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Abstract

We are interested in a notion of elementary change between triangulations

of a point con�guration, the so-called bistellar ips, introduced by Gel'fand,

Kapranov and Zelevinski. We construct sequences of triangulations of point

con�gurations in dimension 3 with n

2

+2n+2 vertices and only 4n�3 geometric

bistellar ips (for every even integer n), and of point con�gurations in dimension

4 with arbitrarily many vertices and a bounded number of ips. This drastically

improves previous examples and seems to be evidence against the conjecture

that any two triangulations of a point con�guration can be joined by a sequence

of ips.

Introduction

Given a �nite point con�guration A in the Euclidean space R

d

of dimension d

we call triangulations of A all the geometrically realized simplicial complexes

which cover the convex hull of A and which have their sets of vertices contained

inA. In this paper we are interested in a notion of vicinity or elementary change

between triangulations of a given point con�guration A known as a geometric

bistellar ip (or ip, for short).

This notion naturally arises in the theory of secondary and �ber polytopes

[2], [9, Chapter 7], [14], [21, Lecture 10]. In this theory, given a point con�gu-

ration of dimension d with n points, the regular [2, 12, 21] (also called coherent

[9] or sometimes convex) triangulations of A are de�ned as those which coincide

with an orthogonal projection of the lower facets of a simplicial polytope of di-

mension d+1. The secondary polytope of A, introduced by Gel'fand, Kapranov

and Zelevinski (see [9]) is a (n� d� 1)-polytope whose vertices are in bijection

with regular triangulations of A and whose edges are in correspondence with

bistellar ips between regular triangulations (here n is the cardinality of A.

The number n� d� 1 will be called the corank of A).
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These properties of the secondary polytope imply that the collection of

regular triangulations ofA is connected under bistellar ips and that any regular

triangulation has at least n� d � 1 ips. Non-regular triangulations with less

than n � d � 1 ips have been constructed by de Loera et al. in [6, 8]. We

will call such triangulations ip-de�cient. For example, a construction from [8]

gives, for each integer n, triangulations in R

3

with 5n points and only 3n� 2

bistellar ips. In the following sections we drastically improve these results by

showing constructions of:

� For any positive even integer n, a triangulation of a point con�guration

in R

3

with n

2

+ 2n+ 2 vertices and 4n� 3 ips (Theorem 4).

� Triangulations of point con�gurations inR

4

with arbitrarily large number

of vertices and bounded number of ips (Theorem 10). The number of

ips obtained is easier to analyze in a vector con�guration instead of point

con�guration setting. For any positive integer n we construct a simplicial

fan covering the vector spaceR

5

, with 15n+2 rank-1 cones (vertices) and

only 9 bistellar ips (Theorem 12). For a point con�guration in R

4

we

can achieve a number of 21 ips, and arbitrarily large number of vertices

(Remark 13).

We are interested in triangulations with few ips as an approach to the

question of whether any two triangulations of a point con�guration can be

connected by a sequence of geometric bistellar ips. The answer is known to

be positive in the cases of dimension at most 2 (d � 2) or corank at most 3

(n � d+ 4). In these cases it is also known that no ip-de�cient triangulations

exist. Di�erent proofs of connectivity in the case d � 2 exist, the oldest written

one is probably in [11]. That no ip-de�ciency exists in this case is proved in

[8]. Connectivity and no-ip-de�ciency in the case n � d + 3 follow from the

fact, proved by Lee [12], that in this case all the triangulations are regular. The

case n = d+ 4 is a recent result of Azaola and Santos [1], whose proof is based

in the notion of virtual chamber introduced in [7].

Another interesting case is that of cyclic polytopes. Rambau [14] has proved

that the set of triangulations is connected by ips when A is the collection of

vertices of a cyclic polytope C(n; d). On the other hand, there are triangulations

of C(11; 5) with only 4 ips, instead of 5 [16].

No negative example to the connectivity question is known, and the question

itself is a weak version of the so-called Baues problem for triangulations, posed

by Billera et al. [4] (see also [15, 17, 18]). The Baues problem asks whether the

re�nement poset of all subdivisions of a point con�guration A with n points in

dimension d is homotopy equivalent to an (n� d� 2)-sphere. The question has

connections to oriented matroid theory [5, Section 9.6], zonotopal tilings (via

the Bohne-Dress Theorem [5, 21]) and combinatorial di�erential geometry, as

introduced by MacPherson [13].

The fact that we can construct triangulations with very few geometric bi-

stellar ips seems to be evidence in favour of the existence of a negative example

to the Baues question, for three reasons: Firstly, a triangulation with no ips

at all would be an isolated element in the re�nement poset, thus providing such
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an example; secondly, triangulations with very few ips are nodes of very low

order in the graph of triangulations of a point con�guration, which increase the

chances of the graph being disconnected; thirdly, the cases mentioned above in

which the graph of triangulations is known to be connected are more or less

the same ones for which triangulations are known not to have ip-de�ciency.

Exceptions to this rule are the case of cyclic polytopes already mentioned and

that de Loera et al. [8] have proved that triangulations in dimension 3 with all

the vertices in convex position have no ip-de�ciency, while the connectivity

question is not settled in this case.

Let us mention also that another paper by the author [20] shows that when

the notions of triangulation and bistellar ip are generalized in the natural

way to triangulations of oriented matroids, there is a triangulation of a non-

realizable acyclic polytopal rank 34 oriented matroid on 38 elements with no

ips. This can be considered a combinatorial analogue of a triangulation with

no ips of a 33-dimensional polytope with 38 vertices. This uses a construction

of Richter-Gebert [19].

1 Flips and vector con�gurations

Throughout the paper we will work in the framework of simplicial fans of vec-

tor con�gurations which is more general than that of triangulations of point

con�gurations. This is essentially the same approach as in [3].

Let A be a �nite subset of the real vector space R

d+1

(this is what we call a

vector con�guration of dimension d). A cone of A is the positive span pos(�) of

a subset � of A. If � is linearly independent we say that the cone is simplicial.

A face of a simplicial cone pos(�) is the simplicial cone pos(�) generated by any

subset � of �. A facet of pos(�) is a maximal proper face of it. A simplicial fan

of A is a collection T of full-rank simplicial cones of A such that the intersection

pos(�

1

) \ pos(�

2

) of any two simplicial cones of T is a face of both (possibly

the face f0g = pos(;)) and that [

pos(�)2T

pos(�) = pos(A).

Scaling the vectors of a con�guration by positive scalars does not a�ect

what simplicial fans can be obtained. Hence we can consider all the vectors

to lie in the unit sphere S

d

� R

d+1

. In this setting, simplicial fans become

simplicial complexes geometrically realized in the sphere by geodesic simplices

which use the points of A as vertices and cover the convex hull of A (where

the convex hull of A in the sphere is taken in an obvious natural way: it is

the intersection of the sphere with the positive span of A). For this reason,

and in order to unify the nomenclature, throughout this paper we will use the

term triangulation of a vector con�guration meaning simplicial fan and convex

hull meaning positive span. We will also apply the terms link, star or join in

a triangulation of a vector con�guration with the meaning they would have in

the associated simplicial complex (see [10]).

We say that A is totally cyclic (or complete) if it positively spans R

d+1

. We

say that A is acyclic (or pointed) if there is a linear functional h which is positive

on every point of A. In this case the vector con�guration A is equivalent for the

purpose of triangulations to the con�guration fa=h(a) j a 2 Ag, which is a point
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con�guration of dimension d in the a�ne plane h

�1

(1). Reciprocally, a point

con�guration A � R

d

can be regarded as a vector con�guration A

0

2 R

d+1

,

identifying the a�ne spaceR

d

with an a�ne non-linear hyperplane inR

d+1

. In

this sense the concept of triangulation (simplicial fan) of a vector con�guration

is a generalization of the concept of triangulation of a point con�guration.

Following the terminology of matroid theory, we call a minimal linearly

dependent subset of A a circuit (see [5] or [21] for details). The unique (up

to a scalar factor) dependence equation in a circuit divides its elements into

two parts Z = Z

+

[ Z

�

containing respectively the elements with positive and

negative coe�cient in the equation. The pair (Z

+

; Z

�

) is called an oriented

circuit; of course, if (Z

+

; Z

�

) is an oriented circuit, then so is (Z

�

; Z

+

), and the

two of them are the only orientations of Z = Z

+

[ Z

�

. Since our interest will

always be in oriented circuits we will use the word circuit assuming they have

an orientation and will call the underlying unoriented circuit Z the support of

(Z

+

; Z

�

).

We say that a circuit is acyclic if both Z

+

and Z

�

are non-empty (equiv-

alently if its support Z is an acyclic vector con�guration). In a point con�gu-

ration, all the circuits are acyclic and they coincide with the so-called minimal

Radon partitions; that is to say, minimal pairs (Z

+

; Z

�

) such that the relative

interiors of conv(Z

+

) and conv(Z

�

) intersect in a point. The support Z of an

acyclic circuit (Z

+

; Z

�

) can be triangulated in exactly two ways:

T

+

(Z) := fconv(Z � fpg)jp 2 Z

+

g T

�

(Z) = fconv(Z � fpg)jp 2 Z

�

g:

De�nition 1 Let T be a triangulation of A and (Z

+

; Z

�

) � A a circuit of A.

Suppose that the following conditions are satis�ed:

(i) The triangulation T

+

(Z) is a subcomplex of T .

(ii) All the maximum-rank simplices of T

+

(Z) have the same link L in T . In

particular, T

+

(Z) � L is a subcomplex of T . Here and in what follows we

denote by A � B the join of two simplicial complexes A and B [10].

In these conditions we can obtain a new triangulation T

0

of A by replacing

the subcomplex T

+

(Z) � L of T with the complex T

�

(Z) � L. This operation

of changing the triangulation is called a geometric bistellar ip (or a ip, for

short) supported on the circuit (Z

+

; Z

�

). We say that T and T

0

are geometric

bistellar neighbors. We call the ip of type (k; l) if Z

+

and Z

�

have k and l

elements respectively.

Observe that our de�nition of ip supported on a circuit explicitly assumes

that the circuit is oriented so that the star of the negative part of the circuit

is \ipped out" and the positive part is \ipped in". This convention (which

is not present in other de�nitions, see [9, page 231]) will be important in our

exposition.

When counting the number of ips of a triangulation in Sections 3 and 4

the properties that we state as lemmas below will be helpful. Let conv(�

1

) and

conv(�

2

) be two maximal simplices of a triangulation T which share a facet
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conv(�). Let a

1

and a

2

be the two vertices joined to � ; that is to say, let

�

1

= � [ fa

1

g and �

2

= � [ fa

2

g. Then, � = � [ fa

1

; a

2

g is a spanning set

of A with d + 1 elements, and there is a unique circuit (Z

+

; Z

�

) with support

contained in �, oriented so that a

1

; a

2

2 Z

+

. We say that the facet � is ippable if

there is a ip supported on that circuit. If we assume that all the vectors/points

of A are used as vertices of T , then no ips of type (1; k) are possible and every

ip of T has one or more ippable facets. Reciprocally, a ippable facet can

only correspond to one ip. That is to say:

Lemma 2 In a triangulation which uses all the elements as vertices, an ex-

haustive search of ippable facets gives all the possible ips.

Given a vector con�guration A 2R

d+1

and a non-zero vector a 2 A, we call

contraction ofA at a

1

and denoteA=a

1

the vector con�guration fv�

a

1

�v

a

1

�a

1

a

1

j v 2

Anfa

1

gg. A=a

1

can be considered a vector con�guration in one dimension less

since all its vectors are orthogonal to a

1

. For a point con�guration A 2R

d

, the

contraction at a point a

1

2 A is the vector con�guration A=a

1

= fb � a

1

j b 2

A n fa

1

gg �R

d

.

Lemma 3 Let T be a triangulation of a point or vector con�guration A. Let

a

1

be a vertex of one of the simplices of T which are removed by a ip on a

certain circuit (Z

+

; Z

�

). Then,

(i) (Z

+

n fa

1

g; Z

�

n fa

1

g) is a circuit of A=a

1

.

(ii) link(a

1

) is a triangulation of the vector con�guration A=a

1

.

(iii) link(a

1

) has a ip supported on the circuit (Z

+

n fa

1

g; Z

�

n fa

1

g).

Proof: Easy. Left to the reader. 2

2 A construction in dimension three

Let n be an even positive integer. Throughout this section we will call A

n

the

following point con�guration with n

2

+ 2n+ 2 points in R

3

:

� The n

2

+ 2 points (x; y; 0) 2 R

3

in the plane z = 0 whose coordinates x

and y are integer and satisfy

jxj � 2y � 2n+ 1� jxj

2y 6= jxj+ 1; 2y 6= 2n� jxj:

We will call these points the planar part of A

n

. Figure 1 shows a trian-

gulation of the planar part of A

n

(for n = 12) which will be used later.

� The n points P

i

:= (0; i; 1), for i = 1; : : : ; n, \above" the planar part.

� The n points Q

i

:= (0; i;�1), for i = 1; : : : ; n, \below" the planar part.
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X

Y

Figure 1: A triangulation of the planar part of A

12

.

The triangulation in Figure 1 is obtained by considering all the possible

triangles in the con�guration of the form [(x; y; 0); (x+1; y+1; 0); (x; y +1; 0)]

and [(x; y; 0); (x + 1; y + 1; 0); (x + 1; y; 0)] for even x, all the triangles of the

form [(x; y; 0); (x + 1; y; 0); (x; y + 1; 0)] and [(x + 1; y + 1; 0); (x; y + 1; 0); (x +

1; y; 0)] for odd x, and then completing with the introduction of the segments

[(0; 0; 0); (0; 1; 0)], [(n�2; n=2; 0); (n�1; n=2+1; 0)] and [(�n+2; n=2; 0); (�n+

1; n=2 + 1; 0)] and the segments [(x � 1; y; 0); (x + 1; y; 0)] for every \missing"

integer point (x; y; 0) with 2y = jxj+1 or 2y = 2n� jxj. Our goal is to construct

a triangulation of A

n

which extends this one and show that it has O(n) ips.

We proceed as follows: for each i = 1; : : : ; n, we join P

i

to all the triangles

in the planar part which have their vertices in the diagonal strip x+ 2i � 2 �

2y � x+ 2i + 1. The four shaded regions in Figure 1 show the triangles to be

joined to P

1

, P

4

, P

7

and P

12

respectively. Then, we insert tetrahedra of the

form [P

i

; P

i+1

; P;Q] were [P;Q] are certain edges of the triangulation of the

planar part, in order to `�ll in the gaps'. This can be done in a unique way to

provide a triangulation of the upper half A

n

n fQ

1

; : : : ; Q

n

g of A

n

.

Finally, we triangulate the lower half by applying the symmetry transfor-

mation [x ! �x; z ! �z]. In other words, we consider diagonal strips in

the planar part in the other possible direction and join them to the points

Q

1

; : : : ; Q

n

. Let T

n

be the triangulation of A

n

obtained in this way.

In order to clarify the construction Figure 2 shows what we get as the link

of each P

i

, i = 1; : : : ; n (for n = 6). Upward arrows in the link of P

i

represent

edges going to P

i+1

and downward arrows represent edges going to P

i�1

. In

particular, there will be an edge [P

i

; P

i+1

] for i = 1; : : : ; n � 1. The link of Q

i

is obtained from that of P

i

by the symmetry [x ! �x; z ! �z]. The links of

P

i

and Q

i

, i = 1; : : : ; n completely characterize the triangulation, since every

tetrahedron contains one of those points as a vertex. Thick edges in the �gure

separate parts of the link of a point P

i

which are joined to di�erent points among

the Q

j

's. The shaded parts indicate some of the ips of the triangulation, to

be discussed now:
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link(P1)
link(P4)

link(P2)

link(P3)link(P6)

link(P5)

Figure 2: Links of the points P

i

in the triangulation of A

6

.

(i) Suppose that a ip is supported in a circuit fully contained in the planar

part. This has to correspond to a ip in Figure 1 but, moreover, all the

triangles of the planar part which disappear by the ip have to be joined

to the same points P

i

and Q

j

. In other words, the planar ip has to be

contained in one of the links of Figure 2 and the triangles involved not be

separated by a thick edge. A quick look at Figure 2 shows that there are

no ips of this type.

(ii) Suppose that a ip is supported in a circuit C that contains a point P

i

and no Q

j

. Since the circuits of type (fP

i�1

; P

i+1

g; fP

i

g) are clearly non-

ippable, C must contain exactly two consecutive points P

i

and P

i+1

and

either two or three points in the planar part.

If C contains two points in the planar part, they are of the form (x; y; 0)

and (x; y + 1; 0). In this case the ip corresponds to moving the two

triangles incident to the edge [(x; y; 0); (x; y + 1; 0)] up (from link(P

i

) to

link(P

i+1

)) or down (from link(P

i+1

) to link(P

i

)).

For example, the two shaded triangles in the right-top corner of link(P

3

) in

Figure 2 represent a ip in the circuit (fP

3

; (3; 5; 0)g; fP

4

; (3; 4; 0)g). The

triangles [P

3

; P

4

; (3; 4; 0)] and [(3; 5; 0); P

4

; (3; 4; 0)] are both present in the

triangulation and have the same link, consisting of the points (2; 4; 0) and

(5; 4; 0). After performing the ip in this circuit, the links drawn in Figure

2 would change in that the two shaded triangles [(3; 5; 0); (3; 4; 0); (2; 4; 0)]

and [(3; 5; 0); (3; 4; 0); (5; 4; 0)] will now appear in link(P

4

) instead of link(P

3

)

(with the corresponding changes in the upward and downward arrows).

This is what we call \moving up" two triangles and a similar \moving
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down" will be possible with the two shaded triangles in the bottom-left

corner of link(P

3

).

Looking at Figure 2 one checks that there are exactly n� 2 ips of this

type, two in link(P

i

) for each odd i = 3; 5; : : : ; n� 1.

If C contains three points in the planar part, then these three points are

the vertices of a triangle and the ip corresponds to moving this triangle

up or down in a similar fashion. There are n ips of this type: two in

link(P

i

) for each even i = 2; 4; : : : ; n� 2 plus one in link(P

1

) and one in

link(P

n

).

(iii) By symmetry, we conclude that there are also n� 2 + n = 2n� 2 ips in

circuits containing one of the points Q

j

and none of the P

i

.

(iv) Let (Z

+

; Z

�

) be a circuit which supports a ip and which contains at least

one P

i

and one Q

j

. Since Z

+

[Z

�

n fag is a simplex in the triangulation

for every a 2 Z

+

and since P

i

and Q

j

are not joined by an edge, Z

+

�

fP

i

; Q

j

g. In fact, Z

+

= fP

i

; Q

j

g because otherwise the unique point in

Z

+

should lie in the relative interior of the convex hull of the simplex

Z

�

2 T , and thus the point in Z

+

would not be used in the triangulation,

which is not the case. Since Z

�

[fP

i

g and Z

�

[fQ

j

g are simplices in the

triangulation, Z

�

has to be the set of vertices of a simplex in the planar

part of T , and the relative interior of this simplex intersect the segment

[P

i

; Q

j

]. In particular, the point (0;

i+j

2

; 0) must lie in the relative interior

of conv(Z

�

). Then:

� If i + j is odd, let us call k =

i+j+1

2

. We must have Z

�

= f(0; k �

1; 0); (0; k; 0)g. Since the segment [(0; k � 1; 0); (0; k; 0)] is joined in

T

n

to the points P

k

and Q

k

and to no other of the P

l

's or Q

l

's, we

conclude that i = j = k, which contradicts the fact that i+ j is odd.

� If i + j is even, let us call k =

i+j

2

. Then, Z

�

= f(0; k; 0)g. This

point is joined to P

k

, P

k+1

, Q

k

and Q

k+1

, and to no other P

l

or Q

l

.

Thus, in order to have i + j = 2k we must have i = j = k and the

circuit be (fP

k

; Q

k

g; f(0; k; 0)g). For this circuit to be ippable, the

segments [P

k

; (0; k; 0)] and [Q

k

; (0; k; 0)] need to have the same link,

and this only happens for k = n. Thus, there is only one ip of this

type.

Summarizing, we conclude that:

Theorem 4 The point con�guration A

n

� R

3

has n

2

+ 2n + 2 points. The

triangulation T

n

of A

n

has 4n� 3 ips.

3 Stacking layers of prisms

Prisms

Our construction in dimension four will be based on the strategy of stacking

several layers of triangulated prisms in a concentric way without increasing
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the number of ips. A similar technique has implicitly been used in the last

construction in [8].

The standard d-dimensional prism is the point con�guration fe

1

; : : : e

d

; e

1

+

e

0

; : : : ; e

d

+ e

0

g � R

d+1

, where e

0

; e

1

; : : : ; e

d

is an a�ne basis in R

d

. We say

that a (vector or point) con�guration A is a d-prism if it consists of 2d + 2

points and there is a bijective correspondence between them and the points in

the standard prism which preserves circuits (in other words, if A has the same

oriented matroid as the standard prism). That is to say, the con�guration A =

f0; : : : ; d; 0; : : : ; dg is a prism if its circuits are the pairs of the form (fi; jg; fj; ig),

for i 6= j. Any prism is projectively equivalent to the standard one.

The subsets f0; : : : ; dg and f0; : : : ; dg of a prism are the vertices of two

simplicial facets of the prism. We call these facets the oor and the ceiling of

the prism respectively, although which of them is the oor and which the ceiling

is an arbitrary choice. Triangulations of a d-dimensional prism are in bijective

correspondence with permutations of the symbols [0; : : : ; d] via the following

rule: to the permutation [i

0

; : : : ; i

d

] we associate the triangulation:

fconv(fi

0

; : : : ; i

l

; i

l

; : : : ; i

d

g) j l = 0; : : : ; dg:

Moreover, two such triangulations di�er by a bistellar ip if and only if the

corresponding permutations di�er by a transposition. This correspondence is

well known (see [9, Section 7.3]) and makes the secondary polytope of the prism

a permutahedron.

On the other hand, permutations of [0; : : : ; d] correspond in an obvious

bijective way with acyclic orientations of the complete graph K

d+1

on d + 1

vertices: we identify the nodes of K

d+1

with the d + 1 symbols 0; : : : ; d and

orient the edges in K

d+1

according to the total order in the vertices given by

the permutation. Transpositions in the permutation correspond to reversing a

single edge in the graph. Summing up:

Lemma 5 Let � [ � be a prism with oor � and ceiling � . Then, the triangu-

lations of the prism are in bijective correspondence with acyclic orientations of

the 1-skeleton of conv(�) and two triangulations di�er by a bistellar ip if and

only if the corresponding orientations of the 1-skeleton di�er by reorientation

of a single edge. 2

A further observation will be used later on. In the conditions of the state-

ment, let i

0

; i

d

2 � respectively be the unique source and sink in a given acyclic

orientation of the 1-skeleton of conv(�). In the triangulation of the prism cor-

responding to that orientation, the oor conv(�) of the prism is joined to the

vertex i

0

which is above the source i

0

and the ceiling � is joined to the sink i

d

.

Also, all the facets of the prism other than the ceiling and the oor are prisms

over facets of conv(�) and the restriction of T to them is obtained by restricting

the orientation chosen in the 1-skeleton of conv(�) to that facet.

Triangulating layers of prisms

Let T be a triangulation of a point or vector con�guration A and let O 2 A

be a distinguished vertex. Let B be the subcon�guration of A consisting of the

9



vertices in the link of O and C be the subcon�guration of vertices not in the

star of O (so that A is the disjoint union of fOg, B and C). In the case of a

vector con�guration, we assume further that fOg [ B is acyclic and without

loss of generality we consider fOg [ B to lie in an a�ne hyperplane.

Let c be a positive real number smaller than 1 (we will typically take c to

be very close to 1). For each integer n, consider the following (point or vector)

con�gurations:

B

n

:= fc

n

P + (1� c

n

)O;P 2 Bg; A

n

:= fOg [ B

0

[ � � � [ B

n

[ C:

That is, B

0

= B and B

n

is a copy of B

n�1

contracted towards O; A

n

is

obtained adding the n contracted copies of B to A. We will denote by c

n

� and

c

n

a the images in B

n

of any subset � or element a of B. This is a slight abuse

of notation unless O is taken as origin of coordinates (which can be done for a

point con�guration but not for a vector con�guration).

In these conditions, the following is a polytopal subdivision (a fan in the

standard terminology for vector con�gurations) of A

n

: the antistar of O in

T together with, for each simplex conv(�) of T in the link of O, the simplex

conv(fOg [ c

n

�) and the cells conv(c

k

� [ c

k�1

�) for each k = 1; : : : ; n. Ob-

serve that what we do is contracting the star of O in T and inserting the cells

conv(c

k

� [ c

k�1

�) in between the star and the anti-star. Moreover, the cells

conv(c

k

� [ c

k�1

�) that we have introduced are (convex hulls of) prisms, whose

oor and ceiling are contracted copies of the simplices in the link of O in T .

Figure 3 shows an example of the construction.

O B 2

B 0

B 4

O

Figure 3: Insertion of 4 layers of prisms in a planar triangulation.

The subdivision S

n

described above will be called the subdivision obtained

by inserting n layers of prisms around O in T with parameter c. We call k-th

layer of S

n

, for k = 1; : : : ; n, the union of the prisms conv(c

k

� [ c

k�1

�).

If we want to re�ne S

n

into a triangulation, we just need to triangulate

each of the prisms in the layers. Let us concentrate in a layer, with index k.

The prisms in the layer have a simplicial facet in B

k�1

and another one in B

k

.

We consider the �rst one to be the oor of the prism. In order to specify a

triangulation of the layer we just need to give an orientation to all the edges of

10



S

n

which have their vertices in B

k�1

in such a way that each simplex is oriented

acyclically. Figure 4 shows how to triangulate the third layer in the example of

Figure 3.

OO

Figure 4: Orienting the edges in B

2

we triangulate a layer of Figure 3.

Since the oor of each layer is a contracted version of the link of O in the

original triangulation T , we conclude that:

Lemma 6 Let S

n

be the subdivision obtained by inserting n-layers of prisms

around the vertex O in a certain triangulation T . Let G be the 1-skeleton of the

link of O in T . Then, in order to re�ne S

n

into a triangulation it is su�cient to

choose n oriented copies G

1

; : : : ; G

n

of the graph G, all of them acyclic on every

simplex of the link, and use G

i

to triangulate the i-th layer, for i = 1; : : : ; n.

Inserting layers with no addition of ips

Remember that ips in triangulations of a prism correspond to edges which

can be reversed in the orientation of the oor; then, it will be interesting to us

that the orientations G

1

; : : : ; G

n

which appear in Lemma 6 be \rigid" in the

following sense:

De�nition 7 Let K be a simplicial complex and let G be its 1-skeleton. We

say that an orientation of G is rigid (with respect to K) if it is acyclic on every

simplex of K but reversing the orientation of any single edge makes it cyclic

in some simplex. Following standard graph theory terminology we say that the

orientation has no sources or sinks if no vertex of G has all the orientations of

its incident edges in-going or out-going.

For a directed graph G, �G denotes the opposite orientation of G.

Theorem 8 Let T be a triangulation of a con�guration A which uses all the

elements. Let O 2 A be one of the vertices of the triangulation and let L be the

link of O in T . Suppose that no two adjacent maximal simplices in L lie in the

same hyperplane (we will say that the link of O is generic when it satis�es this

condition). Let S

n

be the subdivision obtained by inserting n layers around O,

with the parameter c which appears in the construction su�ciently close to 1.

Let G be a rigid orientation of the 1-skeleton of L with no sources or sinks.

Consider the re�nement T

n

of S

n

obtained as in Lemma 6 using G

k

= G for

even k and G

k

= �G for odd k. Then,

11



(i) T

n

has exactly the same number of ips as T

1

, for every n.

(ii) For every ip of T

n

, either all the ippable facets contain O or some

ippable facet has its vertices contained in B

0

[ C.

Proof: Let us recall that we can count ips of T

n

by saying which facets of T

n

are ippable, as in Lemma 2 (we call facets of T

n

the facets of the maximal cells

of T

n

).

Let � be a facet in T

n

. By construction, either � contains O, or is contained

in B

0

[ C, or is contained in B

k

[ B

k�1

, for some k 2 f1; : : : ; ng. The following

cases (a) to (d) cover all possibilities except for the case � � B

0

[ C which we

will not need to care about. The four cases are illustrated in parts (a) to (d) of

Figure 5, where the facets under study are drawn thicker:

OO
cna

cnb

ck-1a

ck+1a

OO

b

a

(a) (b)

(d)(c)

Figure 5: Di�erent types of facets in the proof of Theorem 8

(a) Let conv(c

n

� [ fOg) be a facet of T

n

which has O as a vertex, and sup-

pose that it is ippable. By construction of T

n

, conv(c

n

� [ fOg) is the

contracted version of a certain facet conv(� [fOg) of T with � � B

0

= B,

as is implicit in our notation. The facet conv(�) is joined in T to at most

two (perhaps one, but this case is treated in an analogous way) points a

and b in B, so that conv(c

n

� [ fOg) is joined to two points c

n

a and c

n

b.

Since the link of O in T is generic, O is in the support of the circuit

contained in fc

n

a; c

n

b;Og[c

n

� . Moreover, fc

n

a; c

n

bg[c

n

� is not a simplex

in T

n

(since fc

n

ag [ c

n

� and fc

n

bg [ c

n

� are the ceilings of two di�erent

prisms in the n-th layer). Then, for the circuit to be ippable (with our

sign convention) it is necessary that O be in the negative part of the

circuit. This implies that all the maximal simplices to be removed by the

ip (the shaded triangles in part (a) of Figure 5) have O as a vertex. In
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this case it is clear that the same ip can be performed in T

1

(actually, in

T as well), changing c

n

a, c

n

b and c

n

� for c

1

a, c

1

b and c

1

� .

(b) Let us now see that no facet conv(c

k

�) with c

k

� � B

k

(k 2 f1; : : : ; ng) is

ippable. The facet conv(c

k

�) is joined to a vertex c

k�1

a in c

k�1

� and

either to O (if k = n) or to an element c

k+1

b in c

n+1

� , if k < n. More

precisely, a is the sink of � in the orientation G

k

of the 1-skeleton of L and,

if k < n, b is the source of � in G

k+1

. Since G

k

and G

k+1

are opposite to

one another, a = b. If conv(c

k

�) is ippable, the circuit in which the ip

is supported is (fO; c

n�1

ag; fc

n

ag) if k = n and (fc

k�1

a; c

k+1

ag; fc

k

ag) if

k < n. Thus, the link of conv(fc

k�1

a; c

k

ag) in T

n

has to coincide with

that of conv(fc

k+1

a; c

k

ag) (or conv(fO; c

n

ag), if k = n) which implies

that all the vertices in the link of conv(fc

k�1

a; c

k

ag) belong to B

k

. But

this would imply a to be a sink of the orientation G

k

of L. Since G

k

= �G

and G has no sources or sinks, G

k

has no sinks.

(c) Also, no facet interior to a prism c

k�1

�[c

k

� can be ippable, because then

the circuit involved must be one of the circuits of a prism. Performing

the ip is equivalent to reversing the orientation of a certain edge in the

graph G

k

, which is impossible because G

k

is rigid.

(d) Finally, let conv(�) be a facet having vertices both in B

k

and B

k�1

for

some k 2 f1; : : : ; ng, but not interior to a prism. That is to say, the two

maximal simplices conv(� [ a) and conv(� [ b) sharing conv(�) belong

to di�erent prisms of the same layer. If the facet is ippable, the ip

is supported in the unique circuit Z = (Z

+

; Z

�

) contained in � [ fa; bg,

oriented so that fa; bg � Z

+

. The fact that no two facets in the link of O

in T are coplanar implies that, if c is su�ciently close to 1, the segment

conv(fa; bg) is not contained in the k-th layer. We assume c to be so close

to 1 that this happens. Then:

(d.1) If Z

+

= fa; bg, then this together with Z

�

� � imply that conv(� [

fag) and conv(� [fbg) (which are both contained in the k-th layer) cover

conv(Z

+

[Z

�

). This contradicts the assumption that conv(fa; bg) is not

contained in the k-th layer.

(d.2) If there is an element p 2 Z

+

other than a and b, then � = Z

+

[

Z

�

n fpg is a simplex of T

n

which contains a and b. In particular, a and b

are joined by an edge. The fact that conv(fa; bg) is not contained in the

k-th layer implies that this edge has not been introduced by the insertion

of layers. Thus, the only possibility is that k = 1, a and b are in B

0

and

� is a simplex outside the layers. In particular, � only contains vertices

in B

0

[ C. The facets conv(� n fag) and conv(� n fbg) of � are ippable

by the ip, so that the ip is in the conditions of (ii).

The above case study implies that all the ips either are in the conditions

of (a) or (d.2) or all their ippable facets lie in B

0

[ C. This proves part (ii) of

the statement. The ips studied in (a) appear in T

1

as mentioned above. The

ips mentioned in (d.2) and those with ippable facets in B

0

[ C only remove
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simplices from the �rst layer or outside the layers. Thus, they are ips in T

1

as

well. This proves (i). 2

Remark 9 Among the hypotheses in Theorem 8, the only one which is di�cult

to ful�ll in a construction is a rigid orientation without sources or sinks of the

1-skeleton of L. If A is a con�guration in dimension d, the link L of a point

is a triangulation of the (d � 1)-sphere or the (d � 1)-ball. It is clear that no

orientation in a triangulation of the 1-sphere or 1-ball is rigid. For the 2-sphere

or the 2-ball the same is not obvious, but still can be proved as follows.

Let T be a triangulation of the 2-sphere or the 2-ball with v vertices, e edges

and t triangles. Let an orientation be given to each edge in such a way that

every triangle is acyclic. Then, each triangle of T prevents one of its edges to

be reversed, which implies that the number of edges whose orientations cannot

be changed is at most t. Thus, in order for the orientation to be rigid we would

need to have t � e. This is impossible since t� e = �� v < 0 (where � = 1 for

the 2-ball and � = 2 for the 2-sphere).

Still, a version of our construction can serve to insert layers of prisms in a

3-dimensional triangulation adding less ips per layer than vertices. The idea

is to orient the 1-skeleton of a triangulated 2-sphere or 2-ball in a way acyclic

on each triangle and with few reversible edges (edges whose reversal preserve

acyclicness in triangles). The best possible ratio of reversible edges versus

number of vertices is 3=5, obtained by orienting the 1-skeleton of a triangular

bipyramid (5 vertices, 6 triangles) with only 3 reversible edges. Although it is

impossible to do this without sinks or sources, this idea is used in [8] to obtain

triangulations in dimension 3 with 5n vertices and 3n� 2 ips.

4 A construction in dimension four

A rigid orientation of a triangulation of the 3-sphere

We are going to show a rigid orientation with no sinks or sources of the 1-

skeleton of a triangulation of the unit 3-sphere S

3

� R

4

, in order to apply

Theorem 8 to it.

Our triangulation will have 15 vertices that we denote t

i;j

, h

i

and v

j

for i; j =

0; 1; 2 (indices will be regarded modulo 3 in what follows), with coordinates

t

ij

=

1

p

2

�

cos

�

2�i

3

�

; sin

�

2�i

3

�

; cos

�

2�j

3

�

; sin

�

2�j

3

��

;

h

i

=

�

cos

�

2�i

3

�

; sin

�

2�i

3

�

; 0; 0

�

; v

j

=

�

0; 0; cos

�

2�j

3

�

; sin

�

2�j

3

��

(we use the letters t, v and h because if we think of S

3

in its stereographic

projection � into R

3

given by �(x; y; z; t) = (

x

t�1

;

y

t�1

;

z

t�1

), then the points

h

i

, t

i;j

and v

j

lie, respectively, on a horizontal circle, a torus around it and its

vertical rotation axis).

The six points h

i

and v

j

are the vertices of the join �

2

��

2

of two triangles.

The nine points t

i;j

are the vertices of the product �

2

� �

2

of two triangles.
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The common re�nement of these two polytopes has eighteen facets, all of which

are triangular prisms: each of the six facets of �

2

� �

2

(which are 3-prisms

themselves) is divided into three subprisms by its medial axis and each of the

nine facets of �

2

� �

2

(which are tetrahedra) is divided into two prisms by a

quadrilateral with vertices in the mid-points of four edges.

Our triangulation T of S

3

consists of the following 54 tetrahedra. For each

i = 0; 1; 2 and j = 0; 1; 2:

[h

i

; t

i;j

; t

i;j+1

; t

i+1;j+1

]; [h

i

; t

i;j

; t

i+1;j

; t

i+1;j+1

]; [h

i

; h

i+1

; t

i+1;j

; t

i+1;j+1

];

[v

j

; t

i;j

; t

i+1;j

; t

i+1;j+1

]; [v

j

; t

i;j

; t

i;j+1

; t

i+1;j+1

]; [v

j

; v

j+1

; t

i;j+1

; t

i+1;j+1

]:

Each of the two rows of tetrahedra above triangulates one of the 18 prisms

mentioned, for each choice of indices i and j. Since there are nine possible

choices, this gives the total of 18 triangulated prisms.

The permutations [t

i;j

! t

i+1;j

; h

i

! h

i+1

; v

j

! v

j

] and [t

i;j

! t

j;i

; h

i

!

h

i

; v

j

! v

j

] produce symmetries of the triangulation T . They generate the

symmetry group of the triangulation, which acts transitively and with trivial

stabilizer over the 18 subprisms. Thus, the symmetry group has 18 elements.

The �rst three tetrahedra in the list above are representatives for the three

orbits of simplices.

There are two orbits of vertices in T , one containing all the t

i;j

and the other

containing the h

i

and v

j

. There are �ve orbits of edges. We show an orientation

for a representative of each and let the others be oriented by the action of the

symmetry group: we orient [h

i

! h

i+1

] (6 edges in the orbit), [t

i;j

! h

i

] (18

edges), [h

i

! t

i+1;j

] (18 edges), [t

i;j

! t

i+1;j

] (18 edges) and [t

i;j

! t

i+1;j+1

] (9

edges). Then,

Theorem 10 The above is a rigid orientation of a triangulation of the 3-sphere

with no sources or sinks. Thus, there are triangulations of point con�gurations

in R

4

and of vector con�gurations in R

5

with arbitrarily large number of ver-

tices and a bounded number of ips.

Proof: The orientations shown for the edges produce the following acyclic orien-

tations on the three representatives of simplices: [t

i;j

! t

i;j+1

! h

i

! t

i+1;j+1

],

[t

i;j

! h

i

! t

i+1;j

! t

i+1;j+1

] and [h

i

! t

i+1;j

! t

i+1;j+1

! h

i+1

]. Reorienting

any of the �ve representatives of edges would produce a 3-cycle in a triangle

of the triangulation; for example, the �ve triangles are: [h

i

! t

i+1;j

! h

i+1

],

[t

i;j

! t

i;j+1

! h

i

], [h

i

! t

i+1;j�1

! t

i+1;j

], [t

i;j

! h

i

! t

i+1;j

] and [t

i;j

!

t

i;j+1

! t

i+1;j+1

]. Thus, the orientation is rigid. From the oriented cycles

[h

0

! h

1

! h

2

! h

0

], [v

0

! v

1

! v

2

! v

0

] and [t

i;0

! t

i;1

! t

i;2

! t

i;0

],

i = 0; 1; 2, it follows that no vertex is a source or a sink.

For the �nal statement, we consider the 15 vectors in S

3

�R

4

as points in

R

4

and consider the origin as an extra point. This gives a point con�guration

A with 16 points. For each tetrahedra in the sphere with vertices fa; b; c; dg

we consider the simplex with vertices fO; a; b; c; dg in R

4

. This produces a

collection of simplices of A; we perturb a little the coordinates of every point

so that the link of the origin O is generic. This collection of simplices may not
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be a triangulation, if it does not cover the whole convex hull of A. However,

it can always be completed to a triangulation, perhaps with the addition of

extra vertices. Thus, we can construct a triangulation of a point con�guration

A

0

in R

4

such that the link of one of the vertices is generic and admits a

rigid orientation of edges without sinks or sources. Theorem 8 tells us how to

construct triangulations with arbitrarily many vertices and bounded number of

ips from that. 2

Counting ips

In what follows we look more closely at the above construction to compute an

actual bound for the number of ips mentioned in the statement of Theorem 10.

LetA

0

�R

5

be the following vector con�guration: A

0

:= fO;�O; t

i;j

; h

i

; v

j

j i; j =

1; 2; 3g, where O = (1; 0; 0; 0; 0), �O = (�1; 0; 0; 0; 0),

t

ij

=

�

i;j

p

2

 

p

2

�

i;j

; cos

�

2�i

3

�

; sin

�

2�i

3

�

; cos

�

2�j

3

�

; sin

�

2�j

3

�

!

;

h

i

=

�

1; �

i

cos

�

2�i

3

�

; �

i

sin

�

2�i

3

�

; 0; 0

�

;

v

j

=

�

1; 0; 0; �

j

cos

�

2�j

3

�

; �

j

sin

�

2�j

3

��

;

for some positive coe�cients �

i;j

, �

i

and �

j

(i; j = 0; 1; 2).

The con�guration A

0

is obtained from A by scaling the 15 vectors of A

with the coe�cients �, embedding R

4

in an a�ne hyperplane of R

5

with a

central vector O and including the opposite vector �O. Observe that A is (up

to scaling) the contraction of A

0

at O (and at �O as well).

Let T

0

be the triangulation of A

0

obtained joining the triangulation T of A

both to O and to �O, so that link(O) = link(�O) = T . The coe�cients �

i;j

,

�

i

and �

j

are chosen su�ciently generic for the link of O in T

0

to satisfy the

genericity condition required in the statement of Theorem 8.

Proposition 11 The triangulation T = link(O) = link(�O) has exactly 9

ips, supported on the 9 circuits of the form (ft

i+1;j

; t

i;j+1

g; ft

i;j

; t

i+1;j+1

g).

Proof: From the three representatives of simplices we conclude that there are

six orbits of facets, with the following being representatives of them:

conv(h

i

; t

i;j

; t

i+1;j+1

); conv(h

i

; t

i;j

; t

i+1;j

);

conv(h

i

; t

i;j

; t

i;j+1

); conv(h

i

; t

i+1;j

; t

i+1;j+1

);

conv(h

i

; h

i+1

; t

i+1;j

); conv(t

i;j

; t

i;j+1

; t

i+1;j+1

)

Let us see that the last �ve facets are not ippable:

- the two vertices joined to conv(h

i

; t

i;j

; t

i+1;j

) are t

i+1;j+1

and t

i;j�1

. Since

2t

i;j

+t

i+1;j+1

+t

i;j�1

= 2

p

2h

i

+t

i+1;j

, the associated circuit is (ft

i;j

; t

i+1;j+1

; t

i;j�1

g;
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fh

i

; t

i+1;j

g). The circuit is not ippable, since conv(h

i

; t

i+1;j+1

; t

i;j�1

; t

i+1;j

) is

not a simplex in the triangulation.

- the vertices joined to conv(h

i

; t

i;j

; t

i;j+1

) are h

i�1

and t

i+1;j+1

. Since

t

i;j+1

= t

i+1;j+1

+

1

p

2

h

i�1

+

2

p

2

h

i

, the associated circuit is (ft

i;j+1

g; ft

i+1;j+1

;

h

i�1

; h

i

g). It is not ippable since conv(t

i;j+1

; t

i+1;j+1

; h

i�1

) is not a simplex in

the triangulation.

- the vertices joined to conv(h

i

; t

i+1;j

; t

i+1;j+1

) are h

i+1

and t

i;j

. Since h

i+1

+

p

2t

i;j

= h

i

+

p

2t

i+1;j

the associated circuit is (ft

i;j

; h

i+1

g; fh

i

; t

i+1;j

g), and it

is not ippable since the links of conv(t

i;j

; h

i

; t

i+1;j

) and conv(h

i+1

; h

i

; t

i+1;j

)

are not the same; the �rst one consists of the vertices t

i+1;j+1

and t

i;j�1

and

the second one of t

i+1;j+1

and t

i+1;j�1

.

- the two vertices joined to conv(h

i

; h

i+1

; t

i+1;j

) are t

i+1;j+1

and t

i+1;j+2

.

The associated circuit is (ft

i+1;j

; t

i+1;j+1

; t

i+1;j+2

g; fh

i+1

g), since t

i+1;j

+t

i+1;j+1

+

t

i+1;j+2

=

3

p

2

h

i+1

. The link of conv(t

i+1;j

; t

i+1;j+1

; h

i+1

) contains t

i+2;j+1

while

the link of conv(t

i+1;j

; t

i+1;j+2

; h

i+1

) contains t

i+2;j

. Thus, the facet is not ip-

pable.

- the vertices joined to conv(t

i;j

; t

i;j+1

; t

i+1;j+1

) are h

i

and v

j

. The associated

circuit is (ft

i;j

g; fh

i

; v

j

g) since

p

2t

i;j

= h

i

+ v

j

. It is not ippable since the

links of conv(h

i

; t

i;j

) and conv(v

j

; t

i;j

) do not coincide; h

i�1

is a vertex in one

but not in the other.

Thus, the only possible ippable facets are conv(h

i

; t

i;j

; t

i+1;j+1

) and its

images under the symmetry group. The vertices joined to this facet are t

i;j+1

and t

i+1;j

and the circuit is (ft

i;j+1

; t

i+1;j

g; ft

i;j

; t

i+1;j+1

g) since t

i;j+1

+ t

i+1;j

=

t

i;j

+t

i+1;j+1

. The circuit supports a ip since the facets conv(t

i;j

; t

i+1;j

; t

i+1;j+1

)

and conv(t

i;j

; t

i;j+1

; t

i+1;j+1

) are joined to the same vertices, namely h

i

and v

j

.

2

Theorem 12 Inserting n layers in the triangulation T

0

with a parameter c

su�ciently close to 1 gives a triangulation T

0

n

of a vector con�guration in R

5

with 15(n + 1) + 2 vertices and 9 ips.

Proof: By part (ii) of Theorem 8, all the ips of T

0

n

have a ippable facet

containing O or with its vertices in B

0

[ f�Og.

Let C be a circuit which produces a ip in which a ippable facet contains

O. Genericity of the link of O implies that O is in the support of the circuit and

that the rest of the elements in the circuit lie in the link of O, that is, they are in

B

n

. In other words, C is of the form (c

n

C

+

[fOg; c

n

C

�

) or (c

n

C

+

; c

n

C

�

[fOg).

The �rst case is impossible since then conv(c

n

C

+

[ c

n

C

�

) would have to be a

simplex in our triangulation T

0

n

, which is not the case. Thus, the ippable

circuit is of the form (c

n

C

+

; c

n

C

�

[ fOg). Lemma 3 implies that (c

n

C

+

; c

n

C

�

)

has to be a ippable circuit in link(O), considered as a triangulation of a vector

con�guration in R

4

. That is, (c

n

C

+

; c

n

C

�

) is the copy in B

n

of one of the 9

circuits of the con�guration A which supports a ip of T . Thus, we conclude

that the only circuits which can produce ips with ippable facets containing O

are those of the form (c

n

C

+

; c

n

C

�

[fOg), where (C

+

; C

�

) is a ippable circuit

of T . There are 9 possibilities for (C

+

; C

�

).
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No ippable facet can have all its vertices in B

0

: If conv(c

0

�) is a ippable

facet with its vertices in B

0

, then one of the vertices joined to conv(c

0

�

0

) is �O

and the other one is one of the vertices c

1

a of c

1

� . Thus, the corresponding

circuit is (fc

1

a;�Og; fc

0

ag). A ip supported on that circuit would imply that

a is a sink of the oriented graph used to construct the triangulation of the �rst

layer, which is not the case.

Then, part (ii) of Theorem 8 tells us that the remaining ips have a ippable

facet containing �O. Genericity of the link of O implies genericity of the link

of �O. Thus, �O is in the circuit which supports the ip and the rest of the

points in the circuit are in B

0

. Let (c

0

C

+

[f�Og; c

0

C

�

) or (c

0

C

+

; c

0

C

�

[f�Og)

be that circuit. Similar arguments as in the star of O prove that (C

+

; C

�

) is

the copy in B

0

of one of the 9 circuits of A which supports a ip of T and that

�O cannot be in the positive part of the circuit. Thus, the circuit is of the

form (c

0

C

+

; c

0

C

�

[ f�Og) , for one of the 9 ippable circuits (C

+

; C

�

) of T .

We conclude that all the ippable circuits are of the form (c

0

C

+

; c

0

C

�

[

f�Og) or (c

n

C

+

; c

n

C

�

[fOg), where (C

+

; C

�

) is a ippable circuit of T . This,

in principle, gives 18 possibilities. However, for each circuit (C

+

; C

�

) of T ,

(c

0

C

+

; c

0

C

�

[ fOg) is a circuit of A

n

if and only if (c

n

C

+

; c

n

C

�

[ fOg) is a

circuit as well (this follows easily from the construction of the layers). The later

is a circuit if and only if (c

n

C

+

[f�Og; c

n

C

�

) is a circuit (since O and �O are

opposite vectors). Finally, only one of (c

n

C

+

[f�Og; c

n

C

�

) and (c

n

C

+

; c

n

C

�

[

f�Og) can be a circuit. This means that each ippable circuit of T produces

(at most) one, instead of two ippable circuits in T

0

n

. Although we will not

prove it it is easy to show that each ippable circuit of T indeed produces a

ippable circuit of T

0

n

, or otherwise the link of O could not be generic. 2

Remark 13 One may ask how many ips can be obtained in an acyclic ver-

sion of the last construction. This amounts to removing the star of �O and

completing to a triangulation, perhaps with additional vertices, in Theorem 12.

This case is more di�cult to analyze because the simplices to be added in order

to complete to a triangulation depend on the values chosen for the parameters

� which perturb the points. The following argument shows that a number of

ips lower or equal to 21 can be obtained. We think that a value of 9 ips can

be obtained with a more careful analysis.

Consider the point con�guration A in R

4

consisting on the origin O and

the following 15 points:

t

ij

=

1

p

2

�

cos

�

2�i

3

� �

�

; sin

�

2�i

3

� �

�

; cos

�

2�j

3

� �

�

; sin

�

2�j

3

� �

��

;

h

i

=

�

cos

�

2�i

3

�

; sin

�

2�i

3

�

; 0; 0

�

; v

j

=

�

0; 0; cos

�

2�j

3

�

; sin

�

2�j

3

��

These are the same points of Section 4 except for the parameter � in the points

t

ij

, which we take to be positive and smaller than �=12. In these conditions the

following 18 tetrahedra and 18 square pyramids are the facets of conv(A). For

each i = 0; 1; 2 and j = 0; 1; 2:

[h

i

; t

i;j

; t

i;j+1

; t

i+1;j

; t

i+1;j+1

]; [h

i

; h

i+1

; t

i+1;j

; t

i+1;j+1

];
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[v

j

; t

i;j

; t

i;j+1

; t

i+1;j

; t

i+1;j+1

]; [v

j

; v

j+1

; t

i;j+1

; t

i+1;j+1

]:

In other words, each of the 18 subprisms mentioned in Section 4 is broken into

a square pyramid and a tetrahedron by the introduction of the parameter �.

The only minimal non-simplicial faces of conv(A) are the nine quadrilaterals

[t

i;j

; t

i+1;j

; t

i;j+1

; t

i+1;j+1

]. The triangulation T of Section 4 re�nes conv(A) and,

thus, joining T to O we obtain a triangulation of A, that we still call T .

The link of O has not the genericity property required in Theorem 8. We

can get this by changing the three points t

ii

to �O + (1 � �)t

ii

, for a small

positive constant � (we are moving these three points slightly towards O). This

perturbation breaks the coplanarity of the former nine quadrilaterals but makes

the union of the simplices that we have so far non-convex. The non-convex parts

can be �lled in with the following six 4-simplices. For each i = 0; 1; 2:

[h

i

; t

i;i

; t

i;i+1

; t

i+1;i

; t

i+1;i+1

] [v

i

; t

i;i

; t

i;i+1

; t

i+1;i

; t

i+1;i+1

]

Now we can count the number of ips in this triangulation with the same

arguments as in the proof of Theorem 12. The six quadrilaterals that have

been perturbed convex produce six ips in the star of the central point O, and

they are the only ips containing O in a ippable facet. Part (ii) of Theorem 8

tells us that the other possible ips will have a ippable facet in one of the six

extra 4-simplices added to the triangulation. Each of those simplices has three

interior facets: the complements of h

i

(or v

i

), t

i+1;i

and t

i;i+1

and one of them

is common to two 4-simplices. This gives a total of 15 possible ippable facets

and, together with the six ips at O, a total of 21 possible ips.
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