); <

1

). Figure 3 represents the triangle � (withm = 5) and the

edges in 
(�). These edges are those 
rossing either f1; 2g or f1; 4g whi
h,

by Lemma 2.1, are respe
tively ff2i; 2j + 1g : 2 � i � j � m � 1g and

ff2i; 2j + 1g : 3 � i � j � m� 1g. Sin
e the se
ond set is 
ontained in the

�rst, we have


(�) = ff2i; 2j + 1g : 2 � i � j � m� 1g

7531975

6 8 10 2 4 6 8

Figure 3: All the edges whi
h 
ross f1; 2; 4g for m = 5.

The poset stru
ture in 
(�) is that (2i; 2j+1) �

1

(2i

0

; 2j

0

+1) if and only

if i � i

0

and j � j

0

. Hen
e, the Hasse diagram of (
(�); <

1

) is as depi
ted

in part (a) of Figure 4.
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{4,2m-1}

{4,5}

{2m-2,2m-1}

(c)(a) (b)

Figure 4: Part (a) is the Hasse diagram of 
(�). Parts (b) and (
) represent

the same as in �gure 1 but for this new poset.

Proposition 2.5 (i) The number of virtual 
hambers lying on the trian-

gle f1; 2; 4g of C(2m; 2m� 4)

�

is 2

m�2

.

(ii) The number of virtual 
hambers of C(2m; 2m � 4)

�

lying on the band

is m2

m�1

.

(iii) The total number of virtual 
hambers of C(2m; 2m � 4)

�

is (m +

2)2

m�1

� 2m.

Proof: Let � = f1; 2; 4g. Ideals of (
(�); <

1

) are in bije
tion with maximal

left-to-right monotone paths in the \dual diagram" shown in part (
) of

Figure 4. These, in turn, are in bije
tion with maximal monotone paths

in the 
omplete binary tree of depth m � 2. This proves part (i) and the

symmetry remarks stated above prove part (ii).

For part (iii) we have to add the m2

m�1

virtual 
hambers on the band to

the 2

m�1

�m on ea
h of the two polygons, whi
h gives the stated number. 2

Theorem 2.6 The 
y
li
 polytope C(2m; 2m � 4) has (m + 2)2

m�1

� 2m

triangulations. 2

Virtual 
hambers on the band: the odd 
ase

The 
on�guration C(2m� 1; 2m� 5)

�

(up to oriented matroid equivalen
e)


an be obtained from C(2m; 2m�4)

�

by deleting the element 2m. We intend

to apply the same te
hnique to C(2m� 1; 2m� 5)

�

as in the even 
ase. We

start by 
hoosing a triangulation of the band (see Figure 5):

T

odd

= ff2i + 1; 2i + 2; 2i + 4g; f2i + 1; 2i + 3; 2i + 4g : 0 � i � m� 3g[

[ff2m� 3; 2m� 2; 2g; f2m � 3; 2m� 1; 2g; f2m � 1; 1; 2gg
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2m

2m-2 2

2m-3 2m-12m-52m-7 1 3

42m-6 2m-4

Figure 5: The set of triangles T

odd

. The deleted vertex 2m has been drawn

in white. Dashed lines show the edges of T

even

whi
h were in
ident to 2m.

The triangles of T

odd

are all admissible (this is automati
, by Lemma

2.2(iv)). Hen
e, we 
an 
ompute the number of virtual 
hambers in ea
h

triangle of T

odd

using Proposition 1.4. The only new diÆ
ulty with respe
t

to the even 
ase is that T

odd

is not preserved under any non-trivial oriented

matroid symmetry of C(2m� 1; 2m � 5)

�

. In fa
t, C(2m� 1; 2m� 5)

�

has

only one non-trivial symmetry: the reversal of indi
es.

Lemma 2.7 The number of virtual 
hambers of C(2m�1; 2m�5)

�

in ea
h

triangle of T

odd

is:

(i) 2

m�2

�

P

i�1

k=0

�

m�3

k

�

for f2i+1; 2i+2; 2i+4g, with i 2 f0; : : : ;m� 3g.

(ii) 2

m�2

�

P

i

k=0

�

m�3

k

�

for f2i+1; 2i+3; 2i+4g, with i 2 f0; : : : ;m� 3g.

(iii) 2

m�2

for f2m� 1; 1; 2g.

(iv) 2

m�3

for f2m� 3; 2m � 2; 2g and for f2m� 3; 2m � 1; 2g.

Proof: C(2m�1; 2m�5)

�


an be obtained from C(2m; 2m�4)

�

by deleting

any element. Triangles of parts (i), (ii) and (iii) belong to T

even

, so we 
an

assume them to be f1; 2; 4g as long as we 
hoose the appropriate vertex to

be removed (instead of 2m). That is, we remove the element 2m � 2i for

(i), 2i + 5 for (ii) and 3 for (iii). In ea
h 
ase, the poset of edges 
rossing

f1; 2; 4g is the same as in the even 
ase, ex
ept for the edges using the

removed element, whi
h are missing.

For part (i), the Hasse diagram is in fa
t the same one obtained by

removing the edges f2j; 2j + 1g for m� i � j � m� 1, as shown in Figure

6. Consider the verti
es of its dual diagram. Some of the ones whi
h would

have two rightwards neighbours in the even 
ase, now have one or none.

We label them from 0 to i � 1, as shown in Figure 6(
). For ea
h path

ending at one of the labelled verti
es there would be two ways of extending

it rightwards in the even 
ase. Thus now the number of paths is obtained by

subtra
ting to 2

m�2

the number of paths whi
h end at ea
h labelled vertex.
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=~

{4,5}

{2m-2i,2m-2i+1}

{2m-2,2m-1}

{2m-2i,2m-2i+1}

{4,5}

{2m-2,2m-1}

(c)(b)(a)

{4,2m-1}

{2m-2i,2m-1}

{4,2m-1}

...
...

i-1

k

0

Figure 6: Part (a) shows the Hasse diagram of 
(�) for the triangles of 
ase

(i) (in bla
k) together with the missing elements with respe
t to the even


ase (in white). This poset is isomorphi
 to the one obtained by removing

the elements f2j; 2j + 1g, for m � i � j � m � 1, represented in part (b).

Ideals of the poset are in bije
tion with monotone left-to-right paths through

the white dots in (
). Some of these dots, whi
h we label from 0 to i � 1,

had two rightwards neighbours in the even 
ase, while now they have one or

none.

For the k-th vertex this number is

�

m�3

k

�

. This �nishes part (i). Parts (ii)

and (iii) are analogous.

For part (iv), let �

1

= f2m� 3; 2m� 2; 2g. The edges overlapping �

1

are

exa
tly those 
rossing the edge f2m�3; 2m�2g. By Lemma 2.1, the edges of

C(2m�1; 2m�5)

�


rossing f2m�3; 2m�2g are those of the form f2i; 2j+1g

with 1 � i � j � m � 3. The order is f2i; 2j + 1g �

2m�3

f2i

0

; 2j

0

+ 1g if

and only if i � i

0

and j � j

0

. This is the same poset we would have for the

triangle f1; 2; 4g in C(2m� 2; 2m� 6)

�

, ex
ept for a shift of two units in all

the indi
es. Hen
e, the number of ideals is 2

m�3

. 2

Proposition 2.8 The number of virtual 
hambers of C(2m � 1; 2m � 5)

�

lying on triangles of T

odd

is (3m� 2)2

m�3

.

Proof: By Lemma 2.7 the number N of virtual 
hambers in T

odd

is

m�3

X

i=0

 

2

m�2

+ 2

m�2

�

i

X

k=0

  

m� 3

k

!

+

 

m� 3

k � 1

!!!

+ 2

m�2

+ 2 � 2

m�3

=

= (4m� 4)2

m�3

�

m�3

X

i=0

i

X

k=0

 

m� 2

k

!

If we 
all

A

i

=

i

X

k=0

 

m� 2

k

!
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we have 2

m�2

= A

i

+ A

m�i�3

whi
h implies (m � 2)2

m�2

= 2(

P

m�3

i=0

A

i

).

Hen
e

N = (4m� 4)2

m�3

� (m� 2)2

m�3

= (3m� 2)2

m�3

:

2

Theorem 2.9 The number of triangulations of the 
y
li
 polytope C(2m�

1; 2m� 5) is (3m+ 4)2

m�3

� (2m� 1).

Proof: To the number obtained in Proposition 2.8 we have to add the num-

bers of virtual 
hambers of the two polygons de�ned by C(2m�1; 2m�5)

�

,

whi
h have m and m � 1 verti
es, respe
tively. By Proposition 2.4, these

numbers are 2

m�1

�m and 2

m�2

� (m� 1), respe
tively. 2

3 Triangulations of C(2m; 2m�4) whi
h use a �xed

simplex

In this se
tion we will 
ount the number of virtual 
hambers in any parti
-

ular triangle of C(2m; 2m � 4)

�

, although the te
hnique will still use some

parti
ular properties of this 
on�guration rather than the general method

outlined in Remark 1.6. One 
an do analogous 
al
ulations in the 
ase of

C(2m � 1; 2m � 5)

�

but there are many more 
ases to be studied due to

mu
h less symmetry, so we prefer to restri
t our study to the even 
ase.

We �rst prove two additional results:

Lemma 3.1 Let M be a 
onvex m-gon. Let S be a sub
on�guration 
on-

sisting of k 
onse
utive verti
es of M . Then, the number of virtual 
hambers

of M lying on S (i.e. lying on triangles of any triangulation of S) equals

k�2

X

l=0

 

m� 1

l

!

� (k � 1):

Proof: Consider the verti
es of M labelled from 1 to m, and without loss of

generality suppose that S = f1; : : : kg. Then, the following is a triangulation

of S:

ff1; l � 1; lg : l 2 f3; : : : ; kgg:

By Proposition 2.4, the triangle f1; l�1; lg 
ontains

�

m�1

l�2

�

�1 virtual 
ham-

bers of M . Adding this number for l from 3 to k gives

k

X

l=3

 

m� 1

l � 2

!

� (k � 2) =

k�2

X

l=1

 

m� 1

l

!

� (k � 2)

whi
h 
oin
ides with the number stated. 2
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Lemma 3.2 Let � be any empty triangle in C(2m; 2m � 4)

�

not 
ontained

in one of the polygons. Then, there are exa
tly 2

m�2

virtual 
hambers of

C(2m; 2m� 4)

�

in � .

Proof: The subgroup of 
ombinatorial symmetries of C(2m; 2m � 4)

�

gen-

erated by i 7! i + 2 and i 7! 2m � i + 1 (whi
h has 2m elements), applied

to � , produ
es 2m empty triangles not 
ontained in either of the polygons,

i.e. lying on the band by Lemma 2.2. It is easy to 
he
k that these 2m

triangles form a triangulation of the band, very similar to the triangulation

T

even

depi
ted in Figure 2. By symmetry, all the 2m triangles 
ontain the

same number of virtual 
hambers, i.e. the m2

m�1

virtual 
hambers in the

band divided by 2m. 2

Theorem 3.3 Let � be a triangle in C(2m; 2m� 4)

�

.

(i) If � is 
ontained in one of the two polygons, let � = fi; j; kg with

i < j < k. The number of virtual 
hambers of C(2m; 2m � 4)

�

lying

on � equals

2

m�1

�

a

X

l=0

 

m� 1

l

!

�

b

X

l=0

 

m� 1

l

!

�




X

l=0

 

m� 1

l

!

;

where a, b and 
 are the numbers of points in the polygon and between

ea
h two verti
es of � . I.e., a =

j�i

2

�1, b =

k�j

2

�1 and 
 =

2m+i�k

2

�1.

(ii) If � does not lie on either of the polygons, then there is a 
ombinatorial

symmetry of C(2m; 2m� 4)

�

whi
h sends � to a triangle �

0

= fi; j; kg

with i < j < k and with i odd and j and k even. Then the number of

virtual 
hambers of C(2m; 2m� 4)

�

lying on � equals

�

k � j

2

�

(2

m�2

� 1) +

k�j

2

�1

X

l=0

 

m� 1

l

!

Proof: The 
ase of � lying on a polygon is easy in the light of Lemma 3.1:

Joining to � triangulations of three 
on�gurations as the one in Lemma 3.1

with the parameter k taking the values a + 2, b + 2 and 
 + 2 produ
es a

triangulation of the whole polygon, whi
h has 2

m�1

�m virtual 
hambers.

Hen
e, the number of virtual 
hambers in � equals

2

m�1

�m�

a

X

l=0

 

m� 1

l

!

+ (a+ 1)�

�

b

X

l=0

 

m� 1

l

!

+ (b+ 1)�




X

l=0

 

m� 1

l

!

+ (
+ 1);
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as desired sin
e a+ b+ 
 = m� 3.

In part (ii), � has two verti
es in one polygon and the third vertex in the

other polygon. The 
ombinatorial symmetry of the statement 
an be taken

as one of the two whi
h send this third vertex to the vertex 1. Without loss

of generality we assume in the rest of the proof that � = fi; j; kg with i odd,

j and k even and i < j < k.

A point l is in the interior of the triangle � exa
tly when the 
ir
uit with

support in fi; j; k; lg has the same sign in i, j and k and the opposite sign

in l. By Lemma 2.1 this happens if and only if l is even and between j and

k. We 
onsider the sub
on�guration S = fi; j; j +2; j +4; : : : ; kg 
onsisting

of the verti
es of � and its interior points. We 
an triangulate the part of


onv(S) in the even polygon as in Lemma 3.1, whi
h gives

k�j

2

�1

X

l=0

 

m� 1

l

!

�

k � j

2

virtual 
hambers, and the part in the band with the

k�j

2

empty triangles

ffi; l; l + 2g : l 2 fj; j + 2; j + 4; : : : ; k � 2gg, ea
h 
ontaining 2

m�2

virtual


hambers by Lemma 3.2. 2

Hen
e, the following table gives the number of triangulations of the 
y
li


polytope C(2m; 2m�4) whi
h use the simplex C(2m; 2m�4)nfi; j; kg under

the assumption that i < j < k and depending on the parities of k � j and

j � i. The �rst two rows are just the formulas in Theorem 3.3, where the

value of a, b and 
 
an be found. The last two rows are the translation of

the se
ond row to the 
ase in whi
h k � j is odd.

j � i and k � j even 2

m�1

�

P

a

l=0

�

m�1

l

�

�

P

b

l=0

�

m�1

l

�

�

P




l=0

�

m�1

l

�

j � i odd, k � j even

k�j

2

(2

m�2

� 1) +

P

k�j

2

�1

l=0

�

m�1

l

�

j � i even, k � j odd

j�i

2

(2

m�2

� 1) +

P

j�i

2

�1

l=0

�

m�1

l

�

j � i odd, k � j odd

2m+i�k

2

(2

m�2

� 1) +

P

2m+i�k

2

�1

l=0

�

m�1

l

�

4 Regular triangulations of C(n; n� 4)

A regular triangulation of a d-dimensional point 
on�guration A is a tri-

angulation of A whi
h 
an be obtained as the orthogonal proje
tion of the

lower envelope of a (d+1)-dimensional polytope (see [6℄ or [19℄ for details).

The bije
tion between triangulations of A and virtual 
hambers of its Gale

transform B sends the regular triangulations to the geometri
 
hambers of

B, i.e. the full-dimensional 
ones in the 
hamber fan that we de�ned in the

introdu
tion.

The 
hamber fan of a 
on�guration does not depend only on the oriented

matroid. We intend here to 
ompute the maximum possible number of
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hambers among all the 
oordinatizations of the oriented matroid of C(n; n�

4)

�

. That is to say, the maximum possible number of regular triangulations

of a polytope realizing the oriented matroid of C(n; n� 4).

For the next lemma, we re
all that in oriented matroid theory a ve
tor


on�guration is 
alled totally 
y
li
 if its positive span is the whole spa
e.

The statement holds equally if B is not totally 
y
li
, ex
ept that the formula


hanges by 1 be
ause of the use of Euler's formula for a ball instead of a

sphere.

Lemma 4.1 Let B be a rank 3 totally 
y
li
 ve
tor 
on�guration in general

position. Let N be the number of (opposite pairs of) 
ir
uits of B having

two positive and two negative elements. Then, the maximum number of


hambers produ
ed by realizations of the oriented matroid of B is

N +

 

n

2

!

� n+ 2:

Moreover, the maximum is a
hieved in any realization in whi
h no three

edges 
ross in a 
ommon point. This happens if B is suÆ
iently generi


among the realizations of its oriented matroid.

Proof: We �rst prove that there is a realization of the oriented matroid

of B in whi
h no three edges have a 
ommon 
rossing. Indeed, let k be

the number of triplets of edges 
rossing in a point. If k � 1 then a slight

perturbation of the 
oordinates of one of the six verti
es involved in a triple


rossing de
reases the number of su
h 
rossings, and does not 
hange the

oriented matroid be
ause of our general position assumption. On the other

hand, if k = 0 then suÆ
iently small perturbations 
annot 
reate triple


rossings. This proves the assertion.

Next we will prove that if B has no triple 
rossings then it has exa
tly

the stated number of 
hambers. This, together with the fa
t that small

perturbations 
annot de
rease the number of 
hambers, implies that the

stated number is indeed the maximum.

Embedding B in the 2-sphere as we have done in this paper, the 
hamber


omplex of B (i.e. the interse
tion of the 
hamber fan with the unit sphere) is

a polyhedral subdivision of the sphere whose numbers of 
ells of dimensions

2, 1 and 0 we denote f

2

, f

1

and f

0

. The number of 
hambers equals f

2

. The

number f

0

equals n plus the number of 
rossing points between edges of B,

whi
h under the assumption of no triple 
rossings equals N .

f

0

= N + n:

On the other hand, 2f

1

equals the number of in
iden
es between 0-
ells

and 1-
ells in the 
ell de
omposition. That is to say,

2f

1

= 4N + n(n� 1)
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where the term n(n� 1) 
omes from the fa
t that n� 1 edges are in
ident

at ea
h point of B. By Euler's formula for the 2-sphere,

f

2

= f

1

� f

0

+2 = N �n+

 

n

2

!

+2: 2

Proposition 4.2 The number of (pairs of) 
ir
uits with two elements of

ea
h sign in C(n; n� 4)

�

equals

� 6

�

m

4

�

+ 3

�

m

3

�

if n = 2m is even, and

� 6

�

m

4

�

+

�

m

2

�

�m+ 1 if n = 2m� 1 is odd.

Proof: Suppose �rst that n = 2m is even. We know that no edge of

C(2m; 2m � 4)

�


rosses the boundary of any of the two polygons de�ned

by C(2m; 2m � 4)

�

, so if two edges 
ross, then either both are edges of the

band or both are edges of one of the polygons. Let B and P be the numbers

of 
rossings of edges of the band and of the even polygon, respe
tively. Then

N = B + 2P:

The number P is the number of 
rossings between edges of an m-gon,

but any four verti
es of an m-gon de�ne a unique 
rossing, so

P =

 

m

4

!

:

For 
omputing the number B, we �rst 
ompute the number of edges of

C(2m; 2m � 4)

�


rossing a 
ertain edge fa; bg of the band. Let us assume

a = 1 and, hen
e, b = 2j is even, in order that fa; bg be in the band. Let

fa

0

; b

0

g be another edge in the band, and assume that a

0

is odd and b

0

is

even. A

ording to Lemma 2.1, under these assumptions f1; bg and fa

0

; b

0

g


ross ea
h other if and only if 1 < a

0

< b

0

< b or 1 < b < b

0

< a

0

. Taking

into a

ount the parities of a

0

, b

0

and b, the �rst 
ase gives

�

j�1

2

�

possibilities

and the se
ond gives

�

m�j

2

�

(for the �rst number, observe for example that

ea
h pair of indi
es 1 � i

0

< j

0

� j � 1 gives the edge having a

0

= 2i

0

+ 1

and b

0

= 2j

0

).

Adding up these numbers for j 2 f1; : : : ;mg we 
on
lude that the total

number of 
rossings between edges of the band one of whi
h 
ontains the

point 1 equals

m

X

j=1

 

j � 1

2

!

+

m

X

j=1

 

m� j

2

!

=

 

m

3

!

+

 

m

3

!

= 2

 

m

3

!

Now, by the symmetries of C(2m; 2m�4)

�

the same is valid for any other

vertex: the number of 
rossings in the band between edges one of whi
h
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ontains any spe
i�
 vertex is 2

�

m

3

�

. Sin
e ea
h 
rossing uses 4 verti
es, the

number of 
rossings in the band equals

B =

2m

4

2

 

m

3

!

= m

 

m

3

!

= m

 

m� 1

3

!

+m

 

m� 1

2

!

= 4

 

m

4

!

+ 3

 

m

3

!

:

Hen
e,

N = B + 2P = 6

 

m

4

!

+ 3

 

m

3

!

:

For the odd 
ase, remember that C(2m�1; 2m�5)

�


an be obtained from

C(2m; 2m� 4)

�

by deleting the point 2m. Then, the number of 
rossings in

C(2m� 1; 2m� 5)

�

equals the total number of 
rossings in C(2m; 2m� 4)

�

minus the 
rossings involving the vertex 2m. This number is 2

�

m

3

�


rossings

in the band plus

�

m�1

3

�


rossings in the even polygon. Hen
e, in the odd


ase we have

N = 6

 

m

4

!

+ 3

 

m

3

!

� 2

 

m

3

!

�

 

m� 1

3

!

= 6

 

m

4

!

+

 

m

2

!

�m+ 1:

2

Theorem 4.3 The number of regular triangulations of C(n; n � 4) is at

most:

(i) 6

�

m

4

�

+ 3

�

m

3

�

+ 4

�

m

2

�

�m+ 2 if n = 2m for some positive integer

m.

(ii) 6

�

m

4

�

+5

�

m

2

�

� 4m+5 if n = 2m� 1 for some positive integer m.

Moreover, these formulas give the exa
t number of regular triangula-

tions in any suÆ
iently generi
 
oordinatization of the oriented matroid of

C(n; n� 4).

Proof: This is straightforward from Lemma 4.1 and Proposition 4.2, taking

into a

ount that

�

n

2

�

� n+ 2 =

n

2

�3n+4

2

whi
h if n = 2m gives

2m

2

� 3m+ 2 = 4

 

m

2

!

�m+ 2

and if n = 2m� 1 gives

4m

2

� 4m+ 1� 6m+ 3 + 4

2

= 2m

2

� 5m+ 4 = 4

 

m

2

!

� 3m+ 4:

2
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Remark 4.4 One may ask about the minimal, instead of maximal, number

of regular triangulations in realizations of the oriented matroid of C(n; n�4).

This would 
orrespond to 
omputing the number of 
hambers in the \least

generi
" realization of the dual oriented matroid. It is reasonable to think

that, if n = 2m is even, the realization in whi
h ea
h half of the points form

a regular m-gon is a good approximation of this \least-generi
" 
ase. The

number of 
hambers in a regular m-gon has been 
omputed in [12℄. The

result is

m

4

24

��(m

3

), exa
tly as in the most-generi
 
ase. This leads to the


onje
ture that the number of regular triangulations in every realization of

C(n; n� 4) is

n

4

64

��(n

3

), as in the generi
 
ase.
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