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A POINT SET WHOSE SPACE OF TRIANGULATIONS IS

DISCONNECTED

FRANCISCO SANTOS

Introduction

In this paper we construct explicitly a triangulation of a 6-dimensional point

con�guration of 324 points which admits no geometric bistellar operations (or ips,

for short). This triangulation is an isolated element in the graph of triangulations of

the point con�guration. It has been a central open question in polytope combina-

torics in the last decade whether point con�gurations exist for which this graph is

not connected (see, e.g. [37, Question 1.2] and [48, Challenge 3]). We also construct

a 234-dimensional polytope with 552 vertices whose graph of triangulations has an

isolated element.

Our construction is likely to have an impact in algebraic geometry too, via

the connections between lattice polytopes and toric varieties [21, 23, 31, 43]. For

example, in [2, Section 2] and [24, Section 4] the di�erent authors study algebraic

schemes based on the poset of subdivisions of an integer point con�guration. The

connectivity of these schemes and of the graph of triangulations are equivalent. See

Section 4.3, in particular Corollary 4.9.

The graph of triangulations is also related to the Baues poset, which appears

in oriented matroid theory, zonotopal tilings and hyperplane arrangements, so our

result has implications in these areas.

�

Let A be a �nite point set in the real a�ne space R

k

. A polyhedral subdivision

of A is a geometric polyhedral complex with vertices in A which covers the convex

hull of A. If all the cells are simplices then it is a triangulation. More combinatorial

de�nitions are convenient if A is not in convex position, i.e. if some element of A

is not a vertex of the convex hull. See De�nitions 4.1 and 1.1 for details, and also

[6], [21, Chapter 7], [36], [47, Chapter 9], or the monograph in preparation [14].

There are at least the following three ways to give a structure to the collection

of all triangulations of a point con�guration A:

(A) Flips. Geometric bistellar operations, or ips, are the minimal changes which

can be made in a triangulation of A to produce a new one. See De�nition 1.3. A

particular case is the familiar diagonal edge ip in two-dimensional triangulations,

of frequent use in computational geometry and geometric combinatorics.
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The graph of triangulations of A has the triangulations of A as vertices and

the ips between them as edges. Graphs of triangulations in dimension two are

known to be connected since the early days of computational geometry [25]. For

the vertex set of a convex polygon, the graph is a classical object in combinatorics,

�rst studied by Stashe� and Tamari [46, 42] and related to associativity structures

and to binary trees [26, 41]. It is disturbing that in dimension three, and even

assuming convex position, we do not know whether the graph is always connected

or not.

The graph of triangulations of A contains as an induced subgraph the 1-skeleton

of the secondary polytope of A introduced by Gel'fand et al. [20]. This is a polytope

of dimension jAj � dim(A) � 1 whose vertices are in bijection with the regular (or

coherent) triangulations of A; see [6, 21, 27, 47] and also Section 4.2. Triangu-

lations with less than jAj � dim(A) � 1 geometric bistellar operations are called

ip-de�cient. Flip-de�ciency cannot occur either in dimension two or in convex

position in dimension three [15]. In non-convex position in dimension three there

are triangulations with more than n

2

vertices and less than 4n ips for arbitrarily

large n [38, Section 2]. In dimension four there are triangulations with arbitrarily

many vertices and bounded number of ips [38, Sections 3 and 4]. The precise

statement of our main result is:

Theorem 1 There is a triangulation without geometric bistellar neighbors of an

integer point con�guration A

1

�A

2

of dimension 6 with 324 points. A

1

�A

2

is the

product of two point con�gurations A

1

� R

4

and A

2

� R

2

with 81 and four points

respectively. The triangulation has 9� 64� 3�

�

6

2

�

maximal simplices.

J�org Rambau has checked, with his computer program TOPCOM [34], that our six

dimensional triangulation with the integer coordinates described in Section 3.4 is

in fact a triangulation and has no ips. The current release of TOPCOM includes �les

which generate the triangulation and carry out this checking.

The point con�guration of Theorem 1 is not in convex position. Only 96 of its 324

points are extremal, i.e. vertices in the convex hull. But the \reoriented Lawrence

construction" described in [39, Section 4.4] and [15, Proposition 3.3] substitutes any

element of a point con�guration by two extremal points, increasing the dimension by

one and preserving the graph of triangulations and poset of subdivisions. Applying

it 228 times we obtain:

Corollary 2 There is a triangulation without ips of a lattice polytope of dimension

234 with 552 vertices.

Connectivity of the graph of triangulations is an important question in compu-

tational geometry, where ips are used to enumerate triangulations or to search

for optimal ones [12, 17]. But it is also relevant theoretically: if the graph is con-

nected, properties which hold for a particular triangulation and are preserved under

ips must hold for any other one. Our negative result contrasts the following two

positive results in more algebraic-geometric and topological settings:

Morelli's factorization theorem of toric birational maps [1, 30] has as an implica-

tion that any two triangulations of a rational point con�guration are connected by

geometric bistellar operations if we allow the use of arbitrarily many additional ra-

tional vertices in the intermediate steps. (Geometric bistellar ips in triangulations

with rational vertices correspond to pairs blow-up/blow-down in toric varieties).
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Pachner [32] has shown that any two PL-homeomorphic combinatorial manifolds

can be connected by a sequence of the (non-geometric) bistellar operations used in

combinatorial topology [10, 19].

(B) The Baues poset. The polyhedral subdivisions of A form a partially ordered

set (poset) with the re�nement relation. Its minimal elements are the triangulations

and its unique maximal element is the trivial subdivision. It is usually referred to

as the Baues poset of A and its study is the generalized Baues problem. We denote

this poset by 
(A) and call strict Baues poset the one obtained by removing from

it the trivial subdivision.

To be precise, Baues posets were introduced implicitly in [8] and explicitly in [7]

in a more general situation where one has an a�ne projection � from the vertex set

of a polytope P to A. The Baues poset of � is the poset of subdivisions of A which

are induced by �, meaning that only projections of faces of P are allowed as cells in

the subdivisions. (A more careful de�nition is needed in degenerate cases). When

P is a simplex, hence of dimension jAj � 1, all subdivisions of A are �-induced and

this is the case of interest to us. When P is a cube its projection is a zonotope

and the �-induced subdivisions are its zonotopal tilings [47]. See [37] for a very

complete account of the di�erent contexts in which Baues posets appear.

The Baues complex of A is the order complex [9] of the strict Baues poset. That

is to say, the abstract simplicial complex whose simplices are the chains in the

poset. Billera et al. [7] and Rambau and Ziegler [36] proved, respectively, that if

dim(A) = 1 or dim(P ) � dim(A) = 2, then the Baues complex of any projection

� : vert(P ) ! A is homotopy equivalent to a (dim(P ) � dim(A) � 1)-sphere.

The �rst case solved a conjecture of Baues [5]. The conjecture that this holds for

arbitrary P and A was since called the generalized Baues conjecture, or GBC. It was

inspired by the fact that the �ber polytope of the projection [8] (a generalization

of the secondary polytope) has dimension dim(P ) � dim(A) and its face lattice is

naturally embedded in the Baues poset. The GBC was disproved in [36], but the

particularly interesting cases of P being a simplex or a cube remain open. They

have been solved (positively) only if dim(A) = 2, if dim(P ) � dim(A) = 3 or if �

is the natural projection onto a cyclic polytope or cyclic zonotope [4, 16, 35, 45].

The cube case with dim(P ) = n and dim(A) = d is a special case of the simplex

case with dim(P ) = n� 1 and dim(A) = d� 1. See below.

Triangulations of A and bistellar ips between them are precisely the minimal

and next-to-minimal elements in the Baues poset (Lemma 4.2). In particular, con-

nectivity of the graph of triangulations implies connectivity of the Baues complex.

The converse is only (almost) true if A is in general position (Corollary 4.3). In the

case of our triangulation without ips we can only say that it is an isolated element

in the poset of proper re�nements of any minimal element among the subdivisions

of A re�ned by it. But the strict Baues poset is probably connected.

(C) The coherent poset of subdivisions. In Section 4.2 we introduce a modi�ed

Baues poset 


c

(A). It again contains all the polyhedral subdivisions of A, but a

subdivision �

0

re�ning another one � is considered smaller only if the re�nement

is coherent in a certain sense, �rst studied by Alexeev [2, De�nition 2.12.10].

The poset 


c

(A) is nicer than the Baues poset in the following respects:

� It is the right poset in order to study the algebraic schemes introduced in [2,

Section 2] and [24, Section 4]. In particular, the order complex of 


c

(A) is

connected if and only if the schemes are connected (Corollary 4.9).
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� The topology of the whole poset is much more related to that of its lower

ideals in the case of 


c

(A) than in 
(A) (compare Corollaries 4.3 and 4.7).

In particular, 


c

(A) is connected if and only if the graph of triangulations

is connected, and this is true regardless of whether the trivial subdivision is

considered an element of the poset or not.

�

The structure of the paper is as follows. Section 1 contains preliminaries on

triangulations and geometric bistellar operations. The rest of the paper is divided

into Sections 2, 3 and 4 which can be read independently. The �rst two combine

to produce Theorem 1.

In Section 2.1 we study the relation between the ips in triangulations T

1

and

T

2

and the ips in any triangulation which re�nes the product T

1

� T

2

. In Section

2.2 we introduce a particular way of re�ning such a product based on the staircase

triangulation of the product of two simplices. In Section 2.3 we prove that this

re�nement has no ips when T

1

is any triangulation satisfying certain hypotheses

and T

2

is a very simple triangulation of dimension two (Corollary 2.7).

In Section 3.1 we describe a triangulation of a four-dimensional point con�gu-

ration with 81 points. Then, we compute its ips (Section 3.2) and introduce a

locally acyclic orientation of its 1-skeleton (Section 3.3). The construction is based

on the one which appeared in Section 4 of [38], a connection detailed in Remark

3.4. The triangulation satis�es the requirements needed in Corollary 2.7. Although

in its original form the point con�guration is not rational, in Section 3.4 we modify

it so that it becomes integer, loosing part of its symmetry but none of its special

properties. This gives Theorem 1.

Sections 4.1 and 4.2 deal with the relation between the graph of triangulations

and the posets 
(A) and 


c

(A). The latter is explicitly introduced here for the

�rst time, although it is implicit in [2, Section 2.12]. Section 4.3 shows the relation

between 


c

(A) and the aforementioned algebraic schemes.

�

It would be desirable to improve our construction of a triangulation without ips

in any of the following ways, in case this is possible:

Smaller dimension: Connectivity of the graph of triangulations and the Baues

poset is unknown starting in dimension three. Theorem 2.6 cannot provide a trian-

gulation without ips in dimension less than �ve: every locally acyclic orientation

of the graph of a planar triangulation has reversible edges [38, Remark 9] and a

1-dimensional triangulation always contains sinks, sources and \sandwich edges".

In dimension three, we know triangulations which admit locally acyclic orientations

without reversible edges, sinks or sources (Remark 3.4). But we have not obtained

one whose ippable circuits are \sandwich circuits", as required in Corollary 2.7.

It is also interesting to know whether triangulations without ips exist in convex

position and reasonably small dimension. Flip-de�ciency occurs in convex position

starting in dimension four [15].

Small size or corank: By corank we mean the dimension jAj � d � 1 of the

secondary polytope. The fact that the GBC is false already for the projection of

a 5-dimensional polytope with 10 vertices onto dimension 2 [36] indicates that the

simplex case might also be false in relatively small examples.
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General position: A point con�guration of dimension d is said to be in general

position if every d+ 1 points are a�nely independent.

Flip-de�cient triangulations in general position exist starting in dimension three

[15]. A triangulation without ips of a point con�guration A in general position

would disprove the GBC for projections from simplices (Corollary 4.3). The tech-

niques in this paper cannot be adapted to general position in any obvious way, since

they are based on taking products. Actually, we have reasons to believe that any

perturbation of our triangulation into general position creates ips.

Primitiveness: We say that A is primitive if A = conv(A) \ Z

k

. This is of

interest in the algebraic-geometric context, since it is equivalent to normality of the

corresponding a�ne toric variety. See Corollary 4.9, part (iv).

Unimodular con�gurations and A-graded ideals: Let A � (Z

�0

)

k

be a non-

negative, integer point con�guration. Sturmfels [43, Chapter 10] has shown that

the radical of every monomial A-graded ideal (mono-A-GI for short) equals the

Stanley ideal of some triangulation of A. The converse is not always true: the

Stanley ideal of a triangulation may not be the radical of any mono-A-GI. We do

not know whether our triangulation without ips has this property.

Specially interesting in this context is the case when A is unimodular, meaning

that all its a�ne bases have the same determinant, up to a sign. Then the Stanley

ideal of any triangulation of A is a mono-A-GI and every mono-A-GI is radical [43,

Lemma 10.14]. Our point con�guration is not unimodular.

The A-Graded ideals are the closed points of the toric Hilbert scheme of A,

de�ned by Peeva and Stillman [33] (see also [44, Section 5]). Using a notion of ip

between mono-A-GI's, Maclagan and Thomas [28] have shown that a triangulation

without ips whose Stanley ideal equals the radical of some mono-A-GI would imply

that the toric Hilbert scheme is not connected.

Lifting triangulations and Lawrence polytopes; relation to zonotopal

tilings and oriented matroids: Let A be a point con�guration, let A

�

denote a

Gale transform of A and letM(A

�

) be the oriented matroid of a�ne dependences

in A

�

(roughly speaking, its set of circuits). Every generic one-element extension

ofM(A

�

) induces a triangulation of A. The triangulations which can be obtained

in this way are called lifting triangulations (see [11, Section 9.6] or [39, Section 4]).

It can be easily proved that our triangulation is not lifting.

Specially interesting in this context is the case when the Gale transform A

�

is centrally symmetric, i.e. when A is the vertex set of a Lawrence polytope [11,

47]. Then all its triangulations are lifting (see [39, Section 4.3] or [22, Section 4]).

Moreover, the poset of subdivisions of a Lawrence polytope is isomorphic to the

poset of zonotopal tilings of a certain zonotope, and vice versa.

A lifting triangulation without ips would imply that the graph of cubical ips

between zonotopal tilings of a certain zonotope is disconnected, thus answering

question 1.3 in [37]. If, moreover, the triangulation is in general position, it would

disprove the GBC for projections from cubes, which by the above mentioned results

is equivalent to the GBC for the projections from simplices to Lawrence polytopes.

Via the Bohne-Dress Theorem [11, 47], these two cases of the GBC are also

equivalent to the extension space conjecture of oriented matroid theory [11, pp.

295{296], stating that the poset of one-element extensions of a realizable oriented

matroid of rank r is homotopy equivalent to an (r � 1)-sphere.
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Finally, the extension space conjecture is the case k = d� 1 of the following far-

reaching conjecture by MacPherson, Mn�ev and Ziegler [37, Conjecture 11]: that

the poset of all strong images of rank k of any realizable oriented matroid M of

rank d (the OM-Grassmannian of rank k ofM) is homotopy equivalent to the real

Grassmannian G

k

(R

d

). This conjecture is relevant in matroid bundle theory [3]

and the combinatorial di�erential geometry introduced by MacPherson [29].

1. Triangulations and flips

Let A be a �nite subset of the real a�ne space R

k

and let d denote the di-

mension of the a�ne subspace a�(A) spanned by A. This is what we call a point

con�guration of dimension d.

De�nition 1.1. A triangulation of A is any collection T of a�nely independent

subsets of A with the following properties: (i) if S is in T , then every subset of

S is in T , i.e. T is an abstract simplicial complex; (ii) if S and S

0

are in T ,

then conv(S) \ conv(S

0

) is a face of both conv(S) and conv(S

0

), i.e. T induces a

geometric simplicial complex in R

k

; (iii) [

S2T

conv(S) = conv(A), i.e. T covers the

convex hull of A.

We will call simplices of T all its elements, maximal simplices of T the elements

of dimension d and facets of T the facets of the maximal simplices, i.e. the simplices

of dimension d� 1. This deviates from standard use in simplicial complexes, where

the facets are the maximal simplices. With our conventions, every facet of conv(A)

is triangulated by facets of T . A facet is interior if its convex hull intersects the

interior of conv(A) and is a boundary facet otherwise.

It has some combinatorial advantages to consider as elements of T only the

maximal simplices, as is done in [6, 13, 21]. Here (but not in Section 4) we prefer

to use the convention that lower dimensional ones are also elements, to work more

easily with the links and stars of simplices. If S 2 T , then star

T

(S) = fS

0

2 T :

S [ S

0

2 T g and link

T

(S) = fS

0

2 T : S [ S

0

2 T ; S \ S

0

= ;g:

Lemma 1.2 ([13]). Let A be a point con�guration and let T be a pure abstract

simplicial complex of dimension dim(A) with vertices contained in A and containing

only a�nely independent subsets. T is a triangulation of A if and only if:

(i) The link of every interior facet S of T has exactly two elements, which lie on

opposite sides of the hyperplane of a�(A) spanned by S.

(ii) There exists a point in conv(A) which lies in the convex hull of exactly one

maximal simplex of T .

Geometric bistellar operations arose in the following terms in the work of Gel'fand,

Kapranov and Zelevinsky [20] [21, Chapter 7], who called them modi�cations.

Following the terminology of matroid theory, we call a minimal a�nely depen-

dent subset of A a circuit (see [11] or [47] for details). The Radon partition of a

circuit Z is the unique partition Z = Z

+

[Z

�

such that the convex hulls of the two

parts intersect. Equivalently, Z

+

and Z

�

contain respectively the elements with

positive and negative coe�cient in the unique (up to a scalar multiple) a�ne de-

pendence equation on Z. The pair (Z

+

; Z

�

) is called an oriented circuit; of course,

if (Z

+

; Z

�

) is an oriented circuit, then so is (Z

�

; Z

+

), and the two of them are

the only orientations of Z = Z

+

[ Z

�

. Since our interest will always be in ori-

ented circuits we will use the word circuits for the pairs (Z

+

; Z

�

) and will call the

underlying unoriented circuit the support of (Z

+

; Z

�

).
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d

b

cea+ +-

Figure 1. A ip supported on the circuit (fa; cg; feg). It has two

ippable facets, fb; eg and fd; eg. The reverse ip, supported on

(feg; fa; cg), has no ippable facets.

The support Z of a circuit (Z

+

; Z

�

) admits exactly two triangulations T

+

(Z)

and T

�

(Z), which have Z

+

and Z

�

as their unique minimal non-faces. I.e:

T

+

(Z) := fS � Z : Z

+

6� Sg; T

�

(Z) := fS � Z : Z

�

6� Sg:

De�nition 1.3. Let T be a triangulation of A and let (Z

+

; Z

�

) � A be a circuit

of A. Suppose that the following conditions are satis�ed:

(i) The triangulation T

+

(Z) is a subcomplex of T .

(ii) All the maximal simplices of T

+

(Z) have the same link L in T . In particular,

T

+

(Z) � L is a subcomplex of T . Here A �B := fS [ T : S 2 A; T 2 Bg.

Then, we can obtain a new triangulation T

0

of A by replacing the subcomplex

T

+

(Z) �L of T by the complex T

�

(Z) �L. This operation of changing the triangu-

lation is called a geometric bistellar operation, geometric bistellar ip (or a ip, for

short) supported on the circuit (Z

+

; Z

�

). We call (Z

+

; Z

�

) a ippable circuit and

we say that T and T

0

are geometric bistellar neighbors.

Our de�nition of ip supported on a circuit explicitly assumes that the circuit

is oriented so that the star of the negative part is \ipped out" and the star of the

positive part is \ipped in". This convention is not made by other authors (see [21,

page 231]) and will be relevant in our exposition. See [40] for a generalization of

the concept of ip in the framework of Baues posets and �ber polytopes.

It is sometimes more convenient to focus on ippable facets, which we now in-

troduce, instead of ippable circuits. Let S be the common facet of two maximal

simplices S [ fa

1

g and S [ fa

2

g of a triangulation T . The d + 2 elements of

S [ fa

1

; a

2

g a�nely span a�(A). Hence, there is a unique circuit (Z

+

; Z

�

) with

support contained in them. This circuit can be oriented so that a

1

; a

2

2 Z

+

. We

say that (Z

+

; Z

�

) is the circuit supported on S. We say that S is a ippable facet

of T if there is a ip supported on (Z

+

; Z

�

). See an example in Figure 1.

In the following statement, if (Z

+

[ Z

�

) is full-dimensional, then the link L of

T

+

(Z) has one maximal simplex: the empty set.

Lemma 1.4. Let T be a triangulation of a point con�guration A of dimension d.

Let (Z

+

; Z

�

) be a ippable circuit, with jZ

+

j = k. Let l be the number of maximal

simplices in the common link L of T

+

(Z) in T . Then, (Z

+

; Z

�

) is supported on

l

�

k

2

�

facets of T . In particular:

(i) If T uses all the elements of A as vertices, then every ippable circuit is

supported on at least one ippable facet.

(ii) If conv(Z

+

[ Z

�

) has dimension d

0

and intersects the interior of conv(A),

then (Z

+

; Z

�

) is supported on at least (d+ 1� d

0

)

�

k

2

�

ippable facets.
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Proof. The ippable facets of T on which the circuit (Z

+

; Z

�

) is supported are

those of the form S � T where S is an interior facet of T

+

(Z) and T is a maximal

simplex in L. The triangulation T

+

(Z) has

�

k

2

�

interior facets since it has k maximal

simplices and every pair of them are adjacent.

If every element of A is a vertex in T , then Z

+

has at least two elements. If

conv(Z

+

[ Z

�

) intersects the interior of conv(A), then L is a triangulation of a

(d� d

0

)-sphere and, hence, it has at least d+ 1� d

0

maximal simplices.

2. Refining the product of two triangulations

Throughout this section, let T

1

and T

2

be triangulations using all the elements of

respective point con�gurations A

1

of dimension d

1

and A

2

of dimension d

2

. Their

product T

1

� T

2

is the polyhedral subdivision of A

1

�A

2

into products S

1

� S

2

of

simplices S

1

2 T

1

and S

2

2 T

2

. Clearly, T

1

� T

2

uses all the elements of A

1

�A

2

.

2.1. Flippable circuits in re�nements of T

1

�T

2

. Here we let T be any trian-

gulation of A

1

�A

2

re�ning T

1

� T

2

. We are going to study the relation between

the ips in T and the ips in T

1

and T

2

. We consider the two natural projections

�

1

: A

1

� A

2

! A

1

and �

2

: A

1

� A

2

! A

2

and will often use the following

properties.

Lemma 2.1. (i) T

1

= f�

1

(S) : S 2 T g and T

2

= f�

2

(S) : S 2 T g.

(ii) For every simplex S 2 T and for i 2 f1; 2g:

star

T

i

(�

i

(S)) = �

i

(star

T

(S)) and link

T

i

(�

i

(S)) � �

i

(link

T

(S)):

By an a�ne equality on a point con�guration A we mean a valid expression of

the form

P

a2Z

+

�

a

a =

P

b2Z

�

�

b

b, in which Z

+

and Z

�

are disjoint subsets of A,

all the coe�cients �

a

and �

b

are strictly positive reals, and

P

a

�

a

=

P

b

�

b

. For

example, there is a unique a�ne equality (up to a scalar multiple) associated to

any circuit (Z

+

; Z

�

) of A.

Any a�ne equality C on A

1

� A

2

is projected to a�ne equalities on A

i

, that

we denote �

i

(C) (i 2 f1; 2g), in the following natural way: substitute every point

(a

1

; a

2

) 2 A

1

�A

2

which appears in the equality by its projection a

i

and combine

the coe�cients of points which at the end appear more than once. One or both

of the projected equalities might result in a trivial equality 0 = 0. This happens,

for example, for the equality (a; a

0

) + (b; b

0

) = (a; b

0

) + (b; a

0

) for any given points

a; b 2 A

1

and a

0

; b

0

2 A

2

.

We are interested in the a�ne equalities on A

1

�A

2

associated to the ippable

circuits of T . It is more convenient to look at ippable facets of T instead, which

can be done by part (i) of Lemma 1.4. Interior facets of T fall into the following

three categories:

(A) Facets which are interior to a maximal cell S

1

� S

2

of T

1

� T

2

. The points

involved in the equality are contained in S

1

� S

2

, whose two projections are

a�nely independent. Hence, the projected equalities are trivial.

(B

1

) Facets common to two maximal cells S

1

� S

2

and S

0

1

�S

2

of T

1

�T

2

with the

same second factor. Now the points involved in the equality are contained in

(S

1

[ S

0

1

) � S

2

. The second projection has to be a trivial equality as in the

previous case. The �rst projection could in principle be trivial or can be the

equality associated to the circuit contained in S

1

[ S

0

1

. Lemmas 2.2 and 2.3

below show that the second is always the case and that the circuit in question

is ippable in T

1

, if the original facet is ippable in T . See Figure 2.
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(B

2

) Facets common to two maximal cells S

1

� S

2

and S

1

�S

0

2

of T

1

�T

2

with the

same �rst factor. This case is analogous to (B

1

).

Lemma 2.2. Let S be an interior facet common to two maximal cells S

1

�S

2

and

S

0

1

�S

2

of T

1

�T

2

with the same second factor. Let (Z

+

; Z

�

) be the circuit supported

on that facet of T and let C denote the a�ne equality associated to the circuit.

Then, �

1

(C) is the a�ne equality on a circuit (Z

0

+

; Z

0

�

) of A

1

, with Z

0

+

� �

1

(Z

+

)

and Z

0

�

� �

1

(Z

�

).

a

ci

e

h

gf

b

dT2

T 

T1

Figure 2. The circuit (fa; dg; fb; cg) of T projects to the circuit

(fe; gg; ffg) of T

1

. Here S

1

= fe; fg, S

0

1

= ff; gg and S

2

= fh; ig.

Proof. Let Z

0

+

and Z

0

�

be the sets of points on one and the other side of the

projected equality �

1

(C). The conditions Z

0

+

� �

1

(Z

+

) and Z

0

�

� �

1

(Z

�

) are

obvious. Let (a; b) and (a

0

; b

0

) be the two points in link

T

(S). Clearly a 6= a

0

and

they are not in �

1

(S). Hence, a and a

0

appear in �

1

(C) and �

1

(C) is not trivial.

Since Z

0

+

[ Z

0

�

� �

1

(Z

+

[ Z

�

) is contained in the union of two adjacent simplices

of T

1

, (Z

0

+

; Z

0

�

) must be a circuit.

Lemma 2.3. In the conditions of Lemma 2.2, if (Z

+

; Z

�

) supports a ip of T ,

then:

(i) For any a 2 �

1

(Z

+

) there is a unique b 2 A

2

such that (a; b) 2 Z

+

and there

is no b 2 A

2

such that (a; b) 2 Z

�

.

(ii) Z

0

+

= �

1

(Z

+

) and Z

0

�

= �

1

(Z

�

).

(iii) (Z

0

+

; Z

0

�

) supports a ip of T

1

.

(iv) There is no pair of elements a 2 Z

0

+

and b 2 A

2

such that (a; b) is in the

common link in T of the positive triangulation of (Z

+

; Z

�

).

(v) �

2

(Z

+

) = �

2

(Z

�

).

Proof. We denote Z = Z

+

[ Z

�

and Z

0

= Z

0

+

[ Z

0

�

.

Let a 2 �

1

(Z

+

). Let b 2 A

2

with (a; b) 2 Z

+

. Since (Z

+

; Z

�

) is ippable,

Z n (a; b) is a simplex of T and hence projects to a simplex of T

1

. On the other

hand, Z projects to a dependent set. This implies that no other point (a; b

00

) is

contained in Z because otherwise �

1

(Z) = �

1

(Z n (a; b)). This �nishes part (i).

The containments Z

0

+

� �

1

(Z

+

) and Z

0

�

� �

1

(Z

�

) appear in the statement

of Lemma 2.2. Their converses hold because any element in �

1

(Z

+

) n Z

0

+

or in

�

1

(Z

�

) n Z

0

�

must appear as the �rst coordinate of points both in Z

+

and Z

�

,

contradicting part (i). This proves part (ii).
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Let us now see part (iii). By parts (i) and (ii), for any a 2 Z

0

+

there is a b 2 A

2

with (a; b) 2 Z

+

and with Z

0

n a = �

1

(Z n (a; b)). Since (Z

+

; Z

�

) is ippable in T ,

Z

0

na is in T

1

. Hence, T

1

contains as a subcomplex the positive triangulation of Z

0

.

Let a and a

0

be two di�erent elements in Z

0

+

. We have to prove that link

T

1

(Z

0

n

a) = link

T

1

(Z

0

n a

0

), for which we check only one of the two containments. Let

b; b

0

2 A

2

with (a; b); (a

0

; b

0

) 2 Z

+

, as before. We have link

T

1

(Z

0

na) = link

T

1

(�

1

(Z n

(a; b))) � �

1

(link

T

(Z n (a; b))) = �

1

(link

T

(Z n (a

0

; b

0

))), where the �rst equality

holds by part (ii) of the statement, the containment in the middle by part (ii)

of Lemma 2.1 and the last equality because (Z

+

; Z

�

) is ippable. With similar

arguments �

1

(link

T

(Z n (a

0

; b

0

))) � star

T

1

(�

1

(Z n (a

0

; b

0

))) = star

T

1

(Z

0

n a

0

). In

conclusion, link

T

1

(Z

0

n a) � star

T

1

(Z

0

n a

0

). Since no element of Z

0

n a

0

can appear

in link

T

1

(Z

0

n a), we have link

T

1

(Z

0

n a) � link

T

1

(Z

0

n a

0

).

For part (iv), if (a; b

0

) is a point in the common link of the positive triangulation

of (Z

+

; Z

�

) with a 2 Z

0

+

= �

1

(Z

+

), then let (a; b) 2 Z

+

as before. We have that

Z [ (a; b

0

) n (a; b) is a simplex in T . But Z

0

= �

1

(Z) = �

1

(Z [ (a; b

0

) n (a; b)). This

is impossible since Z

0

is dependent in A

1

.

Part (v) is trivial: the second projection of the a�ne equality on the circuit

(Z

+

; Z

�

) is the trivial equality. This implies that every element in �

2

(Z) is the

second coordinate of points in both Z

+

and Z

�

.

2.2. The staircase re�nement of T

1

� T

2

. We �rst recall what the staircase

triangulation of the product of two simplices is. Let S

1

and S

2

be two simplices of

dimensions d

1

and d

2

, and suppose that their vertices are given in a speci�c order.

The total order on the vertices of S

1

and S

2

induces the following partial order on

the vertices of the product S

1

�S

2

: (a; b) � (a

0

; b

0

) if and only if a � a

0

and b � b

0

.

Every chain in this partial order is an a�nely independent subset of S

1

� S

2

. The

collection of all such chains is a triangulation of S

1

� S

2

, described for example in

[21, Section 7.3.D] and [27, p. 282] and used also in algebraic topology.

All the maximal simplices contain the vertices (a

min

; b

min

) and (a

max

; b

max

),

where a

min

and a

max

(respectively b

min

and b

max

) are the minimum and maximum

vertices of S

1

(respectively of S

2

). More visually, if we arrange the vertices of

S

1

�S

2

in a (d

1

+1)� (d

2

+1) rectangular grid, then the maximal simplices of our

triangulation are the monotone staircases from (a

min

; b

min

) to (a

max

; b

max

). For

this reason we call this triangulation the staircase triangulation of S

1

� S

2

and we

denote it stair(S

1

�S

2

). We will encounter an example of a staircase triangulation

in Remark 3.4.

Any pair of adjacent maximal simplices in stair(S

1

�S

2

) di�er in the replacement

of a point (a; b

0

) by a point (a

0

; b), for consecutive pairs of vertices a < a

0

and b < b

0

in the total orderings of S

1

and S

2

. In particular, every ip of stair(S

1

� S

2

)

is supported on a circuit (f(a; b

0

); (a

0

; b)g; f(a; b); (a

0

; b

0

)g), for consecutive pairs of

vertices a < a

0

and b < b

0

. The converse is also true although we do not need it:

stair(S

1

� S

2

) has exactly d

1

� d

2

ips, supported on the circuits of that form.

For the sequel, it is convenient to reformulate the construction of the staircase

triangulation as follows: We will express the ordering of the vertices of S

1

and S

2

by giving an acyclic orientation to their respective 1-skeletons. Then, the circuits

which produce ips are those of the form (f(a; b

0

); (a

0

; b)g; f(a; b); (a

0

; b

0

)g) where

fa; a

0

g and fb; b

0

g are edges of S

1

and S

2

whose reversal produces no directed cycle.

We call such edges reversible edges.
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Suppose now that we have two triangulations T

1

and T

2

of two point con�gura-

tions A

1

and A

2

as in Section 2.1, and that we are given respective locally acyclic

orientations of the 1-skeletons of T

1

and T

2

. By this we mean orientations which

are acyclic on every simplex. Then, re�ning each product S

1

� S

2

2 T

1

� T

2

in

its staircase way (according to the given locally acyclic orientations) produces a

triangulation of A

1

�A

2

. That this is indeed a triangulation follows from the fact

that in the staircase triangulation of the product of two simplices S

1

� S

2

, each

face F

1

� F

2

is triangulated according to the staircase triangulation corresponding

to the restrictions of the orderings of S

1

to F

1

and of S

2

to F

2

.

We call this triangulation the staircase re�nement of T

1

� T

2

and denote it

stair(T

1

� T

2

). In our notation, T

1

and T

2

represent not only the triangulations

but also speci�c locally acyclic orientations of their 1-skeletons, since the staircase

re�nement depends on them. In [18, p. 67], a simplicial complex together with

a locally acyclic orientation is called an ordered simplicial complex and the (com-

binatorial) staircase re�nement of two ordered simplicial complexes is called the

Cartesian product of them. It is used as the standard way to give the structure

of a simplicial complex to the product of (the underlying spaces of) two simplicial

complexes.

The analysis of ippable circuits carried out in Section 2.1 gives the following:

Lemma 2.4. If the locally acyclic orientation of at least one of T

1

or T

2

does not

have any reversible edge, then every ippable circuit of stair(T

1

� T

2

) projects, in

the sense of Lemmas 2.2 and 2.3, either to a ippable circuit of T

1

or to a ippable

circuit of T

2

.

Proof. Recall the three types (A), (B

1

) and (B

2

) of possible interior facets in a

re�nement of T

1

� T

2

that we mentioned before Lemma 2.2. Those of types (B

1

)

or (B

2

) project to ippable facets of T

1

or T

2

by Lemmas 2.2 and 2.3.

Hence, we only need to deal with facets of type (A), i.e. facets interior to a cell

S

1

� S

2

of T

1

� T

2

. A ip in one of these facets will be in particular a ip in the

staircase triangulation of S

1

� S

2

. Such a ip is supported in a circuit of the form

(f(a; b

0

); (a

0

; b)g; f(a; b); (a

0

; b

0

)g) where fa; a

0

g is a reversible edge in the orientation

of S

1

and fb; b

0

g a reversible edge in the orientation of S

2

. For this circuit to be

ippable it is clearly necessary (and su�cient, although we do not need it) that

both edges fa; a

0

g and fb; b

0

g be reversible in every simplex of T

1

and T

2

in which

they appear.

2.3. Towards a triangulation without ips. Let T be a triangulation of a point

con�guration A, with its 1-skeleton oriented locally acyclically. A source (resp. a

sink) of T is a vertex which is the source (resp. the sink) of every simplex incident

to it. An edge of T will be called a sandwich edge if its source and sink are the

source and sink of every simplex containing the edge.

Let (Z

+

; Z

�

) be a ippable circuit of T and suppose that Z

+

has at least two

elements. This is automatic if all the points of A are vertices in T . Then, every

pair fa

+

; a

�

g with a

+

2 Z

+

and a

�

2 Z

�

is an edge in T .

De�nition 2.5. In the above conditions, we say that an element a

+

2 Z

+

is a

source (respectively, a sink) in (Z

+

; Z

�

) if it is the source (respectively, the sink)

in all the edges fa

+

; a

�

g with a

�

2 Z

�

. We say that

� (Z

+

; Z

�

) is a source circuit (respectively, a sink circuit) if every a

+

2 Z

+

is

a source (respectively, a sink) in the circuit.
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� (Z

+

; Z

�

) is a sandwich circuit if every a

+

2 Z

+

is either a source or a sink in

the circuit and there is at least one of each.

Theorem 2.6. Let T

1

and T

2

be triangulations with their 1-skeletons oriented in

locally acyclic ways. Let (Z

+

; Z

�

) be a circuit which supports a ip in stair(T

1

�T

2

)

and suppose that it projects onto a ippable circuit (Z

0

+

; Z

0

�

) of T

1

, in the sense of

Lemmas 2.2 and 2.3.

(i) If (Z

0

+

; Z

0

�

) is a sink circuit, then �

2

(Z

+

) is a sink vertex of T

2

.

(ii) If (Z

0

+

; Z

0

�

) is a source circuit, then �

2

(Z

+

) is a source vertex of T

2

.

(iii) If (Z

0

+

; Z

0

�

) is a sandwich circuit, then �

2

(Z

+

) is a sandwich edge of T

2

.

Proof. Let S

2

be any simplex in T

2

containing �

2

(Z

+

). For any a 2 Z

0

+

there is a

unique point b 2 �

2

(Z

+

) with (a; b) 2 Z

+

, by part (i) of Lemma 2.3. We will prove

that if a is a source in (Z

0

+

; Z

0

�

) then b is the source of S

2

. This and the analog

statement when a is a sink imply parts (i), (ii) and (iii).

Let b

0

be the source of S

2

. Let a

0

2 Z

0

+

n fag, so that S

1

:= Z

0

+

[ Z

0

�

n fa

0

g, is

a simplex in T

1

. Let b

0

be such that (a

0

; b

0

) 2 Z

+

. Since the staircase triangulation

of S

1

� S

2

is a subcomplex of stair(T

1

� T

2

) and since (Z

+

; Z

�

) is ippable, there

is a maximal staircase S in S

1

� S

2

containing Z

+

[ Z

�

n f(a

0

; b

0

)g.

The sources of (Z

0

+

; Z

0

�

) contained in S

1

form an initial segment of S

1

, and in

each of their columns there is only one element of S by parts (i) and (iv) of Lemma

2.3. Hence, for any source a

00

of (Z

0

+

; Z

0

�

) contained in S

1

(in particular for a),

(a

00

; b

0

) is in Z

+

.

Corollary 2.7. Let T

1

be a triangulation using all the points of a point con�gu-

ration A

1

and whose 1-skeleton has been oriented in a locally acyclic way, without

reversible edges or global sinks, and with the property that all its ippable circuits

are sandwich circuits.

Let A

2

= fo; p; q; rg � Z

2

with o = (0; 0), p = (1; 0), q = (0; 1) and r = (�1;�1).

Let T

2

be the triangulation of A whose maximal simplices are fo; p; qg, fo; p; rg, and

fo; q; rg with its 1-skeleton oriented by o! p, o! q, o! r and p! q ! r ! p.

Then, the staircase re�nement stair(T

1

� T

2

) of T

1

� T

2

does not have any ips.

Proof. By Lemma 2.4, and since T

1

has no reversible edges, every ippable circuit

of stair(T

1

� T

2

) projects either to a ippable circuit of T

1

, which is a sandwich

circuit, or to the unique ippable circuit of T

2

, which is a sink circuit. Both cases are

forbidden by Theorem 2.6, since T

1

has no sinks and T

2

has no sandwich edges.

3. A construction in dimension four

In this section we describe a triangulation in dimension four which satis�es the

hypotheses of the T

1

of Corollary 2.7.

3.1. Description of the triangulation. Throughout Section 3, let A be the

following point con�guration in R

4

, with 81 elements. Indices are regarded modulo

8:

(i) The origin O = (0; 0; 0; 0).

(ii) The 8 points v

j

:=

�

0; 0; cos

�

�

4

j

�

; sin

�

�

4

j

��

, for j = 0; : : : ; 7.

(iii) The 8 points h

i

:=

�

cos

�

�

4

i

�

; sin

�

�

4

i

�

; 0; 0

�

, for i = 0; : : : ; 7.

(iv) The 32 points t

i;j

:= h

i

+ v

j

=

�

cos

�

�

4

i

�

; sin

�

�

4

i

�

; cos

�

�

4

j

�

; sin

�

�

4

j

��

, for all

values of i; j 2 f0; : : : ; 7g with i+ j odd.
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(v) The 32 points s

i+

1

2

;j+

1

2

= (t

i;j+1

+ t

i+1;j

)=2, for all values of i; j 2 f0; : : : ; 7g

with i+ j even.

The convex hull of A is a 4-polytope whose vertices are the 32 points t

i;j

and

with the following 48 facets:

� Eight square anti-prisms P

k+

1

2

(k = 0; : : : ; 7) whose eight vertices are the

points t

i;j

with j 2 fk; k + 1g,

� Another eight square anti-prisms P

0

k+

1

2

(k = 0; : : : ; 7) whose eight vertices are

the points t

i;j

with i 2 fk; k + 1g, and

� 32 tetrahedra T

i;j

(i; j 2 f0; : : : ; 7g; i+j even) having as vertices t

i�1;j

, t

i+1;j

,

t

i;j�1

and t

i;j+1

.

The two series of 8 anti-prisms form two solid tori in the three-dimensional

topological sphere @(conv(A)) which are glued to one another along edges, leaving

some spaces for the 32 tetrahedra T

i;j

. The point s

i+

1

2

;j+

1

2

lies in an edge incident

to the tetrahedra T

i;j

and T

i+1;j+1

and to the anti-prisms P

j+

1

2

and P

0

i+

1

2

. The

point v

j

(respectively h

i

) lies in the square between the two anti-prisms P

j�

1

2

and

P

j+

1

2

(respectively P

0

i�

1

2

and P

0

i+

1

2

).

The a�ne symmetry group of A has 128 elements: any of the 16 anti-prisms

can be sent to any other one in eight ways. We will be interested in the following

subgroup G with 64 elements. Let g

h

and g

v

be the rotations of angle �=4 on the

�rst two and on the last two coordinates respectively, and let g

t

be the exchange of

the �rst two and last two coordinates. Then, G is generated by g

1

:= g

h

2

, g

2

:= g

v

2

,

g

3

:= g

h

� g

v

= g

v

� g

h

, and g

4

:= g

t

. Either of the �rst two is redundant. All these

isometries �x the origin O. Table 1 shows the permutations induced on the other

points of A.

g

1

: (h

i

7! h

i+2

; v

j

7! v

j

; t

i;j

7! t

i+2;j

; s

i+

1

2

;j+

1

2

7! s

i+

5

2

;j+

1

2

)

g

2

: (h

i

7! h

i

; v

j

7! v

j+2

; t

i;j

7! t

i;j+2

; s

i+

1

2

;j+

1

2

7! s

i+

1

2

;j+

5

2

)

g

3

: (h

i

7! h

i+1

; v

j

7! v

j+1

; t

i;j

7! t

i+1;j+1

; s

i+

1

2

;j+

1

2

7! s

i+

3

2

;j+

3

2

)

g

4

: (h

i

7! v

i

; v

j

7! h

j

; t

i;j

7! t

j;i

; s

i+

1

2

;j+

1

2

7! s

j+

1

2

;i+

1

2

)

Table 1. The a�ne symmetries of the triangulation T .

We now de�ne a triangulation T of A which has G as its symmetry group. For

this, we give in Table 2 a representative of each of the nine orbits of maximal

simplices in T . We name the orbits with the �rst nine letters of the capital Greek

alphabet. The indices i and j in Table 2 range over all the possibilities modulo 8

with i+j even. This produces 32 simplices in each orbit. The other 32 are obtained

by applying the transformation g

4

and we name them as follows: A

0

j;i

:= g

4

(A

i;j

),

B

0

j;i

:= g

4

(B

i;j

), �

0

j;i

:= g

4

(�

i;j

), �

0

j;i

:= g

4

(�

i;j

), E

0

j;i

:= g

4

(E

i;j

), Z

0

j;i

:= g

4

(Z

i;j

),

H

0

j;i

:= g

4

(H

i;j

), �

0

j;i

:= g

4

(�

i;j

), and I

0

j;i

:= g

4

(I

i;j

). That these 9 � 64 simplices

of dimension four are indeed the maximal simplices of a triangulation of A will be

proved afterwards. Remark 3.4 at the end of Section 3.3 may help to clarify this

construction and its genesis.

There are 7 orbits of boundary facets in T , with representatives given in Table

3. The �rst �ve orbits triangulate the 16 square anti-prisms. The last two orbits

triangulate the 32 tetrahedra T

i;j

. For example, the tetrahedron T

0;0

is triangulated
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A

i;j

:= fO ; v

j+1

; t

i;j+1

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g

B

i;j

:= fO ; v

j+1

; t

i+1;j

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g

�

i;j

:= fO ; v

j+1

; t

i+1;j

; t

i+2;j+1

; s

i+

1

2

;j+

1

2

g

�

i;j

:= fO ; v

j+1

; t

i�1;j

; t

i;j+1

; s

i�

1

2

;j�

1

2

g

E

i;j

:= fO ; v

j+1

; v

j

; t

i+1;j

; s

i�

1

2

;j�

1

2

g

Z

i;j

:= fO ; v

j+1

; v

j

; t

i�1;j

; s

i�

1

2

;j�

1

2

g

H

i;j

:= fv

j+1

; v

j

; t

i�1;j

; t

i+1;j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= fv

j+1

; t

i�1;j

; t

i+1;j

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g

I

i;j

:= fv

j+1

; t

i;j+1

; t

i�1;j

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g

Table 2. Representatives for the nine orbits of maximal simplices

in T .

with �

0;0

n v

1

, �

0

0;0

n h

1

, I

0;0

n v

1

and I

0

0;0

n h

1

. Each of these four 3-simplices joins

the two points s

�

1

2

;�

1

2

and s

i+

1

2

;j+

1

2

, which lie in two opposite edges of T

0;0

, to one

of the remaining four edges of T

0;0

.

�

i;j

nO = fv

j+1

; t

i+1;j

; t

i+2;j+1

; s

i+

1

2

;j+

1

2

g � P

j+

1

2

H

i;j

n s

i�

1

2

;j�

1

2

= fv

j+1

; v

j

; t

i�1;j

; t

i+1;j

g � P

j+

1

2

H

i+1;j+1

n v

j+2

= fv

j+1

; t

i;j+1

; t

i+2;j+1

; s

i+

1

2

;j+

1

2

g � P

j+

1

2

�

i;j

n s

i�

1

2

;j�

1

2

= fv

j+1

; t

i�1;j

; t

i+1;j

; s

i+

1

2

;j+

1

2

g � P

j+

1

2

I

i;j

n s

i�

1

2

;j�

1

2

= fv

j+1

; t

i�1;j

; t

i;j+1

; s

i+

1

2

;j+

1

2

g � P

j+

1

2

�

i;j

n v

j+1

= ft

i�1;j

; t

i+1;j

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g � T

i;j

I

i;j

n v

j+1

= ft

i;j+1

; t

i�1;j

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g � T

i;j

Table 3. Representatives for the seven orbits of boundary facets

in T .

There are 19 orbits of interior facets in the triangulation T , with representatives

given in Table 4. For each one we write its two representations as the complement

of a vertex in a maximal simplex of T followed by its four vertices. As before,

the indices i and j range over all the possibilities modulo 8 and with i + j even.

This gives 32 elements of each orbit and the other 32 are obtained applying the

transformation g

4

to them.

3.2. T is a triangulation, with two orbits of ips. In order to prove that

T is a triangulation and compute its ips, in Table 5 we display a list of a�ne

equalities valid on A. Each equality involves only the points of A in the star of one

representative of one of the 19 orbits of interior facets in T , although di�erent orbits

may produce the same equality. In other words, the points on the left and right

part of each equality are the positive and negative parts of the circuit supported

on the corresponding interior facet of T . The group G acts freely over the circuits

supported on facets except for those of types  (same circuit as �), � and �, in

which the stabilizer has exactly two elements, as indicated in Table 5.

The reader can check the equalities with a symbolic computation program or

can verify them by hand in the following way: �rst check that in every equation

the sum of coe�cients is equal on both sides; second, forget the appearances of
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�

i;j

:= A

i;j

nO = I

i;j

n t

i�1;j

= fv

j+1

; t

i;j+1

; s

i+

1

2

;j+

1

2

; s

i�

1

2

;j�

1

2

g

�

i;j

:= A

i;j

n v

j+1

= B

0

j;i

n h

i+1

= fO; t

i;j+1

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g



i;j

:= A

i;j

n t

i;j+1

= B

i;j

n t

i+1;j

= fO; v

j+1

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g

�

i;j

:= A

i;j

n s

i�

1

2

;j�

1

2

= Z

i+1;j+1

n v

j+2

= fO; v

j+1

; t

i;j+1

; s

i+

1

2

;j+

1

2

g

�

i;j

:= A

i;j

n s

i+

1

2

;j+

1

2

= �

i;j

n t

i�1;j

= fO; v

j+1

; t

i;j+1

; s

i�

1

2

;j�

1

2

g

�

i;j

:= B

i;j

n O = �

i;j

n t

i�1;j

= fv

j+1

; t

i+1;j

; s

i�

1

2

;j�

1

2

; s

i+

1

2

;j+

1

2

g

�

i;j

:= B

i;j

n s

i�

1

2

;j�

1

2

= �

i;j

n t

i+2;j+1

= fO; v

j+1

; t

i+1;j

; s

i+

1

2

;j+

1

2

g

�

i;j

:= B

i;j

n s

i+

1

2

;j+

1

2

= E

i;j

n v

j

= fO; v

j+1

; t

i+1;j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= �

i�1;j�1

n v

j

= �

0

j;i

n h

i+1

= fO; t

i;j�1

; t

i+1;j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= �

i�1;j�1

n t

i;j�1

= E

i;j

n v

j+1

= fO; v

j

; t

i+1;j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= �

i�1;j�1

n s

i�

1

2

;j�

1

2

= �

i+1;j�1

n s

i+

1

2

;j�

3

2

= fO; v

j

; t

i;j�1

; t

i+1;j

g

�

i;j

:= �

i;j

n O = I

i;j

n s

i+

1

2

;j+

1

2

= fv

j+1

; t

i�1;j

; t

i;j+1

; s

i�

1

2

;j�

1

2

g

�

i;j

:= �

i;j

n t

i;j+1

= Z

i;j

n v

j

= fO; v

j+1

; t

i�1;j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= E

i;j

nO = H

i;j

n t

i�1;j

= fv

j+1

; v

j

; t

i+1;j

; s

i�

1

2

;j�

1

2

g

o

i;j

:= E

i;j

n t

i+1;j

= Z

i;j

n t

i�1;j

= fO; v

j+1

; v

j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= E

i;j

n s

i�

1

2

;j�

1

2

= Z

i+2;j

n s

i+

3

2

;j�

1

2

= fO; v

j+1

; v

j

; t

i+1;j

g

�

i;j

:= Z

i;j

nO = H

i;j

n t

i+1;j

= fv

j+1

; v

j

; t

i�1;j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= H

i;j

n v

j

= �

i;j

n s

i+

1

2

;j+

1

2

= fv

j+1

; t

i�1;j

; t

i+1;j

; s

i�

1

2

;j�

1

2

g

�

i;j

:= �

i;j

n t

i+1;j

= I

i;j

n t

i;j+1

= fv

j+1

; t

i�1;j

; s

i+

1

2

;j+

1

2

; s

i�

1

2

;j�

1

2

g

Table 4. Representatives for the nineteen orbits of interior facets

in T .

the point O and perform the following substitutions: t

k;l

= h

k

+ v

l

, s

k+

1

2

;l+

1

2

=

(h

k

+h

k+1

+ v

l

+ v

l+1

)=2, h

k+1

+h

k�1

=

p

2h

k

, and v

l+1

+ v

l�1

=

p

2v

l

. After this

is done all terms should cancel out in all the equations.

Lemma 3.1. T is a triangulation of A.

Proof. We �rst check that A

0;0

= fO; v

1

; t

0;1

; s

�

1

2

;�

1

2

; s

1

2

;

1

2

g is a�nely independent:

�

�

�

�

�

�

�

�

�

�

�

0 0 1

1

2

+

p

2

4

1

2

+

p

2

4

0 0 0 �

p

2

4

p

2

4

0

p

2

2

p

2

2

1

2

+

p

2

4

1

2

+

p

2

4

0

p

2

2

p

2

2

�

p

2

4

p

2

4

1 1 1 1 1

�

�

�

�

�

�

�

�

�

�

�

= �

�

�

�

�

�

�

�

0 �

p

2

4

p

2

4

p

2

2

1

2

+

p

2

4

1

2

+

p

2

4

p

2

2

�

p

2

4

p

2

4

�

�

�

�

�

�

�

=

2 +

p

2

8

Since A

i;j

is an a�ne basis, for any point a 2 A n A

i;j

and b 2 A

i;j

, if a and

b have non-zero coe�cient in the unique a�ne equality supported on A

i;j

[ fag,

then A

i;j

[ fag n fbg is again a basis. Hence, the a�ne equalities C(�

i;j

), C(

i;j

),

C(�

i;j

), and C(�

i;j

) imply, respectively, that I

i;j

, B

i;j

, Z

i+1;j+1

, and �

i;j

are also

bases. Using the same argument and the other equalities we conclude that �

i;j

,

E

i;j

, H

i;j

, and �

i;j

are bases too. Thus, T consists only of independent subsets of

A and we can apply Lemma 1.2 to it.

The lists of boundary and interior facets of T given in Tables 3 and 4 are com-

plete and non-redundant in the sense that exactly one representative of each of the

�ve facets of each of the nine orbits of 4-simplices appears exactly once in them.

Moreover, in each of C(�

i;j

); : : : ; C(�

i;j

) the two vertices joined to the interior facet
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C(�

0;0

); C(�

0;0

); C(�

0;0

) : (

p

2� 1)O +

1+

p

2

2

t

�1;0

+ s
1

2

;

1

2

=

p

2

2

v

1

+

1

2

t

0;1

+

p

2s

�

1

2

;�

1

2

C(�

0;0

) : (

p

2

2

+ 1)v

1

+ (

p

2

2

+ 1)h

1

+ s

�

1

2

;�

1

2

= 2O + (1 +

p

2)s
1

2

;

1

2

C(

0;0

) = C(

0

0;0

); C(�

0;0

) = C(�

0

0;0

) : t

1;0

+ t

0;1

= 2s
1

2

;

1

2

C(�

0;0

) : s

�

1

2

;�

1

2

+ (1 +

p

2

2

)v

2

+ s
1

2

;

1

2

= (2�

p

2

2

)O +

p

2

2

v

1

+ (1 +

p

2

2

)t

0;1

C(�

0;0

); C(�

0;0

); C(o

0;0

); C(�

0;0

) : (2�

p

2)O +

p

2

2

t

1;0

+ (1 +

p

2

2

)t

�1;0

= v

1

+ 2s

�

1

2

;�

1

2

C(�

0;0

) : 2s

�

1

2

;�

1

2

+ (1 +

p

2)t

2;1

= (2�

p

2)O +

p

2v

1

+ (1 +

p

2)t

1;0

C(�

0;0

) :

p

2s
1

2

;

1

2

+ v

0

+ (3� 2

p

2)O = v

1

+ t

1;0

+ (2�

p

2)s

�

1

2

;�

1

2

C(�

0;0

) = C(�

0

1;�1

) : v

0

+ h

1

= O + t

1;0

C(�

0;0

) : (1 +

p

2)t

0;�1

+

p

2v

1

= (2

p

2� 2)O + t

1;0

+ 2s

�

1

2

;�

1

2

C(�

0;0

) = C(�

0

1;�1

) :

p

2s

�

1

2

;�

1

2

+

p

2s
1

2

;�

3

2

= (

p

2� 1)O + (

p

2 + 1)t

0;�1

C(�

0;0

) : t

0;1

+

p

2v

0

+ (2�

p

2)O + t

�1;0

= 2v

1

+ 2s

�

1

2

;�

1

2

C(�

0;0

) : s

�

1

2

;�

1

2

+ (1 +

p

2)s
3

2

;�

1

2

+ (1 +

p

2

2

)v

1

= O + (1 +

p

2

2

)v

0

+ (1 +

p

2)t

1;0

C(�

0;0

) :

p

2v

0

+ 2s
1

2

;

1

2

= v

1

+

p

2

2

t

�1;0

+

1+

p

2

2

t

1;0

Table 5. A�ne equalities for the circuits supported on interior

facets of T .

in question appear both on the left-hand side of the equality. This implies that

these two points are in opposite sides of the interior facet. With this and Lemma

1.2 we only have to check that some point of conv(A) lies in the convex hull of

exactly one simplex of T . For a generic point in the interior of conv(A) but suf-

�ciently close to a facet of conv(A), this follows from the fact that T induces a

triangulation on that facet.

Lemma 3.2. T has two orbits of ips under the action of its symmetry group G,

with representatives supported on the circuits

(fO; t

i�1;j

; s

i+

1

2

;j+

1

2

g; fv

j+1

; t

i;j+1

; s

i�

1

2

;j�

1

2

g) and

(fv

j

; s

i+

1

2

;j+

1

2

g; fv

j+1

; t

i�1;j

; t

i+1;j

g):

Proof. That (fO; t

i�1;j

; s

i+

1

2

;j+

1

2

g, fv

j+1

; t

i;j+1

; s

i�

1

2

;j�

1

2

g) and (fv

j

, s

i+

1

2

;j+

1

2

g,

fv

j+1

; t

i�1;j

; t

i+1;j

g) are circuits follows respectively from the equalities C(�

0;0

)

and C(�

0;0

) of Table 5.

The �rst circuit spans conv(A) and the maximal simplices in its positive trian-

gulation are A

i;j

, �

i;j

, and I

i;j

. The second circuit spans the anti-prism facet P

j+

1

2

of conv(A). The maximal simplices in its positive triangulation are H

i;j

n s

i�

1

2

;j�

1

2

and �

i;j

n s

i�

1

2

;j�

1

2

. In other words, T contains its positive triangulation and all

the maximal simplices in it have the same link. Hence, both circuits are ippable.

We now check that the other 15 orbits of interior facets are not ippable, using

Lemma 1.4 for this. In the �rst place, if a ippable circuit has more than two

positive elements, then it must be supported on at least

�

3

2

�

facets of T . This

implies that the circuits supported on the facets of types �, �, �, �, and � are not
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ippable, because they are supported only on one facet of T each and their positive

parts have at least three elements.

The circuits supported on facets of types � (same circuit as �, o, and �), �, �, �,

and � all contain the element O and hence we can apply part (ii) of Lemma 1.4 to

them. According to it we would need at least 2 �3, 2 �1, 3 �1, 2 �1, and 3 �1 ippable

facets for them respectively, but they are supported in only 4, 1, 2, 1, and 2 facets.

Only the facets of types  and � remain to be checked. 

0;0

and �

0;0

are both

supported on the circuit (ft

1;0

; t

0;1

g; fs

1

2

;

1

2

g).This circuit is not ippable since the

link of ft

1;0

; s

1

2

;

1

2

g in T contains fO; v

1

; v

2

g (simplex Z

1;1

), the link of ft

0;1

; s

1

2

;

1

2

g

contains fO; v

1

; t

2;1

g (simplex �

0;0

) and the points v

2

and t

2;1

lie both on the same

side of the hyperplane spanned by fO; v

1

; t

1;0

; t

0;1

; s

1

2

;

1

2

g (equation C(�

1;1

)).

3.3. A locally acyclic orientation of the edges of T . We now introduce an

orientation of the 1-skeleton of the triangulation T . There are 14 orbits of edges.

In Table 6 below we show a representative for each orbit, and a particular maximal

simplex containing it. We orient the representatives from the vertex which appears

�rst to the second and let each orbit be oriented by the action of the symmetry

group G.

fO; v

j

g 2 A

i;j+1

fv

j

; v

j+1

g 2 E

i;j

fO; t

i;j+1

g 2 A

i;j

fO; s

i+

1

2;

;j+

1

2

g 2 A

i;j

fv

j

; t

i+1;j

g 2 �

i+1;j+1

ft

i;j�1

; v

j

g 2 �

i+1;j�1

fv

j

; s

i�

1

2;

;j�

1

2

g 2 A

i�1;j�1

fs

i+

1

2;

;j�

3

2

; v

j

g 2 E

i+1;j�1

ft

i�1;j

; t

i+1;j

g 2 H

i;j

ft

i;j�1

; t

i+1;j

g 2 �

i�1;j�1

fs

i�

1

2;

;j�

1

2

; t

i;j+1

g 2 A

i;j

fs

i�

1

2;

;j�

1

2

; s

i+

1

2;

;j+

1

2

g 2 A

i;j

ft

i�1;j

; s

i+

1

2;

;j+

1

2

g 2 �

i;j

ft

i;j�1

; s

i�

1

2;

;j�

1

2

g 2 B

i�1;j�1

Table 6. The fourteen orbits of edges in T .

That this orientation is locally acyclic can be seen in Table 7, where the total

order induced on the vertices of each maximal representative simplex is shown. It

has no reversible edges since the reversal of any edge produces a cycle in the simplex

included after it in Table 6. The only vertices which are sinks of some maximal

simplex in Table 7 are v

j+1

, t

i;j+1

and s

i+

1

2

;j+

1

2

, but the �rst two are not sinks in

A

i;j

and the last one is not a sink in �

i;j

. Hence, the orientation has no sinks.

Finally, let us see that the two types of ippable circuits of T (see Lemma 3.2) are

sandwich circuits, in the terms of De�nition 2.5. This holds since the orientation of

the 1-skeleton of T is compatible only with the following total order on the supports

of the circuits:

+

O

!

+

t

i�1;j

!

�

s

i�

1

2

;j�

1

2

!

�

v

j+1

!

�

t

i;j+1

!

+

s

i+

1

2

;j+

1

2

;

+

v

j

!

�

t

i�1;j

!

�

t

i+1;j

!

�

v

j+1

!

+

s

i+

1

2

;j+

1

2

:

The following statement sums up the key facts on T proved throughout this

section:

Theorem 3.3. T is a triangulation of the point con�guration A � R

4

. With the

locally acyclic orientation we have given to its edges it has no global sinks, it has

no reversible edges and every ippable circuit is a sandwich circuit.
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A

i;j

: fO ! s

i�

1

2

;j�

1

2

! v

j+1

! t

i;j+1

! s

i+

1

2

;j+

1

2

g

B

i;j

: fO ! s

i�

1

2

;j�

1

2

! t

i+1;j

! v

j+1

! s

i+

1

2

;j+

1

2

g

�

i;j

: fO ! t

i+1;j

! v

j+1

! s

i+

1

2

;j+

1

2

! t

i+2;j+1

g

�

i;j

: fO ! t

i�1;j

! s

i�

1

2

;j�

1

2

! v

j+1

! t

i;j+1

g

E

i;j

: fO ! v

j

! s

i�

1

2

;j�

1

2

! t

i+1;j

! v

j+1

g

Z

i;j

: fO ! v

j

! t

i�1;j

! s

i�

1

2

;j�

1

2

! v

j+1

g

H

i;j

: fv

j

! t

i�1;j

! s

i�

1

2

;j�

1

2

! t

i+1;j

! v

j+1

g

�

i;j

: ft

i�1;j

! s

i�

1

2

;j�

1

2

! t

i+1;j

! v

j+1

! s

i+

1

2

;j+

1

2

g

I

i;j

: ft

i�1;j

! s

i�

1

2

;j�

1

2

! v

j+1

! t

i;j+1

! s

i+

1

2

;j+

1

2

g

Table 7. The orientation of the 1-skeleton of T is locally acyclic.

Hence, the staircase re�nement stair(T � T

2

), does not have any ips, where T

2

is the 2-dimensional triangulation of Corollary 2.7.

Remark 3.4. The triangulation T described in the last pages is based on the con-

struction in Section 4 of [38]. We show here this connection because understanding

that (simpler) triangulation will help to understand this one.

Let n � 3 be an integer. Let A

n

� R

4

consist of the following (n + 1)

2

points:

O := (0; 0; 0; 0), v

j

:=

�

0; 0; cos

�

�

4

j

�

; sin

�

�

4

j

��

, h

i

:=

�

cos

�

�

4

i

�

; sin

�

�

4

i

�

; 0; 0

�

, and

t

i;j

:= h

i

+ v

j

� O =

�

cos

�

�

4

i

�

; sin

�

�

4

i

�

; cos

�

�

4

j

�

; sin

�

�

4

j

��

. The indices i and j

range over all the possibilities modulo n. Let T

n

be the triangulation having the

following 6n

2

maximal simplices. For each i; j = 0; : : : ; n� 1:

�

i;j

:= fO; v

j

; t

i;j+1

; t

i;j

; t

i+1;j+1

g; �

0

i;j

:= fO; h

i

; t

i+1;j

; t

i;j

; t

i+1;j+1

g;

	

i;j

:= fO; v

j

; t

i+1;j

; t

i;j

; t

i+1;j+1

g; 	

0

i;j

:= fO; h

i

; t

i;j+1

; t

i;j

; t

i+1;j+1

g;




i;j

:= fO; v

j+1

; v

j

; t

i+1;j+1

; t

i;j+1

g; 


0

i;j

:= fO; h

i+1

; h

i

; t

i+1;j+1

; t

i+1;j

g:

The con�guration A

n

is the product with itself of the two-dimensional point

con�guration B

n

consisting of the vertices and the center of a regular n-gon. The

triangulation T

n

described above equals the staircase triangulation stair(S

n

� S

n

),

where S

n

is the radial triangulation of B

n

, with the following locally acyclic ori-

entation: orient all interior edges from the center to the boundary and orient the

boundary in the direction of positive angles. Indeed, the six 4-simplices in the list

above are the monotone staircases in the following grid:

v

j+1

t

i;j+1

t

i+1;j+1

v

j

t

i;j

t

i+1;j

O h

i

h

i+1

A di�erent description of T

n

is as follows: let P = conv(A), which equals the

product of two n-gons. Each of the 2n facets of P is a prism over a regular n-gon

(the facets form two cycles with n prisms each; each cycle is a solid torus and the

two solid tori are glued along their boundaries). If we divide each of the 2n prisms

into n-triangular prisms by its medial axis, we have the boundary of P decomposed

into 2n

2

equal triangular prisms. In T

n

, the cone of each such prism to the centroid

O of P is triangulated with three 4-simplices, one from each of the three orbits �,

	 and 
.

To go from the triangulation T

8

to our triangulation T proceed as follows: In

the point con�guration A

8

, perform a positive rotation of order 8 to the octagons



A POINT SET WHOSE SPACE OF TRIANGULATIONS IS DISCONNECTED 19

containing the points h

i

and v

j

(but leaving the t

i;j

's �xed) and substitute each

point t

i;j

with i+ j even by the point s

i�

1

2

;j�

1

2

. This gives the point con�guration

A. The triangulation T

8

becomes a geometric simplicial complex with non-convex

boundary but whose simplices still intersect properly. Each of the three orbits of

4-simplices in T

8

divides into two orbits of simplices present in T : the orbits A and

� for �, B and � for 	, and E and Z for 
. The other three orbits H, � and I of

T �ll in the convex hull of A.

The above modi�cation on T

n

is in principle possible for any even n. But with

n = 4 bad intersections occur between simplices and with n = 6 some of the

ippable circuits are not sandwich circuits.

When considered in T

8

(or in any other T

n

), the orientation of the 1-skeleton

described in Section 3.3 is still locally acyclic and has no reversible edges or sinks.

With n = 3 this is exactly the triangulation and orientation which appeared in [38,

Section 4]. It is interesting that the triangulation induced by T

n

in the Schlegel

diagram of conv(A

n

) with respect to any of its facets has dimension three and its 1-

skeleton oriented in a locally acyclic way, without reversible edges, sinks or sources

(but with non-sandwich circuits). This might be a step towards a triangulation

without ips in dimension �ve.

3.4. Integer coordinates. Consider the following sixteen points in R

4

:

h

0

:= (4;�4; 0; 0); h

1

:= (6; 0; 0; 0); h

2

:= (4; 4; 0; 0); h

3

:= (0; 6; 0; 0);

h

4

:= (�4; 4; 0; 0); h

5

:= (�6; 0; 0; 0); h

6

:= (�4;�4; 0; 0); h

7

:= (0;�6; 0; 0);

v

0

:= (0; 0; 6; 0); v

1

:= (0; 0; 4; 4); v

2

:= (0; 0; 0; 6); v

3

:= (0; 0;�4; 4);

v

4

:= (0; 0;�6; 0); v

5

:= (0; 0;�4;�4); v

6

:= (0; 0; 0;�6); v

7

:= (0; 0; 4;�4):

Let A

int

be the point con�guration consisting of them, together with the origin

O = (0; 0; 0; 0), the 32 points t

i;j

:= h

i

+ v

j

for all values of i; j 2 f0; : : : ; 7g

with i + j odd, and the 32 points s

i+

1

2

;j+

1

2

= (t

i;j+1

+ t

i+1;j

)=2 for all values of

i; j 2 f0; : : : ; 7g with i + j even. Indices are regarded modulo 8. The essential

di�erence between A

int

and the point con�guration A of the previous sections is

that the regular octagons in the �rst two and last two coordinate planes have been

modi�ed to have integer coordinates (using the approximations 4=3 '

p

2 ' 3=2)

and hence they are not regular anymore. But, for example, conv(A) and conv(A

int

)

are combinatorially equivalent polytopes. We construct a triangulation T

int

of A

int

following word by word the description in Section 3.1, except that the symmetries

displayed in Table 1 are only combinatorial. With the notation of Section 3.1, the

a�ne symmetry group of T

int

is a subgroup of G of index 2, generated by g

h

2

, g

v

2

,

and g

t

� g

h

� g

v

.

The only other thing to be modi�ed with respect to what we said in Sections 3.1,

3.2 and 3.3 are the a�ne equalities displayed in Table 5. Each orbit of interior facets

of T , say �, breaks into two orbits in T

int

having as representatives �

0;0

and �

0

0;0

.

These two orbits may produce di�erent equalities, and all of them are displayed in

Table 8. They can be veri�ed as follows: �rst check that in every equation the sum

of coe�cients is equal on both sides; second, forget the appearances of the point O

and perform the following substitutions:

t

k;l

= h

k

+ v

l

; s

k+

1

2

;l+

1

2

= (h

k

+ h

k+1

+ v

l

+ v

l+1

)=2 8k; l 2 f0; : : : ; 7g;

2h

k+1

+ 2h

k�1

= 3h

k

and 3v

k+1

+ 3v

k�1

= 4v

k

if k is even;

3h

k+1

+ 3h

k�1

= 4h

k

and 2v

k+1

+ 2v

k�1

= 3v

k

if k is odd.
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C(�

0;0

); C(�

0;0

); C(�

0;0

) : 2O + 5t

�1;0

+ 4s
1

2

;

1

2

= 3v

1

+ 2t

0;1

+ 6s

�

1

2

;�

1

2

C(�

0

0;0

); C(�

0

0;0

); C(�

0

0;0

) : 2O + 7t

0;�1

+ 6s
1

2

;

1

2

= 4h

1

+ 3t

1;0

+ 8s

�

1

2

;�

1

2

C(�

0;0

) : 21v

1

+ 20h

1

+ 12s

�

1

2

;�

1

2

= t

1;0

+ 24O + 28s
1

2

;

1

2

C(�

0

0;0

) : 20h

1

+ 21v

1

+ 12s

�

1

2

;�

1

2

+ t

0;1

= 24O + 30s
1

2

;

1

2

C(

0;0

) = C(

0

0;0

); C(�

0;0

) = C(�

0

0;0

) : t

1;0

+ t

0;1

= 2s
1

2

;

1

2

C(�

0;0

) : 12s

�

1

2

;�

1

2

+ 20v

2

+ 12s
1

2

;

1

2

= 14O + 9v

1

+ 21t

0;1

C(�

0

0;0

) : 12s

�

1

2

;�

1

2

+ 21h

2

+ 12s
1

2

;

1

2

= 17O + 8h

1

+ 20t

1;0

C(�

0;0

); C(�

0;0

); C(o

0;0

); C(�

0;0

) : 2O + 5t

1;0

+ 2t

�1;0

= 3v

1

+ 6s

�

1

2

;�

1

2

C(�

0

0;0

); C(�

0

0;0

); C(o

0

0;0

); C(�

0

0;0

) : 2O + 7t

0;1

+ 3t

0;�1

= 4h

1

+ 8s

�

1

2

;�

1

2

C(�

0;0

) : 12s

�

1

2

;�

1

2

+ 15t

2;1

= 4O + 9v

1

+ 14t

1;0

C(�

0

0;0

) : 12s

�

1

2

;�

1

2

+ 14t

1;2

= 3O + 8h

1

+ 15t

0;1

C(�

0;0

) : 30s
1

2

;

1

2

+ 20v

0

+ 4O = 21v

1

+ 21t

1;0

+ 12s

�

1

2

;�

1

2

C(�

0

0;0

) : 28s
1

2

;

1

2

+ 21h

0

+ 3O = 20h

1

+ 20t

0;1

+ 12s

�

1

2

;�

1

2

C(�

0;0

) = C(�

0

1;�1

) : v

0

+ h

1

= O + t

1;0

C(�

0

0;0

) = C(�

�1;1

) : h

0

+ v

1

= O + t

0;1

C(�

0;0

) : 5t

0;�1

+ 3v

1

= 2O + 2t

1;0

+ 4s

�

1

2

;�

1

2

C(�

0

0;0

) : 7t

�1;0

+ 4h

1

= 2O + 3t

0;1

+ 6s

�

1

2

;�

1

2

C(�

0;0

) = C(�

0

1;�1

) : 4s

�

1

2

;�

1

2

+ 4s
1

2

;�

3

2

= O + 7t

0;�1

C(�

0

0;0

) = C(�

�1;1

) : 3s

�

1

2

;�

1

2

+ 3s

�3

2

;

1

2

= O + 5t

�1;0

C(�

0;0

) : 3t

0;1

+ 4v

0

+ 2O + 3t

�1;0

= 6v

1

+ 6s

�

1

2

;�

1

2

C(�

0

0;0

) : 2t

1;0

+ 3h

0

+O + 2t

0;�1

= 4h

1

+ 4s

�

1

2

;�

1

2

C(�

0;0

) : 12s

�

1

2

;�

1

2

+ 30s
3

2

;�

1

2

+ 21v

1

= 14O + 20v

0

+ 29t

1;0

C(�

0

0;0

) : 12s

�

1

2

;�

1

2

+ 28s

�

1

2

;

3

2

+ 20h

1

= 10O + 21h

0

+ 29t

0;1

C(�

0;0

) : 4v

0

+ 6s
1

2

;

1

2

= 3v

1

+ 2t

�1;0

+ 5t

1;0

C(�

0

0;0

) : 6h

0

+ 8s
1

2

;

1

2

= 4h

1

+ 3t

0;�1

+ 7t

0;1

Table 8. A�ne equalities for the circuits supported on interior

facets of T

int

.

Comparing Tables 5 and 8 we see that the only circuits that change are those

supported on facets of type �. But, since C(�

0;0

) and C(�

0

0;0

) in Table 8 have both

at least three elements in their positive parts and are supported in only one facet of

T

int

each, Lemma 1.4 implies that they are still not ippable. Hence, in Theorem

3.3 we can take T

int

and A

int

instead of T and A.

4. The graph of triangulations versus the poset of subdivisions

4.1. The Baues poset. Let A � R

k

be a point con�guration of dimension d. A

cell of A is any spanning subset B of A. A face of a cell B is the intersection F \B

of B with any face F of the convex hull of B.
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De�nition 4.1. A (polyhedral) subdivision of A is any family � of cells of A

such that [

B2�

conv(B) = conv(A) and for any B

1

; B

2

2 � one has conv(B

1

) \

conv(B

2

) = conv(B

1

\ B

2

) and B

1

\ B

2

is a (possibly empty) face of B

1

and B

2

.

The subdivisions of A are partially ordered by the following re�nement relation:

� � �

0

() 8B 2 � 9B

0

2 �

0

: B � B

0

:

The partially ordered set (poset) so obtained is the Baues poset of A, which we

denote 
(A). We call strict Baues poset the Baues poset without the trivial sub-

division fAg. A lower ideal in a poset X is any subposet Y with the property that

x 2 Y and y < x imply y 2 Y . For any x 2 X , the principal lower ideal X

�x

(resp.

strict principal lower ideal X

<x

) of x is the subposet of elements below x, including

x (resp. excluding x).

The following lemma is proved as Corollary 4.5 and Proposition 5.3 in [40].

Lemma 4.2. Let � be a polyhedral subdivision of A. The following conditions are

equivalent:

(i) � has only two proper re�nements.

(ii) All the proper re�nements of � are triangulations.

(iii) � has only two proper re�nements and they are triangulations which di�er by

a geometric bistellar ip.

Moreover, any pair of triangulations which di�er by a geometric bistellar ip are

the two re�nements of a subdivision satisfying these conditions.

From now on we call geometric bistellar ip (or ip, for short) a subdivision in

the conditions of Lemma 4.2. For any X � 
(A) we denote G(X) the Baues poset

restricted to the triangulations and ips in X . If X is a lower ideal then G(X) is

a lower ideal as well, and is naturally a subgraph of the graph of triangulations of

A. The following is a version of Lemma 3.1 in [37] or Proposition 4.8 in [40].

Corollary 4.3. Let X be any lower ideal in 
(A).

(i) If G(X) is connected, then X is connected.

(ii) If X is connected and X

<�

is connected for every � 2 X nG(X), then G(X)

is connected.

(iii) If the graph of triangulations G(
(A)) is disconnected, then there is a � 2


(A) n G(
(A)) whose strict lower ideal is disconnected. If, moreover, A is

in general position, then there is a subcon�guration of A whose strict Baues

poset is disconnected.

Proof. Parts (i) and (ii) hold for any �nite poset X and any lower ideal G(X) of

it containing all the minimal elements. Part (ii) implies the �rst half of (iii). The

\moreover" holds since in general position 
(A)

��

is the product of the Baues

posets of the cells of �.

4.2. The coherent poset of subdivisions. A height function on A is any map

h : A ! R. A height function is a�ne if it is the restriction of an a�ne map

R

k

! R. The coherent [21, 37, 47] or regular [6, 26] subdivision of A induced by a

height function h is

f(h� f)

�1

(0) : f is an a�ne height function with h � fg:

In other words, it is the subdivision of A obtained by projection of the lower facets

of the con�guration f(a; h(a)) 2 R

k+1

: a 2 Ag onto the �rst k coordinates.
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De�nition 4.4 (Alexeev). Let � and �

0

be two subdivisions of A. A system of

height functions on � is a family fh

B

: B 2 �g, where h

B

is a height function on

the cell B and h

B

� h

B

0

is an a�ne height function on B \B

0

for every B;B

0

2 �.

We say that �

0

is a coherent re�nement of � if �

0

is a re�nement of � and there

is a system of height functions on � such that �

0

restricted to each B 2 � is the

coherent subdivision of B given by h

B

.

Coherent re�nements are called regular subdecompositions in [2, Section 2.12].

We say that �

0

is a strongly coherent re�nement of � if �

0

is a coherent re�nement

of � for a system of height functions with h

B

= h

B

0

on B \ B

0

for any two cells

B and B

0

of �. Strongly coherent re�nements are studied in [40]. All the results

in this section are true (and easier to prove, since the relation is transitive) for

strongly coherent re�nements.

Example 4.5. Let A = f(4; 0; 0); (0; 4; 0); (0; 0; 4); (2; 1+�; 1��); (1��; 2; 1+�); (1+

�; 1� �; 2)g, where � is a su�ciently small real number, possibly zero. This is the

smallest example of a con�guration with non-coherent subdivisions [6, 21, 37, 47].

If � = 0, then A consists of the vertices of two homothetic triangles one inside

another. If � 6= 0, then the interior triangle is slightly rotated, but the Baues poset

is independent of this rotation since the oriented matroid is preserved.

Let the points in A be labelled 1; : : : ; 6 in the order we have written them.

The subdivision � = f456; 1245; 2356; 1346g is coherent (with height function

(1; 1; 1; 0; 0; 0)) if and only if � = 0. Regardless of the value of � all the re�ne-

ments of � are coherent re�nements and they are in poset isomorphism with the

faces of a 3-cube. If � 6= 0, then they are all also strongly coherent re�nements. But

for � = 0 only the coherent subdivisions re�ning � are strongly coherent re�nements

of �, and they are in poset isomorphism with the faces of a hexagon.

Lemma 4.6. Let � be a polyhedral subdivision of A.

(i) There is a polytope �

c

(�;A) whose poset of non-empty faces is isomorphic to

the (re�nement) poset of all coherent re�nements of �.

(ii) Vertices of �

c

(�;A) correspond bijectively to triangulations.

(iii) The edges of �

c

(�;A) are geometric bistellar ips.

(iv) Let �

0

be a coherent re�nement of �. Then every coherent re�nement of �

which re�nes �

0

is also a coherent re�nement of �

0

.

Proof. (i) This is Lemma 2.12.11 in [2], where �

c

(�;A) is constructed in a way

similar to the construction of �ber polytopes in [8]. For our purposes here it would

be su�cient to prove that the poset of coherent re�nements of � is anti-isomorphic

to the face lattice of a certain complete polyhedral fan, as follows: The systems

of height functions on � form a real vector space, which is divided into convex

polyhedral cones by the property of de�ning the same coherent re�nement. These

cones form a polyhedral fan.

(ii) A coherent re�nement is a triangulation if and only if it can be obtained

with a su�ciently generic system of height functions.

(iii) Let v

0

be a system of height functions on � which produces �

0

. Any system

of height functions su�ciently close to v

0

produces a coherent re�nement of � which

re�nes �

0

. We will prove that if �

0

is not a ip then more than two re�nements

can be produced in this way.

If a certain cell B of �

0

has more than d + 2 vertices, then every coherent

subdivision of B appears in some coherent re�nement of �, and there are more than
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two of them. Hence, we can assume that each non-simplicial cell of �

0

contains the

support of a unique (up to sign reversal) circuit. If the same circuit is contained in

all of them, then �

0

is a ip on that circuit. If there are two di�erent supports of

circuits Z

1

and Z

2

in cells of �

0

, then let a 2 Z

1

nZ

2

and let b 2 Z

2

nZ

1

. Modifying

v

0

by the addition of two su�ciently small global constants to the heights of a and b

we can triangulate the two circuits independently, producing at least four coherent

re�nements of � which re�ne �

0

.

(iv) Every system v of height functions on � can be regarded as a system of

height functions on �

0

as well. Moreover, if v produces �

00

as a coherent re�nement

of �, then it produces �

00

as a coherent re�nement of �

0

as well, since for any

B 2 �

00

the linear constraints on v needed for B to be in the coherent re�nement

of �

0

are weaker (more local) than those for the coherent re�nement of �.

Let 


sc

(A) and 


c

(A) be the posets of subdivisions of A partially ordered by

strongly coherent and (the transitive closure of) coherent re�nement, respectively.

Corollary 4.7. Let X be a lower ideal in 


c

(A). G(X) is connected if and only

if X is connected. In particular, 


c

(A) is connected if and only if the graph of

triangulations of A is connected.

Proof. If G(X) is connected, then X is connected because any subdivision in X

can be coherently re�ned to a triangulation in X and G(X) is a subposet of X .

Suppose now that X is connected and let T and T

0

be two triangulations in

X . There is a sequence of subdivisions fT = �

0

;�

1

; : : : ; �

k�2

;�

k�1

;�

k

= T

0

g in

X such that for every i 2 f1; : : : ; kg either �

i�1

is a coherent re�nement of �

i

or

vice versa. We proceed by induction on k. If k = 2, then T and T

0

are coherent

re�nements of a subdivision in X and parts (i), (ii) and (iii) of Lemma 4.6 imply

that they are connected in G(X). For general k, let T

00

be a triangulation which

coherently re�nes both �

k�2

and �

k�1

. It exists by part (iv) of Lemma 4.6. Using

T

00

, our sequence can be broken into two shorter ones: fT ;�

1

; : : : ;�

k�2

; T

00

g and

fT

00

;�

k�1

; T

0

g.

Following Alexeev, we call the polytopes �

c

(�;A) of Lemma 4.6 generalized

secondary polytopes. Similar polytopes �

sc

(�;A) are constructed in [40] for the

strong-coherent case. The main di�erence between the two is that �

sc

(�

0

;A) equals

the face of �

sc

(�;A) corresponding to �

0

, while �

c

(�

0

;A) only projects onto the

face of �

c

(�;A) corresponding to �

0

, whenever �

0

is a strongly coherent (resp.

coherent) re�nement of �. The secondary polytope of A equals both �

c

(fAg;A)

and �

sc

(fAg;A), and has dimension jAj � d � 1. �

c

(�;A) can have dimension

higher than that (examples exist with jAj = 10 and d = 2), but �

sc

(�;A) cannot.

The existence and properties of generalized secondary polytopes for 


c

(A) and




sc

(A) provides the following interpretation of the order complexes of these posets:

they are homeomorphic to the union of all the generalized secondary polytopes, each

polytope glued to faces of the generalized secondary polytopes of the subdivisions

of which it is a coherent (resp. strongly coherent) re�nement. In the strong-

coherent case the gluing is face to face in the polytopes, and easy to understand.

In the coherent case, part (iv) of Lemma 4.6 implies that if �

0

coherently re�nes

� then every chain of coherent re�nements of � bounded above by �

0

is also

a chain of coherent re�nements of �

0

. This induces a simplicial embedding of

the barycentric subdivision of the face of �

c

(�;A) corresponding to �

0

into the

barycentric subdivision of �

c

(�

0

;A).
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Example 4.5 (continued) If � 6= 0, then �

c

(�;A) and �

sc

(�;A) are combinatorial

3-cubes, with three facets in common with the secondary polytope of A. If � = 0,

then �

sc

(�;A) is a hexagonal facet of the secondary polytope while �

c

(�;A) is

still a 3-cube and has this hexagon glued through its interior.

If � 6= 0, then 


c

(A) = 


sc

(A) and, moreover, forgetting the trivial subdivision

they coincide with 
(A). If � = 0 the latter is still true for 


c

(A) but not for 


sc

(A).

In this case the order complex of 


sc

(A) has a relatively complicated homotopy

type: it is two 2-spheres glued along the equator if we do not consider the trivial

subdivision, and a 3-ball glued along the equator to a 2-sphere if we do. In contrast,




c

(A) is a homotopy 2-sphere and contractible, respectively, regardless of �. The

same happens with 
(A). All this indicates that 


c

(A) is more interesting than




sc

(A), both for its intrinsic properties and for its relation to the Baues poset.

4.3. Toric GIT-quotients of the projective space and moduli spaces of

stable semiabelic toric pairs. Here we show the relation of the coherent poset

of subdivisions 


c

(�;A) and two algebraic schemes considered respectively in [24,

Section 4] and [2, Section 2]. We assume that A is an integer point con�guration.

First we sketch an alternative de�nition of the secondary polytope as a particular

case of a �ber polytope [8]. Let � be the unit simplex of dimension jAj � 1, let

Q = conv(A) and let � : � ! Q be the a�ne projection sending the vertices of

� to A. The chamber complex of A is the coarsest common re�nement of all its

triangulations, and it is a polyhedral complex with the property that for any b and

b

0

in the same chamber the �bers �

�1

(b) and �

�1

(b

0

) are polytopes with the same

normal fan. The secondary polytope of A equals the Minkowski integral of �

�1

(b)

over Q. At the combinatorial level, it coincides with the Minkowski sum of a �nite

number of �

�1

(b), with one b chosen in each chamber.

The normal toric variety associated to a polytope depends only on its normal

fan, so there is no ambiguity in calling F

�

the toric variety of �

�1

(b), where �

is the chamber containing b. If b 2 � and b

0

2 � for two chambers with � � �

then the normal fan of �

�1

(b) re�nes the normal fan of �

�1

(b

0

), which implies that

there is a natural equivariant morphism f

��

: F

�

! F

�

. Let us denote �

A

:=

lim

 �

F

�

the inverse limit of all the F

�

and morphisms f

��

. It has the following two

interpretations:

(i) Let X

�

be the projective space of dimension jAj�1, which is the toric variety

associated with the simplex � (what follows is valid for any polytope �).

The toric varieties F

�

are the di�erent toric GIT-quotients of X

�

modulo the

algebraic sub-torus whose characters are the monomials with exponents in A

[24, Section 3]. �

A

is the inverse limit of all of them, which contains the Chow

quotient as an irreducible component [24, Section 4].

(ii) In [2, Section 2.11] a scheme M

simp

is de�ned exactly as our �

A

. Although

there A is assumed to be the set of all lattice points in Q, the connection of

M

simp

with �

c

(A) carried out (our Theorem 4.8) is independent of this fact.

The main interest in that paper is in the moduli space M of stable semi-

abelic toric pairs (see Sections 1.1.A and 1.2.B in [2] for the de�nitions). The

author shows that there is a �nite morphismM !M

simp

(Corollary 2.11.11)

and uses M

simp

as a simpli�ed model for studying M .

Theorem 4.8 (Alexeev). (i) For each subdivision � of A there is a morphism

F

�(�;A)

!M

simp

, where F

�(�;A)

is the normal toric variety of the generalized
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secondary polytope �(�;A) (See [2, 2.12.13]). This induces a natural strati-

�cation on M

simp

(and on M) whose strata are (perhaps non-normal) toric

varieties in 1-to-1 correspondence with subdivisions of A (Corollary 2.11.10).

(ii) The gluing of the moment maps in the di�erent strata induces a surjective

continuous map Mom : M

simp

! lim

 �

�

c

(�;A) (Lemma 2.13.2) whose image

lim

 �

�

c

(�;A) is glued from the generalized secondary polytopes �

c

(�;A) via

the coherent re�nement relation. The same holds for M .

Most probably, the gluing referred to in the second part makes lim

 �

�

c

(�;A)

homeomorphic to the order complex of the poset 


c

(A). In other words, most

probably barycentric subdivisions of the generalized secondary polytopes �

c

(�;A)

can be chosen in a way compatible with the gluings induced by the moment maps.

Even if this is not the case, it is straightforward that lim

 �

�

c

(�;A) is connected if

and only if (the order complex of) 


c

(A) is connected. Hence:

Corollary 4.9. The following properties are equivalent for an integer point con�g-

uration A � Z

k

. Let Q = conv(A).

(i) The graph of triangulations of A is connected.

(ii) The coherent re�nement poset 


c

(A) is connected.

(iii) The inverse limit of all the toric GIT-quotients of the projective space of

dimension jAj � 1 modulo the subtorus de�ned taking the elements of A as

characters is connected, and

(iv) (If A = Q \ Z

k

) the moduli space of all stable semiabelic toric pairs of type

� Q is connected.
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Abstract. By the \space of triangulations" of a �nite point con�guration A

we mean either of the following two objects: the graph of triangulations of A,

whose vertices are the triangulations of A and whose edges are the geometric

bistellar operations between them or the partially ordered set (poset) of all

polyhedral subdivisions of A ordered by coherent re�nement. The latter is a

modi�cation of the more usual Baues poset of A. It is explicitly introduced

here for the �rst time and is of of special interest in the theory of toric varieties.

We construct an integer point con�guration in dimension 6 and a triangu-

lation of it which admits no geometric bistellar operations. This triangulation

is an isolated point in both the graph and the poset, which proves for the �rst

time that these two objects can be not connected.
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