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5. THE NUMBER OF BISTELLAR NEIGHBORS (EXTENDED VERSION)

We will now provide a triangulation of C(11; 5) with flip deficiency, i.e., fewer
flips than the dimension of the corresponding secondary polytope. This example
was found (together with the others mentioned in Theorem 1.2) while enumerat-
ing the set of all triangulations of C(11; 5) and C(12; 5) by a special C++ computer
program. The algorithm makes full use of the fact that the set of triangulations of
a cyclic polytope forms a bounded poset [10]. Modulo implementation details, the
algorithm is straightforward; thus we do not discuss it here. Table 1 contains the
resulting numbers of triangulations. This same table appears in [2].

number of points: 3 4 5 6 7 8 9 10 11 12
dimension 2 1 2 5 14 42 132 429 1,430 4,862 16,796
dimension 3 1 2 6 25 138 972 8,477 89,405 1,119,280
dimension 4 1 2 7 40 357 4,824 96,426 2,800,212
dimension 5 1 2 8 67 1,233 51,676 5,049,932
dimension 6 1 2 9 102 3,278 340,560
dimension 7 1 2 10 165 12,589
dimension 8 1 2 11 244
dimension 9 1 2 12

dimension 10 1 2

TABLE 1. The number of triangulations of C(n; d) for n � 12.

Example 5.1. Throughout this section, T will be the following collection of 36 sim-
plices in C(11; 5). We give it in five pieces which we call T

3

, T
9

, T
6

, T
-

and T

+

,
since the vertices 3, 6 and 9 play a special role in them and in the proofs. All the
simplices in T contain either 3 or 9. The parts T

3

, T
9

and T

6

consist respectively of
those simplices not containing 3, not containing 9 and containing both 3 and 9 but
not 6. Then, T

-

and T

+

consist of the simplices containing 3, 6 and 9, divided into
two groups according to whether they contain two elements in f1; 2; 4; 5g and one
in f7; 8; 10; 11g or vice versa. T is symmetric under the reversal of the indices.

T

3

:= ff1; 2; 6; 7; 8; 9g; f1; 2; 6; 7; 9; 11g; f1; 2; 7; 8; 9; 11g;

f1; 6; 7; 9; 10; 11g; f1; 7; 8; 9; 10; 11g; f4; 5; 6; 7; 9; 11g;

f4; 5; 6; 9; 10; 11g; f4; 5; 7; 8; 9; 11g; f5; 6; 7; 8; 9; 11gg

T

9

:= ff3; 4; 5; 6; 10; 11g; f1; 3; 5; 6; 10; 11g; f1; 3; 4; 5; 10; 11g;

f1; 2; 3; 5; 6; 11g; f1; 2; 3; 4; 5; 11g; f1; 3; 5; 6; 7; 8g;

f1; 2; 3; 6; 7; 8g; f1; 3; 4; 5; 7; 8g; f1; 3; 4; 5; 6; 7gg

T

6

:= ff1; 2; 3; 9; 10; 11g; f1; 3; 4; 5; 8; 9g; f1; 3; 4; 5; 9; 10g;

f2; 3; 7; 8; 9; 11g; f3; 4; 5; 7; 8; 9g; f3; 4; 7; 8; 9; 11gg

T

-

:= ff1; 2; 3; 6; 8; 9g; f1; 2; 3; 6; 9; 11g; f1; 3; 5; 6; 8; 9g;

f1; 3; 5; 6; 9; 10g; f3; 4; 5; 6; 9; 10g; f3; 4; 5; 6; 7; 9gg

T

+

:= ff3; 4; 6; 9; 10; 11g; f1; 3; 6; 9; 10; 11g; f3; 4; 6; 7; 9; 11g;

f2; 3; 6; 7; 9; 11g; f2; 3; 6; 7; 8; 9g; f3; 5; 6; 7; 8; 9gg:

We will prove that T is a triangulation and has only the following four bistellar
flips: Two upward ones supported on

f1; 2; 3; 6; 7; 8; 9g; f3; 4; 5; 6; 9; 10; 11g;

and two downward ones, supported on

f1; 2; 3; 6; 9; 10; 11g; f3; 4; 5; 6; 7; 8; 9g:
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The fact that the example above is a triangulation and has only the claimed flips
is computationally straightforward once the example is in hand. It was checked by
the maple program PUNTOS [14] which studies triangulations of arbitrary point
configurations and by two other independent maple routines.

However, we will provide a computer-free proof. 1 The proof is essentially a
long but transparent case study. It is incorporated here for two reasons: first we
want to show how a computer free proof can be organized at all. Just going along
the definitions would certainly result in a much longer proof than the one pre-
sented below. Secondly, the computer programs we used are not available to the
public. This is mainly due to the fact that the necessary documentation for an offi-
cial software publication has not been and probably will never be accomplished.

Theorem 5.2. The collection T of simplices of Example 5.1 is a triangulation of C(11; 5).

Proof. For proving this we produce Tables 2 and 3 below. The first five numbers
in each row represent a codimension one simplex � of T. It is followed by one
number (in Table 2) or two numbers (in Table 3) in bold, each representing a vertex
v to which � is joined, so that �[ fvg is a simplex in T. The final information in each
row says in which of the subsets T

3

, T
9

, T
6

, T
+

or T
-

of T the simplex in question
can be found. The reader can verify the following facts:

1 2 3 4 5 11 (T

9

)

1 2 3 5 6 11 (T

9

)

1 2 3 6 7 8 (T

9

)

1 2 3 7 8 6 (T

9

)

1 2 3 8 9 6 (T

-

)

1 2 3 9 10 11 (T

6

)

1 2 3 10 11 9 (T

6

)

1 3 4 5 6 7 (T

9

)

1 3 4 6 7 5 (T

9

)

1 3 4 7 8 5 (T

9

)

1 3 4 8 9 5 (T

6

)

1 3 4 9 10 5 (T

6

)

1 3 4 10 11 5 (T

9

)

1 4 5 6 7 3 (T

9

)

1 4 5 7 8 3 (T

9

)

1 4 5 8 9 3 (T

6

)

1 4 5 9 10 3 (T

6

)

1 4 5 10 11 3 (T

9

)

1 5 6 7 8 3 (T

9

)

1 5 6 8 9 3 (T

-

)

1 5 6 9 10 3 (T

-

)

1 5 6 10 11 3 (T

9

)

1 6 7 8 9 2 (T

3

)

1 6 7 9 10 11 (T

3

)

1 6 7 10 11 9 (T

3

)

1 7 8 9 10 11 (T

3

)

1 7 8 10 11 9 (T

3

)

1 8 9 10 11 7 (T

3

)

1 2 3 4 11 5 (T

9

)

1 2 4 5 11 3 (T

9

)

1 2 5 6 11 3 (T

9

)

1 2 6 7 11 9 (T

3

)

1 2 7 8 11 9 (T

3

)

1 2 8 9 11 7 (T

3

)

1 2 9 10 11 3 (T

6

)

2 3 4 5 11 1 (T

9

)

2 3 5 6 11 1 (T

9

)

2 3 6 7 11 9 (T

+

)

2 3 7 8 11 9 (T

6

)

2 3 8 9 11 7 (T

6

)

2 3 9 10 11 1 (T

6

)

3 4 5 6 11 10 (T

9

)

3 4 6 7 11 9 (T

+

)

3 4 7 8 11 9 (T

6

)

3 4 8 9 11 7 (T

6

)

3 4 9 10 11 6 (T

+

)

4 5 6 7 11 9 (T

3

)

4 5 7 8 11 9 (T

3

)

4 5 8 9 11 7 (T

3

)

4 5 9 10 11 6 (T

3

)

5 6 7 8 11 9 (T

3

)

5 6 8 9 11 7 (T

3

)

5 6 9 10 11 4 (T

3

)

6 7 8 9 11 5 (T

3

)

6 7 9 10 11 1 (T

3

)

7 8 9 10 11 1 (T

3

)

TABLE 2. Simplices of T incident to facets of C(11; 5)

1. The 56 codimension one simplices in Table 2 are the facets of C(11; 5), by
Gale’s evenness criterion (upper facets on the right and lower facets on the
left). Joining them to the element in bold in the same row produces a simplex
of T.

2. The 80 codimension one simplices in Table 3 are non-facets of C(11; 5). Let
� be any of them and let v

1

and v

2

be the two elements in bold in the same
row. Then, � [ fv

1

g and � [ fv

2

g are in T and they lie in opposite sides of �.
The latter is equivalent to saying that there are an odd number of elements
of � between v

1

and v

2

.

1The final version of the paper does not contain the proofs of theorems 5.2 and 5.3.



18 FRANCISCO SANTOS AND JÖRG RAMBAU

Without 3:
1 2 6 7 9 8 11 (T

3

, T
3

)

1 2 6 8 9 3 7 (T

-

, T
3

)

1 2 6 9 11 3 7 (T

-

, T
3

)

1 2 7 8 9 6 11 (T

3

, T
3

)

1 2 7 9 11 6 8 (T

3

, T
3

)

1 6 7 9 11 2 10 (T

3

, T
3

)

1 6 9 10 11 3 7 (T

+

, T
3

)

1 7 8 9 11 2 10 (T

3

, T
3

)

1 7 9 10 11 6 8 (T

3

, T
3

)

2 6 7 8 9 1 3 (T

3

, T
+

)

2 6 7 9 11 1 3 (T

3

, T
+

)

2 7 8 9 11 1 3 (T

3

, T
6

)

4 5 6 7 9 3 11 (T

-

, T
3

)

4 5 6 9 10 3 11 (T

-

, T
3

)

4 5 6 9 11 7 10 (T

3

, T
3

)

4 5 7 8 9 3 11 (T

6

, T
3

)

4 5 7 9 11 6 8 (T

3

, T
3

)

4 6 7 9 11 3 5 (T

+

, T
3

)

4 6 9 10 11 3 5 (T

+

, T
3

)

4 7 8 9 11 3 5 (T

6

, T
3

)

5 6 7 8 9 3 11 (T

+

, T
3

)

5 6 7 9 11 4 8 (T

3

, T
3

)

5 7 8 9 11 4 6 (T

3

, T
3

)

Without 9:
1 2 3 5 11 4 6 (T

9

, T
9

)

1 2 3 6 8 7 9 (T

9

, T
-

)

1 2 3 6 11 5 9 (T

9

, T
-

)

1 3 4 5 7 6 8 (T

9

, T
9

)

1 3 4 5 8 7 9 (T

9

, T
6

)

1 3 4 5 10 9 11 (T

6

, T
9

)

1 3 4 5 11 2 10 (T

9

, T
9

)

1 3 5 6 7 4 8 (T

9

, T
9

)

1 3 5 6 8 7 9 (T

9

, T
-

)

1 3 5 6 10 9 11 (T

-

, T
9

)

1 3 5 6 11 2 10 (T

9

, T
9

)

1 3 5 7 8 4 6 (T

9

, T
9

)

1 3 5 10 11 4 6 (T

9

, T
9

)

1 3 6 7 8 2 5 (T

9

, T
9

)

1 3 6 10 11 5 9 (T

9

, T
+

)

2 3 6 7 8 1 9 (T

9

, T
+

)

3 4 5 6 7 1 9 (T

9

, T
-

)

3 4 5 6 10 9 11 (T

-

, T
9

)

3 4 5 7 8 1 9 (T

9

, T
6

)

3 4 5 10 11 1 6 (T

9

, T
9

)

3 4 6 10 11 5 9 (T

9

, T
+

)

3 5 6 7 8 1 9 (T

9

, T
+

)

3 5 6 10 11 1 4 (T

9

, T
9

)

With neither 3 nor 9:
1 2 6 7 8 3 9 (T

9

, T
3

)

4 5 6 10 11 3 9 (T

9

, T
3

)

With 3 and 9 but not 6:
1 2 3 9 11 6 10 (T

-

, T
6

)

1 3 4 5 9 8 10 (T

6

, T
6

)

1 3 5 8 9 4 6 (T

6

, T
-

)

1 3 5 9 10 4 6 (T

6

, T
-

)

1 3 9 10 11 2 6 (T

6

, T
+

)

2 3 7 8 9 6 11 (T

+

, T
6

)

2 3 7 9 11 6 8 (T

+

, T
6

)

3 4 5 7 9 6 8 (T

-

, T
6

)

3 4 5 8 9 1 7 (T

6

, T
6

)

3 4 5 9 10 2 6 (T

6

, T
-

)

3 4 7 8 9 5 11 (T

6

, T
6

)

3 4 7 9 11 6 8 (T

+

, T
6

)

3 5 7 8 9 4 6 (T

6

, T
+

)

3 7 8 9 11 2 4 (T

6

, T
6

)

With 3, 6 and 9:
1 2 3 6 9 8 11 (T

-

, T
-

)

1 3 5 6 9 8 10 (T

-

, T
-

)

1 3 6 8 9 2 5 (T

-

, T
-

)

1 3 6 9 10 5 11 (T

-

, T
+

)

1 3 6 9 11 2 10 (T

-

, T
+

)

2 3 6 7 9 8 11 (T

+

, T
+

)

2 3 6 8 9 1 7 (T

-

, T
+

)

2 3 6 9 11 1 7 (T

-

, T
+

)

3 4 5 6 9 7 10 (T

-

, T
-

)

3 4 6 7 9 5 11 (T

-

, T
+

)

3 4 6 9 10 5 11 (T

-

, T
+

)

3 4 6 9 11 7 10 (T

+

, T
+

)

3 5 6 7 9 4 8 (T

-

, T
+

)

3 5 6 8 9 1 7 (T

-

, T
+

)

3 5 6 9 10 1 4 (T

-

, T
-

)

3 6 7 8 9 2 5 (T

+

, T
+

)

3 6 7 9 11 2 4 (T

+

, T
+

)

3 6 9 10 11 1 4 (T

+

, T
+

)

TABLE 3. Codimension 1 interior simplices of T

Once these properties are checked, we can prove that T is a triangulation as
follows: a simple counting argument shows that Tables 2 and 3 cover all the codi-
mension 1 simplices in T, since 2 � 80 + 56 = 36 � 6, where 36 is the number of
simplices in T. Then, Table 3 shows that every codimension 1 simplex in T lies in
precisely two simplices of T, and that these two simplices intersect properly. In
other words, T satisfies the interior cocircuit equations introduced in [15]. Parts (i)
and (ii) of Theorem 1.1 in [15] say that in order to prove that a collection T of sim-
plices which satisfies the interior cocircuit equations is a triangulation it suffices
to show that there is a point in the interior of C(11; 5) which is covered by exactly
one simplex of T. In our case, this holds for every point sufficiently close to a facet
of C(11; 5) since there is a unique simplex incident to that facet.

Theorem 5.3. Let A = fa

1

; : : : ; a

7

g be a circuit of C(11; 5) which supports a flip of T.
Then,

(i) A contains 3 and 9.
(ii) A contains 6.

(iii) A contains exactly two elements among 1, 2, 4 and 5 and other two among 7, 8, 10
and 11.
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(iv) A contains one of the pairs f1; 2g, f4; 5g and one of f7; 8g, f10; 11g.

Thus, T has only the four bistellar flips mentioned in Example 5.1.

Proof. To say that A = fa

1

; : : : ; a

7

g supports a flip of T means that T contains one
of the two triangulations of A, which are

T

e

A

:= fAnfa

i

g : i = 2; 4; 6 g and T

o

A

:= fAnfa

i

g : i = 1; 3; 5; 7 g ;

where we assume a

1

< � � � < a

7

. Moreover, the flip supported on A is upward
(in the poset structure on the collection of triangulations of C(11; 5)) if To

A

� T and
downward if Te

A

� T.
If A = fa

1

; : : : ; a

7

g supports a flip, at least three simplices of T have to be con-
tained in A and at least two of them must contain a

i

, for each i = 1; : : : ; 7. This
simple remark is essentially all that is used in the proof of (i), (ii), (iii) and (iv),
together with the fact that T is symmetric under reversal of indices.

The conclusion of the Theorem follows from parts (i), (ii), (iii) and (iv) as fol-
lows: By (i), (ii) and (iii) A contains 3, 6 and 9 plus two vertices among 1, 2, 4 and
5 and other two among 7, 8, 10 and 11. Then (iv) implies that the only four pos-
sibilities for A are those in Example 5.1. That these four circuits actually support
flips can be trivially checked by finding among the simplices in T one of the two
triangulations T

o

A

and T

e

A

, for each case. Also, this check tells whether the flip is
upwards or downwards.
� For proving part (i) we only need to prove that A contains 3 since then it will

follow by symmetry that A contains 9 as well.
Suppose that A does not contain 3. Then one of the two triangulations T

e

A

or
T

o

A

of A is contained in T

3

. Since in T

3

only {1,2,6,7,8,9} does not contain 11, we
have that a

7

= 11. Moreover, if the triangulation of A contained in T was To
A

, then
Anf11g = f1; 2; 6; 7; 8; 9g and A = f1; 2; 6; 7; 8; 9; 11g; this case is easily discarded, so
we assume T

e

A

� T.
Since 9 is in every simplex of T

3

, 9 is in A and equals a

i

for an odd i. Thus,
a

5

= 9 and a

6

= 10. With similar arguments one can prove that 7 is in A and
7 = a

i

for an odd i, so a

3

= 7 and a

4

= 8. Thus, the simplex Anfa

2

g 2 T

e

A

� T

contains f7; 8; 9; 10; 11g, which implies Anfa

2

g = f1; 7; 8; 9; 10; 11g and a

1

= 1. This
is impossible because then Anfa

6

g contains f1; 7; 8; 9; 11g, which is not contained in
any simplex of T

3

.
� For part (ii), if A does not contain 6 then one of the two triangulations Te

A

or
T

o

A

of A is contained in the following twelve simplices, which are those in T and
not containing 6. They are the six simplices in T

6

, together with three from T

3

and
three from T

9

:

ff1; 2; 3; 4; 5; 11g; f1; 2; 3; 9; 10; 11g; f1; 2; 7; 8; 9; 11g; f1; 3; 4; 5; 10; 11g;

f1; 3; 4; 5; 7; 8g; f1; 3; 4; 5; 8; 9g; f1; 3; 4; 5; 9; 10g; f1; 7; 8; 9; 10; 11g;

f2; 3; 7; 8; 9; 11g; f3; 4; 5; 7; 8; 9g; f3; 4; 7; 8; 9; 11g; f4; 5; 7; 8; 9; 11gg:

The four simplices in the last row are the only ones not containing 1, but they
all contain the consecutive three elements 7, 8 and 9, and they cannot contain a
triangulation of a circuit. Thus, a

1

= 1 and if To
A

� T then f7; 8; 9g � A. The same
argument on the four simplices which do not contain 11 proves that a

7

= 11 and
that Te

A

� T, since T

o

A

� T would imply that f1; 3; 4; 5; 7; 8; 9; 11g � A. Now, Te
A

� T

implies that Te
A

is contained in the set of simplices of T which contain both 1 and
11, which are:

ff1; 2; 3; 4; 5; 11g; f1; 2; 3; 9; 10; 11g; f1; 2; 7; 8; 9; 11g;

f1; 3; 4; 5; 10; 11g; f1; 7; 8; 9; 10; 11gg:
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Only the two in the second row do not contain 2, so we should have a

2

= 2 and
one of those two simplices equal Ana

2

2 T

e

A

. But this is impossible because An2

must contain both 3 and 9, by part (i).
� For part (iii) we will prove that A contains at least two vertices among 1, 2, 4

and 5. With this, symmetry proves the same thing for 7, 8, 10 and 11 and then the
fact that A contains 3, 6 and 9 proves the statement.

Since every simplex of T contains at least one of 1, 2, 4 and 5, A contains at least
one of them too. If A contains only one of them, then a triangulation of A is con-
tained in the following list of eleven simplices, which are those in T and containing
only one of f1; 2; 4; 5g: The six simplices in T

+

together with three simplices from
T

3

and two from T

6

:

ff1; 3; 6; 9; 10; 11g; f1; 6; 7; 9; 10; 11g; f1; 7; 8; 9; 10; 11g;

f2; 3; 6; 7; 9; 11g; f2; 3; 6; 7; 8; 9g; f2; 3; 7; 8; 9; 11g;

f3; 4; 6; 9; 10; 11g; f3; 4; 6; 7; 9; 11g; f3; 4; 7; 8; 9; 11g;

f3; 5; 6; 7; 8; 9g; f5; 6; 7; 8; 9; 11gg:

We have displayed them so that the four rows correspond, respectively, to sim-
plices using 1, 2, 4 and 5. If A contains only one of 1, 2, 4 or 5, then the triangulation
of A must be contained in one of the rows. This is clearly not the case.
� For part (iv), the statement on 1, 2, 4 and 5 will follow from part (iii) and the

fact that A cannot contain exactly one of 1 and 2 and one of 4 and 5, which we now
prove. The statement on 7, 8, 10 and 11 follows by symmetry.

If A contains exactly one of 1 and 2 and one of 4 and 5, then a

1

2 f1; 2g, a
2

= 3,
a

3

2 f4; 5g, a
4

= 6. We have T

o

A

� T, since T

e

A

� T would imply that Anf3g is in T

3

and contains one of f1; 2g and one of f4; 5g but no such simplex exists. In particular,
Anfa

1

g 2 T and Anfa

3

g 2 T. Both must contain 3, 6, 9 and only one of f1; 2; 4; 5g, so
they are in T

+

. More precisely, we must have

Anfa

3

g 2 ff2; 3; 6; 7; 9; 11g; f1; 3; 6; 9; 10; 11g; f2; 3; 6; 7; 8; 9gg

Anfa

1

g 2 ff3; 4; 6; 7; 9; 11g; f3; 4; 6; 9; 10; 11g; f3; 5; 6; 7; 8; 9gg:

This gives three possibilities for Anfa

1

; a

3

g and A, namely:

Anfa

1

; a

3

g = f3; 6; 7; 9; 11g; A = f2; 3; 4; 6; 7; 9; 11g;

Anfa

1

; a

3

g = f3; 6; 9; 10; 11g; A = f1; 3; 4; 6; 9; 10; 11g;

Anfa

1

; a

3

g = f3; 6; 7; 8; 9g; A = f2; 3; 5; 6; 7; 8; 9g

In no case is To
A

� T, so the proof is complete.
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