THE GENERALIZED BAUES PROBLEM FOR CYCLIC POLYTOPES II

CHRISTOS A. ATHANASIADIS, JÖRG RAMBAU, AND FRANCISCO SANTOS

Abstract

Given an affine surjection of polytopes $\pi: P \rightarrow \mathrm{Q}$, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of Q which are induced by the map π has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes $\pi: C\left(n, \mathrm{~d}^{\prime}\right) \rightarrow \mathrm{C}(\mathrm{n}, \mathrm{d})$ for all $1 \leq \mathrm{d}<\mathrm{d}^{\prime}<\mathrm{n}$.

1. Introduction

The Generalized Baues Problem, posed by Billera, Kapranov and Sturmfels [4], is a question in combinatorial geometry and topology, motivated by the theory of fiber polytopes [5] [18, Lecture 9]. Given an affine surjection of polytopes π : $\mathrm{P} \rightarrow \mathrm{Q}$, the problem asks to determine whether the Baues poset $\omega(\mathrm{P} \xrightarrow[\rightarrow]{\pi} \mathrm{Q})$ of all proper polyhedral subdivisions of Q which are induced in a certain way by the map π, endowed with a standard topology [6], has the homotopy type of a sphere of dimension $\operatorname{dim}(P)-\operatorname{dim}(Q)-1$. We refer to [11] for a concise introduction and [15] for a recent survey.

Although the Generalized Baues Problem is known to have a negative answer in general [14], various special cases have remained of interest in the literature; see [15, Section 4]. One such relates to subdivisions of cyclic polytopes. Another is the case where P is a simplex, in which $\omega(\mathrm{P} \xrightarrow[\rightarrow]{\pi} \mathrm{Q})$ is the poset of all proper polyhedral subdivisions of Q and is simply denoted $\omega(\mathrm{Q})$. In [9] an affirmative answer to the problem was given in the case of the poset of all subdivisions of cyclic polytopes of dimension at most 3 . This was recently improved in [13] to all dimensions, as follows.

Theorem 1.1. ([13, Theorem 1.1]) For all $1 \leq \mathrm{d}<\mathrm{n}$, the Baues poset $\omega(\mathrm{C}(\mathrm{n}, \mathrm{d})$) of all proper polyhedral subdivisions of the cyclic polytope $\mathrm{C}(\mathrm{n}, \mathrm{d})$ is homotopy equivalent to an ($n-d-2$)-sphere.

For $1 \leq \mathrm{d}<\mathrm{d}^{\prime}<\mathrm{n}$, one can consider the natural projections $\pi: C\left(n, \mathrm{~d}^{\prime}\right) \rightarrow$ $C(n, d)$ between cyclic polytopes [1]. The Baues poset $\omega(C(n, d))$ in Theorem 1.1 is the Baues poset of the projection π for $\mathrm{d}^{\prime}=\mathrm{n}-1$. In this paper we use the "sliding" technique of [13] to give an affirmative answer to the Generalized Baues Problem for π for all d, d^{\prime} and n.
Theorem 1.2. For $1 \leq \mathrm{d}<\mathrm{d}^{\prime}<\mathrm{n}$, the Baues poset $\omega\left(\mathrm{C}\left(\mathrm{n}, \mathrm{d}^{\prime}\right) \xrightarrow{\pi} \mathrm{C}(\mathrm{n}, \mathrm{d})\right)$ of all proper polyhedral subdivisions of the cyclic polytope $\mathrm{C}(\mathrm{n}, \mathrm{d})$ which are induced by π is homotopy equivalent to a $\left(\mathrm{d}^{\prime}-\mathrm{d}-1\right)$-sphere.

[^0]Theorem 1.2 was conjectured by Reiner [15] on the basis of the following special cases:

- $\mathrm{d}=2, \mathrm{~d}^{\prime}=\mathrm{n}-2$ [1, Corollary 6.3],
- $\mathrm{d}^{\prime}=\mathrm{n}-1 \quad$ (Theorem 1.1),
- $d=2, n<2 d^{\prime}+2, d^{\prime} \geq 9$ [16, Corollary 15].

Other previously known special cases are those of $d=1$ and $d^{\prime}-d \leq 2$, which follow from more general results of [4] and [14], respectively: for any polytope projection $\pi: \mathrm{P} \rightarrow \mathrm{Q}$, the poset $\omega(\mathrm{P} \xrightarrow{\pi} \mathrm{Q})$ of all proper π-induced subdivisions of Q is homotopy equivalent to a sphere whenever $\operatorname{dim}(Q)=1$ or $\operatorname{dim}(P)-\operatorname{dim}(Q) \leq 2$.

Our argument is a modification of the one used in [13, Section 4] to prove Theorem 1.1 and therefore relies heavily on the constructions of [13]. In the next section we review some basic definitions and facts. In Section 3 we give a sketch of the proof of Theorem 1.2, thereby recalling those constructions from [13] that will be essential here. Section 4 contains the remaining details, which amount to proving that two certain posets of subdivisions are contractible.

2. Preliminaries

2.1. Polyhedral subdivisions. By a point configuration \mathcal{A} in \mathbb{R}^{d} we mean a finite labeled subset of \mathbb{R}^{d}. We allow \mathcal{A} to have repeated points which are distinguished by their labels. The convex hull $\operatorname{conv}(\mathcal{A})$ of \mathcal{A} is a polytope.

A face of a subconfiguration $\sigma \subseteq \mathcal{A}$ is a subconfiguration $\mathrm{F}^{\omega} \subseteq \sigma$ consisting of all points on which some linear functional $\omega \in\left(\mathbb{R}^{d}\right)^{*}$ takes its minimum over σ.

We say that two subconfigurations σ_{1} and σ_{2} of \mathcal{A} intersect properly if the following two conditions are satisfied:

- $\sigma_{1} \cap \sigma_{2}$ is a face of both σ_{1} and σ_{2};
- $\operatorname{conv}\left(\sigma_{1}\right) \cap \operatorname{conv}\left(\sigma_{2}\right)=\operatorname{conv}\left(\sigma_{1} \cap \sigma_{2}\right)$.

A subconfiguration of \mathcal{A} is said to be full-dimensional, or spanning, if it affinely spans \mathbb{R}^{d}. In that case we call it a cell. Following [3] and [10, Section 7.2] we say that a collection S of cells of \mathcal{A} is a (polyhedral) subdivision of \mathcal{A} if the elements of S intersect pairwise properly and cover $\operatorname{conv}(\mathcal{A})$ in the sense that

$$
\cup_{\sigma \in S} \operatorname{conv}(\sigma)=\operatorname{conv}(\mathcal{A})
$$

Cells that share a common facet are adjacent. The set of subdivisions of \mathcal{A} is partially ordered by the refinement relation

$$
S_{1} \leq S_{2} \quad: \Longleftrightarrow \quad \forall \sigma_{1} \in S_{1}, \exists \sigma_{2} \in S_{2}: \sigma_{1} \subset \sigma_{2}
$$

The poset of subdivisions of \mathcal{A} has a unique maximal element which is the trivial subdivision $\{\mathcal{A}\}$. The minimal elements are the subdivisions all of whose cells are affinely independent, which are called triangulations of \mathcal{A}. We call subdivisions of a polytope Q the subdivisions of its vertex set.
2.2. Induced subdivisions. Now let $\mathrm{P} \subset \mathbb{R}^{p}$ be a polytope, and let $\pi: \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}$ be a linear projection map. We can consider the point configuration $\mathcal{A}=\pi(\operatorname{vert}(\mathrm{P}))$ arising from the projection of the vertex set of P . An element in \mathcal{A} is labeled by the vertex of P of which it is considered to be the image. In other words, π induces a bijection between the vertex set of P and \mathcal{A}, even if different vertices of P have the same projection.

A subdivision S of \mathcal{A} is said to be π-induced if every cell of S is the projection of the vertex set of a face of P . If P is a simplex then all subdivisions of \mathcal{A} are π-induced. This concept of π-induced subdivisions was introduced in [5].

A π-induced subdivision S contains the same information as the collection of faces of P whose vertex sets are in S. In this sense one can say that a π-induced subdivision of \mathcal{A} is a polyhedral subdivision whose cells are projections of faces of P (this statement is not accurate; see $[11,14,18]$ for an accurate definition of π-induced subdivisions in terms of faces of P).

The poset of π-induced subdivisions excluding the trivial one is denoted by $\omega(\mathrm{P} \xrightarrow{\pi} \pi(\mathrm{P}))$. Its minimal elements are the subdivisions for which every cell comes from $\operatorname{dim}(\mathcal{A})$-dimensional face of P . They are called tight π-induced subdivisions.

In [4] it was conjectured that the Baues poset $\omega(\mathrm{P} \xrightarrow{\pi} \pi(\mathrm{P}))$ is homotopy equivalent to a sphere of dimension $p-d-1$. Evidence for this were the cases $p-d=1$ (trivial) and $\mathrm{d}=1$ (proved in [4]) together with the fact that $\omega(\mathrm{P} \xrightarrow[\rightarrow]{\pi} \pi(\mathrm{P})$) always contains a subposet homeomorphic to a sphere of dimension $p-d-1$ (the poset of coherent π-induced subdivisions [5]). The conjecture was known as the generalized Baues conjecture since the case $\mathrm{d}=1$ had been conjectured by J. Baues in a different form, until it was disproved in [14]. Still, several cases remain of interest. Theorem 1.1 is the case where π is the natural projection from a simplex to a cyclic polytope and our Theorem 1.2 is the case where π is the natural projection between two cyclic polytopes. Other cases where the statement is known to be true are when $p-d=2$ [14] and when P is a simplex and $d=2[8]$.

See $[5,15,18]$ for more information on π-induced subdivisions and the Baues problem.
2.3. Poset topology. When refering to the topology of a finite poset we mean the topology of its order complex, i.e., the simplicial complex of chains in the poset [6]. For a poset P and $x \in P$ we denote by $P_{\leq x}$ the set $\{y \in P: y \leq x\}$. We will use the following tool from [2] to relate the homotopy type of two posets. A proof is given in [17, Section 3].
Lemma 2.1. (Babson) Let $\mathrm{f}: \omega \rightarrow \omega^{\prime}$ be an order preserving map of posets. If
(i) $f^{-1}(y)$ is contractible for every $y \in \omega^{\prime}$ and
(ii) $\omega_{\leq x} \cap f^{-1}(y)$ is contractible for every $x \in \omega$ and $y \in \omega^{\prime}$ with $f(x)>y$
then f induces a homotopy equivalence.
2.4. Cyclic polytopes. The cyclic polytope $C(n, d)$ is the convex hull of any n points on the moment curve $\left\{\left(\mathrm{t}, \mathrm{t}^{2}, \ldots, \mathrm{t}^{\mathrm{d}}\right): \mathrm{t} \in \mathbb{R}\right\}$ in \mathbb{R}^{d}. We consider it as the point configuration consisting of these n points, which are the vertices for $d \geq 2$. Hence, all the notions for induced subdivisions make sense for cyclic polytopes. Also, we extend the usual definition by the trivial case of $d=0$: the cyclic polytope $C(n, 0)$ is just the set of n copies of the only point in \mathbb{R}^{0}. The cyclic polytope $C(n, 1)$ consists of n distinct points in the real line \mathbb{R}.

As usual, we label the vertices of $C(n, d)$ with the numbers $1, \ldots, n$, in the order they appear along the moment curve and refer to faces of $C(n, d)$ by the index sets of their vertices, i.e. as subsets of $[\mathfrak{n}]:=\{1,2, \ldots, n\}$.

The face lattice of $C(n, d)$ is known to be independent of the choice of points on the curve and is characterized by Gale's evenness criterion, which is as follows
(see also [18, p. 14] or [1, Theorem 5.2]). For a subset $F \subset[n]$ with complement $[n] \backslash F=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, we divide F in its initial interval $\left\{1, \ldots, a_{1}-1\right\}$, its final interval $\left\{a_{k}+1, \ldots, n\right\}$ and its interior intervals $\left\{a_{i}+1, \ldots, a_{i+1}-1\right\}, i=1, \ldots, k-1$. The initial and final intervals may be empty. An interval is called odd if it has an odd number of elements and even otherwise. Then, F is a face of $C(n, d)$ if and only if the cardinality of F plus the number of odd interior intervals does not exceed d. Two obvious consequences of this description are that cyclic polytopes are simplicial and that faces of $C(n, d)$ are also faces of $C\left(n, d^{\prime}\right)$ for $d^{\prime}>d$.

Moreover, if d is the smallest integer for which F is a face of $C(n, d)$, then F is an upper face of $\mathrm{C}(\mathrm{n}, \mathrm{d})$ (meaning that its normal cone contains only vectors with last coordinate positive) if the final interval in F is odd and F is a lower face (meaning that its normal cone contains only vectors with last coordinate negative) if the final interval in F is even (or empty).
2.5. The canonical projections between cyclic polytopes. For a fixed pair of dimensions $d^{\prime}>d$ we will be interested in the surjection $\pi: C\left(n, d^{\prime}\right) \rightarrow C(n, d)$, induced by the map $\pi: \mathbb{R}^{d^{\prime}} \rightarrow \mathbb{R}^{d}$ which forgets the last $\mathrm{d}^{\prime}-\mathrm{d}$ coordinates. The fiber polytopes for this family of surjections were studied in [1]. The associated Baues posets were studied in the special case $d=2$ in [16]. For the ease of notation, we will write $\omega_{d^{\prime}}(C(n, d))$ for the Baues poset $\omega\left(C\left(n, d^{\prime}\right) \xrightarrow{\pi} C(n, d)\right)$. This poset is also independent of the choice of points used to define $C\left(n, d^{\prime}\right)$. Note that the Baues poset $\omega_{d^{\prime}}(C(n, 0))=\omega\left(C\left(n, d^{\prime}\right) \xrightarrow{\pi} C(n, 0)\right)$ is isomorphic to the poset of proper faces of $C\left(n, d^{\prime}\right)$ for all $d^{\prime}>0$, hence homeomorphic to a ($d^{\prime}-1$)-sphere.

3. Structure of the proof

The idea for proving Theorem 1.2 is as follows. Let us fix the dimensions $2 \leq$ $d<d^{\prime}$ and then use induction on the number n of vertices. The result is already known in the cases $d=0,1$. The base case $n=d^{\prime}+1$ for the induction is provided by Theorem 1.1. For the inductive step, we will use the same approach as in [13]: via the deletion operation of vertex n from a subdivision of $C(n, d)$, we will define a map between the posets $\omega_{d^{\prime}}(C(n, d))$ and $\omega_{d^{\prime}}(C(n-1, d))$ and will prove it to be a homotopy equivalence. This deletion operation is a generalization of the deletion operation on triangulations of $\mathrm{C}(\mathrm{n}, \mathrm{d})$ from [12].

For two collections S and T of finite pointsets in \mathbb{R}^{d} we define

$$
\begin{aligned}
\text { spanning }(S) & :=\{\sigma \in S: \sigma \text { is spanning }\} \\
\operatorname{ast}_{S}(\mathfrak{i}) & :=\{\sigma \in S: \mathfrak{i} \notin \sigma\} \\
\operatorname{lk}_{S}(\mathfrak{i}) & :=\{\sigma-\{\mathfrak{i}\}: \sigma \in S, \mathfrak{i} \in \sigma\} \\
S * T & :=\{\sigma \cup \tau: \sigma \in S, \tau \in T\} .
\end{aligned}
$$

As was discussed in $[13$, Section 4$]$, if S is a subdivision of $C(n, d)$ then $k_{k_{S}}(n)$ is a subdivision of $C(n-1, d-1)$. Moreover, Gale's evenness criterion easily implies that if S is in $\omega_{d^{\prime}}(C(n, d))$ then $k_{S}(n)$ is in $\omega_{d^{\prime}-1}(C(n-1, d-1))$.

Definition 3.1. ([13]) Given a subdivision S of $C(n, d)$, the deletion $S \backslash n$ is

$$
S \backslash \mathfrak{n}:=\text { spanning }(\{\sigma \backslash \mathfrak{n}: \sigma \in S\}),
$$

where

$$
\sigma \backslash n:= \begin{cases}(\sigma-\{n\}) \cup\{n-1\}, & \text { if } n \in \sigma \\ \sigma, & \text { otherwise }\end{cases}
$$

Equivalently,

$$
S \backslash n:=\operatorname{ast}_{S}(n) \cup \operatorname{spanning}\left(\operatorname{lk}_{S}(n) *\{n-1\}\right) .
$$

Using the idea of "sliding" vertex n to $n-1$, it is proved in [13, Theorem 3.2] that $S \backslash n$ is a subdivision of $C(n-1, d)$. The deletion of n defines a map between the posets $\omega_{d^{\prime}}(C(n, d))$ and $\omega_{d^{\prime}}(C(n-1, d))$:

Proposition 3.2. Let $n \geq d^{\prime}+2$. The deletion map $\Pi_{d^{\prime}}: \omega_{d^{\prime}}(C(n, d)) \rightarrow \omega_{d^{\prime}}(C(n-$ 1,d))

$$
\Pi_{d^{\prime}}(S)=S \backslash n
$$

between the Baues posets of proper π-induced subdivisions is well-defined and order preserving.
Proof. In order to see that $\Pi_{d^{\prime}}$ is well-defined we just need to check that if σ is a proper face of $C\left(n, d^{\prime}\right)$ then $\sigma \backslash n$, introduced in Definition 3.1, is a proper face of $C\left(n-1, d^{\prime}\right)$. It follows easily from Gale's evenness criterion that $\sigma \backslash n$ is a face of $C\left(n-1, d^{\prime}\right)$. Moreover, since σ is proper and $C\left(n, d^{\prime}\right)$ is simplicial, σ has at most $\mathrm{d}^{\prime} \leq n-2$ vertices. Thus $\sigma \backslash n$ has at most $n-2$ vertices and is a proper face of $C\left(n-1, d^{\prime}\right)$.

That $\Pi_{d^{\prime}}$ is order preserving follows trivially from the fact that if $\sigma \subset \sigma^{\prime}$ then $\sigma \backslash n \subset \sigma^{\prime} \backslash n$.

In order to apply Lemma 2.1 to the map $\Pi_{d^{\prime}}$ we need to understand its fibers. The following concept of subdivisions of $\mathrm{C}(\mathrm{n}, \mathrm{d})$ induced by a certain subdivision $\overline{\mathrm{S}}$ of $C(n, d+1)$ will be crucial for this.

Let \bar{S} be a subdivision of the cyclic polytope $C(n, d+1)$ and S a subdivision of $C(n, d)$. Following [13], we say that S is induced by \bar{S} if every cell $\sigma \in S$ is a face (not necessarily proper) of a cell $\sigma^{\prime} \in \bar{S}$. We can think of S as a cellular section of the natural projection $C(n, d+1) \rightarrow C(n, d)$ which uses only cells in \bar{S} or their faces. Observe that for every cell $\sigma^{\prime \prime}$ of \bar{S} we can tell whether $\sigma^{\prime \prime}$ is above, on or below (the section corresponding to) a subdivision S induced by \bar{S}. We will denote by above (S, \bar{S}) and below (S, \bar{S}) the set of cells of \bar{S} which lie above and below S, respectively.

We denote by $\omega(\bar{S})$ the poset of all subdivisions of $C(n, d)$ which are induced by \bar{S}, partially ordered by refinement, so that $\omega(\bar{S})$ is a subposet $\omega(\mathrm{C}(\mathrm{n}, \mathrm{d}))$.

From the definition of the deletion $S \backslash \mathfrak{n}$ it follows trivially that $\mathrm{lk}_{S}(\{n, n-1\}):=$ $\mathrm{lk}_{\mathrm{lk}_{S}(\mathfrak{n})}(n-1) \subset \mathrm{lk}_{S \backslash \mathfrak{n}}(n-1)$ for any $S \in \omega(C(n, d))$. Let $T \in \omega_{d^{\prime}}(C(n-1, d))$ and let $S \in \omega_{d^{\prime}}(C(n, d))$ be such that $S \backslash n=T$, i.e., $S \in \Pi_{d^{\prime}}^{-1}(T)$. Then the subdivision $\mathrm{lk}_{S}(\{n, n-1\})$ of $C(n-2, d-2)$ is induced by the subdivision $\mathrm{lk}_{T}(n-1) \in \omega(C(n-$ $2, d-1)$). In other words, we have a map $\Pi_{d^{\prime}}^{-1}(T) \rightarrow \omega\left(l_{T}(n-1)\right)$ defined by $S \mapsto 1 k_{S}(\{n, n-1\})$. The following much stronger statement follows from [13, Lemma 4.7].

Lemma 3.3. Let $2 \leq d<d^{\prime} \leq n-2$ and consider the deletion map $\Pi_{d^{\prime}}: \omega_{d^{\prime}}(C(n, d)) \rightarrow$ $\omega_{d^{\prime}}(C(n-1, d))$. Let $T \in \omega_{d^{\prime}}(C(n-1, d))$ and $\bar{S}=1 k_{T}(n-1) \in \omega(C(n-2, d-1))$. Then:

1. The map $\omega(\mathrm{C}(\mathrm{n}, \mathrm{d})) \rightarrow \omega(\mathrm{C}(\mathrm{n}-2, \mathrm{~d}-2))$ given by $\mathrm{S} \mapsto \mathrm{l}_{\mathrm{S}}(\{\mathrm{n}-1, \mathrm{n}\})$ restricts to a poset isomorphism between $\Pi_{d^{\prime}}^{-1}(\mathrm{~T})$ and a subposet $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ of $\omega(\overline{\mathrm{S}})$.
2. The inverse map $\tau: \omega_{d^{\prime}}(\overline{\mathrm{S}}) \rightarrow \Pi_{d^{\prime}}^{-1}(\mathrm{~T})$ is given by

$$
\begin{aligned}
\tau(S):= & \{\sigma \in T: n-1 \notin \sigma\} \\
& \cup\{\sigma \cup\{n\}: \sigma \in \bar{S}, \sigma \text { is below } S\} \\
& \cup\{\sigma \cup\{n-1\}: \sigma \in \bar{S}, \sigma \text { is above } S\} \\
& \cup\{\sigma \cup\{n, n-1\}: \sigma \in S\} .
\end{aligned}
$$

Moreover,

$$
\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})=\left\{\mathrm{S} \in \omega(\overline{\mathrm{~S}}): \tau(\mathrm{S}) \in \omega_{\mathrm{d}^{\prime}}(\mathrm{C}(\mathrm{n}, \mathrm{~d}))\right\}
$$

3. Let $\mathrm{T}^{\prime} \in \omega_{\mathrm{d}^{\prime}}(\mathrm{C}(\mathrm{n}, \mathrm{d}))$ be such that $\mathrm{T}^{\prime} \backslash \mathrm{n}$ is coarser than T and let $\mathrm{S}_{0}=\mathrm{lk}_{\mathrm{T}^{\prime}}(\{\mathrm{n}, \mathrm{n}-$ 1\}) $\in \omega(C(n-2, d-2))$. Then, the previous isomorphism restricts to an isomorphism between $\omega_{\mathrm{d}^{\prime}}(\mathrm{C}(\mathrm{n}, \mathrm{d}))_{\leq \mathrm{T}^{\prime}} \cap \Pi_{\mathrm{d}^{\prime}}^{-1}(\mathrm{~T})$ and

$$
\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})_{\leq \mathrm{S}_{0}}:=\left\{S \in \omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}}): S \text { refines } \mathrm{S}_{0}\right\}=\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}}) \cap \omega(\mathrm{C}(\mathrm{n}-2, \mathrm{~d}-2))_{\leq \mathrm{S}_{0}} .
$$

By Lemma 2.1 applied to the map $\Pi_{d^{\prime}}$ introduced in Proposition 3.2, Lemma 3.3 implies that in order to prove Theorem 1.2 we just need to show that, under the assumptions of the lemma, both $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ and $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})_{\leq s_{0}}$ are contractible. We will do this in the next section, following the ideas of [13].

4. The details

Throughout this section we assume that the hypotheses of Lemma 3.3 hold and we fix an element $T \in \omega_{d^{\prime}}(C(n-1, d))$ and an element $T^{\prime} \in \omega_{d^{\prime}}(C(n, d))$ such that T refines $T^{\prime} \backslash n$. We also let $\bar{S}=l_{T}(n-1)$ and $S_{0}=l_{T^{\prime}}(\{n, n-1\})$. Our task is to prove that both $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ and $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})_{\leq s_{0}}$ are contractible. The proof for $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})_{\leq s_{0}}$ is easier and we do it in the following proposition. The proof for $\omega_{d^{\prime}}(\bar{S})$ occupies the rest of this section.
Proposition 4.1. Under the assumptions of part 3 of Lemma 3.3, let $\omega(\overline{\mathrm{S}})_{\leq s_{0}}:=\omega(\overline{\mathrm{S}}) \cap$ $\omega(C(n-2, d-2))_{\leq s_{0}}$. Then:

1. $\omega_{\mathrm{d}^{\prime}}(\bar{S})_{\leq S_{0}}=\omega(\bar{S})_{\leq \mathrm{s}_{0}}$ and hence
2. $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})_{\leq \mathrm{s}_{0}}$ is contractible.

Proof. The second statement follows from [13, Corollary 4.6], where $\omega(\bar{S})_{\leq s_{0}}$ is proved to be contractible.

For the first statement, let $T^{\prime} \in \omega_{d^{\prime}}(C(n, d))$ be such that $T^{\prime} \backslash n$ is coarser than T and let $S_{0}=\operatorname{lk}_{\mathrm{T}^{\prime}}(\{n-1, n\}) \in \omega(C(n-2, d-2))$. Observe that S_{0} might not be in $\omega(\bar{S})$ but it is in $\omega\left(\overline{S^{\prime}}\right)$, where $\overline{S^{\prime}}:=\mathrm{l}_{\mathrm{T}^{\prime} \backslash n}(\mathrm{n}-1)$ is coarser than $\overline{\mathrm{S}}$. By parts 1 and 2 of Lemma 3.3 we have that S_{0} is in $\omega_{\mathrm{d}^{\prime}}\left(\overline{S^{\prime}}\right)$.

Let $S \in \omega(\bar{S})$ be a refinement of S_{0}. We will prove that $\tau(S)$ is in $\omega\left(C\left(n, d^{\prime}\right)\right)$, i.e. $S \in \omega_{d^{\prime}}(\bar{S})$. Thus $S \in \omega_{d^{\prime}}(\bar{S})_{\leq S_{0}}$. For the proof we only use the fact that $S_{0} \in \omega_{\mathrm{d}^{\prime}}\left(\overline{\mathrm{S}^{\prime}}\right)$, that S refines S_{0} and that $\overline{\mathrm{S}}$ refines $\overline{\mathrm{S}^{\prime}}$.

Let $\sigma \in \operatorname{above}(S, \bar{S})$ and choose $\sigma^{\prime} \in \overline{S^{\prime}}$ such that $\sigma \subset \sigma^{\prime}$. Since S refines S_{0}, either $\sigma^{\prime} \in \operatorname{above}\left(S_{0}, \overline{S^{\prime}}\right)$ or $\sigma^{\prime} \in S_{0}$. In both cases $\sigma^{\prime} \cup\{n-1\}$, and hence $\sigma \cup\{n-1\}$, is a face of $C\left(n, d^{\prime}\right)$. In the same way, if $\sigma \in \operatorname{below}(S, \bar{S})$ then $\sigma \cup\{n\}$ is a face of $C\left(n, d^{\prime}\right)$. Finally, if $\sigma \in S$, then there is $\sigma^{\prime} \in S_{0}$ with $\sigma \subset \sigma^{\prime}$ and since $\sigma^{\prime} \cup\{n, n-1\}$ is a face of $C\left(n, d^{\prime}\right), \sigma \cup\{n, n-1\}$ is a face too.

We are now concerned with the poset $\omega(\bar{S}) \subset \omega(C(n-2, d-2))$ and its subposet

$$
\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})=\left\{\mathrm{S} \in \omega(\overline{\mathrm{~S}}): \tau(\mathrm{S}) \in \omega_{\mathrm{d}^{\prime}}(\mathrm{C}(\mathrm{n}, \mathrm{~d}))\right\} .
$$

Our goal is to prove that $\omega_{\mathrm{d}^{\prime}}(\bar{S})$ is contractible. Actually, we will never use the fact that \bar{S} is a link of a subdivision $T \in C(n-1, d)$ but only that, since $T \in \omega_{d^{\prime}}(C(n-$ $1, d)$), its link \bar{S} is in $\omega_{d^{\prime}-1}(C(n-2, d-1))$. In other words, we will prove the following result.

Theorem 4.2. Let $\overline{\mathrm{S}}$ be a proper subdivision of $\mathrm{C}(\mathrm{n}-2, \mathrm{~d}-1)$, induced by $\mathrm{C}\left(\mathrm{n}-2, \mathrm{~d}^{\prime}-1\right)$, and let $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}}) \subset \omega(\overline{\mathrm{S}})$ be the poset of sections S of $\overline{\mathrm{S}}$ which have the properties:

1. For any $\sigma \in$ above (S, \bar{S}), $\sigma \cup\{n-1\}$ is a face of $C\left(n, d^{\prime}\right)$.
2. For any $\sigma \in \operatorname{below}(\mathrm{S}, \overline{\mathrm{S}}), \sigma \cup\{\mathrm{n}\}$ is a face of $\mathrm{C}\left(\mathrm{n}, \mathrm{d}^{\prime}\right)$.
3. For any $\sigma \in S, \sigma \cup\{n, n-1\}$ is a face of $C\left(n, d^{\prime}\right)$.

Then $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ is contractible.
Let us recall the following technical property of subdivisions of cyclic polytopes, proved and called stackability in [13]. Let S be a subdivision of a cyclic polytope $C(n, d)$, for arbitrary $n>d$. For any two cells $\sigma_{1}, \sigma_{2} \in S$ which share a facet, their common facet is an upper facet of one of σ_{1}, σ_{2} and a lower facet of the other. If it is a lower facet of σ_{2} and an upper facet of σ_{1} we say that " σ_{2} is above σ_{1} " and " σ_{1} below σ_{2} ".

Lemma 4.3. ([13, Lemma 2.16]) The relation " σ_{1} is below σ_{2} " just defined has no cycles. Hence, its transitive closure is a partial order on the collection of all cells of S.

In the sequel we denote by $<_{\text {st }}$ this partial order on the cells of the subdivision $\bar{S} \in \omega_{d^{\prime}-1}(C(n-2, d-1))$.
Lemma 4.4. Let $\overline{\mathrm{S}} \in \omega_{\mathrm{d}^{\prime}-1}(\mathrm{C}(\mathrm{n}-2, \mathrm{~d}-1))$. Let $\sigma \subset[\mathrm{n}-2]$ be a face of $\mathrm{C}\left(\mathrm{n}-2, \mathrm{~d}^{\prime}-1\right)$ (not necessarily a cell of $\overline{\mathrm{S}}$) and let σ_{+}and σ_{-}be cells in $\overline{\mathrm{S}}$ such that $\sigma_{-}<_{s t} \sigma_{+}$. Then:

1. At least one of $\sigma \cup\{n-1\}$ and $\sigma \cup\{n\}$ is a proper face of $C\left(n, d^{\prime}\right)$.
2. If $\sigma \cup\{n-1\}$ and $\sigma \cup\{n\}$ are both proper faces of $C\left(n, d^{\prime}\right)$, then so is $\sigma \cup\{n, n-1\}$.
3. If $\sigma_{+} \cup\{\mathfrak{n}\}$ and $\sigma_{-} \cup\{n-1\}$ are both proper faces of $C\left(n, d^{\prime}\right)$ then so is either $\sigma_{-} \cup\{n\}$ or $\sigma_{+} \cup\{n-1\}$.

Proof. 1. If σ is a face of $C\left(n-2, d^{\prime}-2\right)$ then $\sigma \cup\{n, n-1\}$ is a face of $C\left(n, d^{\prime}\right)$. Hence, both $\sigma \cup\{n-1\}$ and $\sigma \cup\{n\}$ are faces of $C\left(n, d^{\prime}\right)$ as well.

If σ is not a face of $C\left(n-2, d^{\prime}-2\right)$ then σ is either an upper or a lower face of $C\left(n-2, d^{\prime}-1\right)$. In the first case $\sigma \cup\{n-1\}$ is a face of $C\left(n, d^{\prime}\right)$ and in the second case $\sigma \cup\{n\}$ is a face of $C\left(n, d^{\prime}\right)$, as follows easily from Gale's evenness criterion.
2. We will show that $\sigma \cup\{n, n-1\}$ has at least one interior component of odd length less than either $\sigma \cup\{n\}$ or $\sigma \cup\{n-1\}$. Taking m to be the maximum element in $[n-2] \backslash \sigma$, we observe that this is the case for $\sigma \cup\{n-1\}$ if $n-m$ is even and for $\sigma \cup\{n\}$ if $n-m$ is odd.
3. Let \mathfrak{m}_{+}(respectively \mathfrak{m}_{-}) be the maximum in $[\mathfrak{n}-2] \backslash \sigma_{+}$(respectively $[\mathfrak{n}-$ 2] $\backslash \sigma_{-}$). We will prove that either $\left\{m_{-}+1, \ldots, n-2\right\}$ has an even number of elements (and then $\sigma_{-} \cup\{n\}$ is a face of $C\left(n, d^{\prime}\right)$), or $\left\{m_{+}+1, \ldots, n-2\right\}$ has an odd number of elements (and then $\sigma_{+} \cup\{n-1\}$ is a face of $C\left(n, d^{\prime}\right)$).

For this let $\sigma_{-}=\sigma_{0}<_{s t} \sigma_{1}<_{s t} \cdots<_{s t} \sigma_{k}=\sigma_{+}$be a chain of cells of \bar{S} such that every two consecutive ones share a facet. Let \mathfrak{m} be the maximum integer in $[n-2] \backslash \cap_{i=0}^{k} \sigma_{i}$. We will consider separately the following three cases: (i) $m \notin \cup_{i=0}^{k} \sigma_{i}$, (ii) $\mathfrak{m} \in \cup_{i=0}^{k} \sigma_{i}$ and $n-m$ is even and (iii) $m \in \cup_{i=0}^{k} \sigma_{i}$ and $n-m$ is odd.
(i) If $\mathfrak{m} \notin \cup_{i=0}^{k} \sigma_{i}$ then $\mathfrak{m}=\mathfrak{m}_{+}=\mathfrak{m}_{-}$. Obviously, $\{\mathfrak{m}+1, \ldots, n-2\}$ has either an even or an odd number of elements.
(ii) If $n-m$ is even then the common interval $\{m+1, \ldots, n-2\}$ to all the σ_{i} has an even number of elements. This implies that if $\mathfrak{m} \in \sigma_{i}$ for an $\mathfrak{i} \leq k-1$ then $m \in \sigma_{i+1}$ too. Indeed, the common facet τ between σ_{i} and σ_{i+1} is an upper facet of σ_{i} and, hence, its last interval has odd length. So it is impossible to have $m \in \sigma_{i} \backslash \tau$ and $\{m+1, \ldots, n-2\} \subset \tau$. In particular, m cannot be in $\sigma_{-}=\sigma_{0}$ because then it would be in $\cap_{i=0}^{k} \sigma_{i}$. Hence, $m=m_{-}$and $\left\{m_{-}+1, \ldots, n-2\right\}$ has an even number of elements.
(iii) This case is analogous: If $\mathfrak{n}-\mathfrak{m}$ is odd then the common interval $\{\mathfrak{m}+1, \ldots, \mathfrak{n}-$ $2\}$ to all the σ_{i} has an odd number of elements. This implies that if $m \in \sigma_{i}$ for an $\mathfrak{i} \geq 1$ then $m \in \sigma_{i-1}$ too. Indeed, the common facet τ between σ_{i} and σ_{i-1} is a lower facet of σ_{i} and, hence, its last interval has even length. So it is impossible to have $m \in \sigma_{i} \backslash \tau$ and $\{m+1, \ldots, n-2\} \subset \tau$. In particular, m cannot be in $\sigma_{+}=\sigma_{k}$ because then it would be in $\cap_{i=0}^{k} \sigma_{i}$. Hence, $m=m_{+}$and $\left\{m_{+}+1, \ldots, n-2\right\}$ has an odd number of elements.

Our next goal is to prove that $\omega_{d^{\prime}}(\bar{S})$ is not empty, and hence that the map $\Pi_{d^{\prime}}$ is surjective. Clearly, $\omega(\bar{S})$ is not empty so we are interested in which elements $S \in \omega(\bar{S})$ lie also in $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}}) \subset \omega(\overline{\mathrm{S}})$.

Lemma 4.5. Let $\mathrm{S} \in \omega(\overline{\mathrm{S}})$. Then $\mathrm{S} \in \omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ if and only if for any cell σ of $\overline{\mathrm{S}}$ we have:

$$
\begin{aligned}
& \text { if } \sigma \in S \cup \text { above }(S, \bar{S}) \text { then } \sigma \cup\{n-1\} \text { is a face of } C\left(n, d^{\prime}\right) \text {, } \\
& \text { if } \sigma \in S \cup \text { below }(S, \bar{S}) \text { then } \sigma \cup\{n\} \text { is a face of } C\left(n, d^{\prime}\right) \text {. }
\end{aligned}
$$

Proof. Necessity of the conditions is obvious by the definition of $\omega_{d^{\prime}}(\bar{S})$ in Lemma 3.3. Sufficiency is not obvious since a cell σ of S might not be a (spanning) cell of \bar{S}. We need to prove under the conditions in the statement that for such a cell σ, $\sigma \cup\{n, n-1\}$ is a face of $C\left(n, d^{\prime}\right)$.

Let σ be in $S \backslash \bar{S}$. Then σ is a simplex of dimension $d-2$ in $C(n-2, d-1)$ and there is a cell $\sigma_{+} \in \bar{S}$ (respectively σ_{-}) of which σ is a lower (respectively upper) facet unless σ is an upper (respectively lower) facet of $C(n-2, d-1)$. We will prove that $\sigma \cup\{n\}$ and $\sigma \cup\{n-1\}$ are faces of $C\left(n, d^{\prime}\right)$. Then by part 2 of Lemma 4.4 we conclude that $\sigma \cup\{n, n-1\}$ is a face of $C\left(n, d^{\prime}\right)$.

If σ is an upper (respectively lower) facet of $C(n-2, d-1)$ then $\sigma \cup\{n-1\}$ (respectively $\sigma \cup\{n\}$) is a lower (respectively upper) facet of $C(n, d)$, hence a face of $C\left(n, d^{\prime}\right)$. If σ is an upper (respectively lower) facet of $\sigma_{-} \in \bar{S}$, (respectively of σ_{+}) then σ_{-}is below S (respectively σ_{+}is above S) and by hypothesis $\sigma_{-} \cup\{n\}$
(respectively $\sigma_{+} \cup\{n-1\}$) is a face of $C\left(n, d^{\prime}\right)$. Thus $\sigma \cup\{n\}$ (respectively $\sigma \cup\{n-1\}$) is also a face.

For the sequel, for $\bar{S} \in \omega_{d^{\prime}-1}(C(n-2, d-1))$, let us define the following collections, which depend on d^{\prime} :
above $(\bar{S})=\left\{\sigma \in \bar{S}: \forall \sigma^{\prime} \in \bar{S}\right.$ with $\sigma \leq_{s t} \sigma^{\prime}, \sigma^{\prime} \cup\{n-1\}$ is a face of $\left.C\left(n, d^{\prime}\right)\right\}$,
below $(\bar{S})=\left\{\sigma \in \bar{S}: \forall \sigma^{\prime} \in \bar{S}\right.$ with $\sigma^{\prime} \leq_{\text {st }} \sigma, \sigma^{\prime} \cup\{n\}$ is a face of $\left.C\left(n, d^{\prime}\right)\right\}$.
By definition, below $(\overline{\mathrm{S}})$ and above $(\overline{\mathrm{S}})$ are a lower and an upper ideal respectively in $<_{\text {st }}$. This implies that the upper envelope $S_{\text {up }}$ of below (\bar{S}) and the lower envelope $S_{\text {down }}$ of above (\bar{S}) are valid sections in $\omega(\bar{S})$. We show that they are also in $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$. Observe that above $(\bar{S})=\operatorname{above}\left(S_{\text {down }}, \bar{S}\right)$ and below $(\bar{S})=\operatorname{below}\left(S_{\text {up }}, \bar{S}\right)$.

Lemma 4.6. We have:

1. $\operatorname{below}(\overline{\mathrm{S}}) \cup$ above $(\overline{\mathrm{S}})=\overline{\mathrm{S}}$.
2. Let $S \in \omega(\bar{S})$. Then $S \in \omega_{\mathrm{d}^{\prime}}(\bar{S})$ if and only if

$$
\begin{aligned}
& \operatorname{above}(S, \bar{S}) \cup \operatorname{below}(\bar{S})=\bar{S} \\
& \operatorname{below}(S, \bar{S}) \cup \operatorname{above}(\bar{S})=\bar{S}
\end{aligned}
$$

3. In particular, $\mathrm{S}_{\text {up }}$ and $\mathrm{S}_{\text {down }}$ are in $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$.

Proof. 1. Let $\sigma \in \overline{\mathrm{S}}$ and suppose $\sigma \notin \operatorname{below}(\overline{\mathrm{S}})$. By definition of below $(\overline{\mathrm{S}})$ this means that there is a $\sigma^{\prime} \leq_{s t} \sigma$ such that $\sigma^{\prime} \cup\{n\}$ is not a face of $C\left(n, d^{\prime}\right)$. Since σ^{\prime} is a face of $C\left(n-2, d^{\prime}-1\right)$, parts 1 and 3 of Lemma 4.4 imply, respectively, that $\sigma^{\prime} \cup\{n-1\}$ and any $\sigma^{\prime \prime} \cup\{n-1\}$ with $\sigma^{\prime \prime} \geq_{\text {st }} \sigma^{\prime}$ are faces of $C\left(n, d^{\prime}\right)$. In particular, $\sigma \in \operatorname{above}(\bar{S})$.
2. We first prove the necessity of the conditions. If $\sigma \in \overline{\mathrm{S}} \backslash(\operatorname{above}(\mathrm{S}, \overline{\mathrm{S}}) \cup$ below $(\overline{\mathrm{S}}))$ then $\sigma \in S \cup$ below (S, \bar{S}) and there is a $\sigma^{\prime}<_{s t} \sigma$ such that $\sigma^{\prime} \cup\{n\}$ is not a face of $C\left(n, d^{\prime}\right)$. This σ^{\prime} will also be in $S \cup$ below (S, \bar{S}) and hence $S \notin \omega_{d^{\prime}}(\bar{S})$ by Lemma 4.5. The case of a $\sigma \in \bar{S} \backslash(\operatorname{below}(S, \bar{S}) \cup$ above $(\bar{S}))$ is analogous.

For the sufficiency, let $S \in \omega(\bar{S})$ be such that above $(S, \bar{S}) \cup$ below $(\bar{S})=\bar{S}$ and below $(S, \bar{S}) \cup$ above $(\bar{S})=\bar{S}$. We will prove that $S \in \omega_{d^{\prime}}(\bar{S})$ using Lemma 4.5. Let $\sigma \in \bar{S}$ and suppose that $\sigma \in S \cup$ above (S, \bar{S}). This is equivalent to $\sigma \notin$ below (S, \bar{S}) and hence $\sigma \in$ above (\bar{S}). Hence, $\sigma \cup\{n-1\}$ is a face of $C\left(n, d^{\prime}\right)$. In the same way, if $\sigma \in S \cup \operatorname{below}(S, \bar{S})$ we prove that $\sigma \cup\{n\}$ is a face of $C\left(n, d^{\prime}\right)$.
3. From the definition of $S_{u p}$, it follows that $S_{u p}$ does not contain any cell of \bar{S} (i.e. above $\left.\left(S_{\text {up }}, \bar{S}\right) \cup \operatorname{below}\left(S_{\text {up }}, \bar{S}\right)=\bar{S}\right)$ and also that $\operatorname{below}\left(S_{\text {up }}, \bar{S}\right)=\operatorname{below}(\bar{S})$. Putting these two facts together and using part 1, we conclude that $S_{\text {up }}$ satisfies the conditions of part 2. The same holds for $S_{\text {down }}$.
Remark 4.7. The last result can be interpreted using the following poset structure on the collection of subdivisions induced by $\overline{\mathrm{S}}$.
Definition 4.8. Let $\operatorname{St}(\overline{\mathrm{S}})$ be the set of subdivisions of $\mathrm{C}(\mathrm{n}, \mathrm{d})$ induced by $\overline{\mathrm{S}}$, partially ordered by $S_{1} \leq S_{2}$ if and only if S_{1} lies below S_{2} as a cellular section of the natural projection $\mathrm{C}(\mathrm{n}, \mathrm{d}+1) \rightarrow \mathrm{C}(\mathrm{n}, \mathrm{d})$ or, equivalently, if above $\left(\mathrm{S}_{2}, \overline{\mathrm{~S}}\right) \subset \operatorname{above}\left(\mathrm{S}_{1}, \overline{\mathrm{~S}}\right)$ and below $\left(S_{1}, \bar{S}\right) \subset \operatorname{below}\left(S_{2}, \bar{S}\right)$.

Let $\mathrm{St}_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ be the induced subposet of $\mathrm{St}(\overline{\mathrm{S}})$ on the subset $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$. We call $\mathrm{St}(\overline{\mathrm{S}})$ and $\mathrm{St}_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ the Stasheff orders on $\omega(\overline{\mathrm{S}})$ and $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$.

The above definition reminds of the second higher Stasheff-Tamari order on the set of all triangulations of a cyclic polytope and its characterization as closed sets in dimensions 2 and 3 [7]. In this context the structure is well-behaved in all dimensions.

Using the Stasheff order, Lemma 4.6 can be rewritten as follows.
Lemma 4.9. An element S of $\omega(\bar{S})$ is in $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ if and only if $\mathrm{S}_{\mathrm{down}} \leq_{\mathrm{St}_{\mathrm{t}}} S \leq_{\mathrm{St}_{\mathrm{t}}} S_{\text {up }}$. Thus, $\mathrm{St}_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ is a nonempty interval in $\mathrm{St}(\overline{\mathrm{S}})$.

It is also easy to see that $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ is a lattice, where for every $\mathrm{S}_{1}, S_{2} \in \omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ the join $S_{1} \vee S_{2}$ and the meet $S_{1} \wedge S_{2}$ are the elements satisfying

$$
\begin{aligned}
\operatorname{above}\left(S_{1} \vee S_{2}, \bar{S}\right) & :=\operatorname{above}\left(S_{1}, \bar{S}\right) \cap \operatorname{above}\left(S_{2}, \bar{S}\right), \\
\operatorname{below}\left(S_{1} \vee S_{2}, \bar{S}\right) & :=\operatorname{below}\left(S_{1}, \bar{S}\right) \cup \operatorname{below}\left(S_{2}, \bar{S}\right) ; \\
\operatorname{above}\left(S_{1} \wedge S_{2}, \bar{S}\right) & :=\operatorname{above}\left(S_{1}, \bar{S}\right) \cup \operatorname{above}\left(S_{2}, \bar{S}\right) \\
\operatorname{below}\left(S_{1} \wedge S_{2}, \bar{S}\right) & :=\operatorname{below}\left(S_{1}, \bar{S}\right) \cap \operatorname{below}\left(S_{2}, \bar{S}\right) .
\end{aligned}
$$

In a sense, $S_{1} \vee S_{2}$ and $S_{1} \wedge S_{2}$ are the common upper and lower envelopes of S_{1} and S_{2}, except that if a cell σ is in $S_{1} \cap S_{2}$ then σ (instead of its upper or lower envelope) is also in $S_{1} \vee S_{2}$ and $S_{1} \wedge S_{2}$.

In what follows we argue that the proof of [13, Theorem 4.5], showing that $\omega(\bar{S})$ is contractible, can be modified to prove that $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ is contractible. The original proof is based on a total ordering of the cells of \bar{S} compatible with the partial order $<_{\text {st }}$. Here we also want our total order to behave nicely with respect to above (\bar{S}) and below $(\overline{\mathrm{S}})$.
Lemma 4.10. There is a total order, i.e. a numbering $\bar{S}=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$, of the cells of \bar{S} such that for every $i, j \in\{1, \ldots, k\}$ we have:

1. If $\sigma_{i}<_{s t} \sigma_{j}$ then $\mathfrak{i}<\mathfrak{j}$.
2. If $\sigma_{i} \in \operatorname{below}(\overline{\mathrm{~S}})$ and $\sigma_{\mathfrak{j}} \notin \operatorname{below}(\overline{\mathrm{S}})$ then $\mathfrak{i}<\mathfrak{j}$.
3. If $\sigma_{i} \in \operatorname{above}(\bar{S})$ and $\sigma_{j} \notin \operatorname{above}(\bar{S})$ then $\mathfrak{i}>j$.

Proof. We first order the cells not in above (\bar{S}) with the numbers from 1 to k_{1}, in a way compatible with the partial order $<_{s t}$. Then we order the cells in above $(\bar{S}) \cap$ below $(\overline{\mathrm{S}})$ with numbers $\mathrm{k}_{1}+1, \ldots, \mathrm{k}_{2}$ and then those not in below $(\overline{\mathrm{S}})$ with $\mathrm{k}_{2}+$ $1, \ldots, k$, both times again in a way compatible with $<_{s t}$. This can be done since $<_{s t}$ is a partial order.

The order so obtained satisfies conditions 2 and 3 by construction and it also satisfies condition 1 since below (\bar{S}) is a lower ideal in $<_{s t}$ (so that if $\sigma_{i}<_{s t} \sigma_{j}$, it is impossible that $\sigma_{j} \in \operatorname{below}(\bar{S})$ and $\left.\sigma_{i} \notin \operatorname{below}(\bar{S})\right)$ and above (\bar{S}) is an upper ideal in $<_{\text {st }}$ (so that if $\sigma_{i}<_{s t} \sigma_{j}$, it is impossible that $\sigma_{i} \in \operatorname{above}(\bar{S})$ and $\sigma_{j} \notin \operatorname{above}(\bar{S})$).

The proof of the following proposition follows closely the one of [13, Theorem 4.5] but we include it for the sake of completeness. It establishes Theorem 4.2 and finishes the proof of Theorem 1.2.

Proposition 4.11. The subposet $\omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ of $\omega(\mathrm{C}(\mathrm{n}-2, \mathrm{~d}-2))$ is contractible.

Proof. Let the cells of \bar{S} be totally ordered as in Lemma 4.10, so that $\left\{\sigma_{1}, \ldots, \sigma_{k_{1}}\right\}=$ below $(\bar{S}) \backslash$ above $(\bar{S}),\left\{\sigma_{k_{1}}+1, \ldots, \sigma_{k_{2}}\right\}=\operatorname{below}(\bar{S})$ nabove (\bar{S}) and $\left\{\sigma_{\mathrm{k}_{2}}+1, \ldots, \sigma_{\mathrm{k}}\right\}=$ above $(\bar{S}) \backslash$ below (\bar{S}).

For any $S \in \omega(\bar{S})$ we call height of S the maximum index i of a cell σ_{i} on or below S. For each $i=0, \ldots, k$ we denote by $\omega_{d^{\prime}}(\bar{S} ; i)$ the subposet of $\omega_{d^{\prime}}(\bar{S})$ consisting of the subdivisions of height at most i.

By definition, $S_{\text {down }}$ has height k_{1} and $S_{\text {up }}$ has height k_{2}. Moreover, by Lemma 4.6, $\quad \omega_{d^{\prime}}(\overline{\mathrm{S}})=\omega_{\mathrm{d}^{\prime}}\left(\overline{\mathrm{S}} ; \mathrm{k}_{2}\right)$ and $\omega\left(\overline{\mathrm{S}} ; \mathrm{k}_{1}\right)$ has only the element $\mathrm{S}_{\text {down }}$. We will prove that $\omega_{d^{\prime}}(\overline{\mathrm{S}} ; \mathfrak{i})$ and $\omega_{d^{\prime}}(\overline{\mathrm{S}} ; \mathfrak{i}-1)$ are homotopically equivalent for every $i=k_{1}+$ $1, \ldots, k_{2}$.

Consider first the following situation. Let $S \in \omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}})$ with $\sigma_{\mathrm{i}} \in S$. We can get two new elements $S_{\sigma_{i}+}$ and $S_{\sigma_{i}-}$ of $\omega_{d^{\prime}}(\bar{S})$ by substituting σ_{i} in S for its upper and lower envelope, respectively.

We now construct the homotopy equivalence $f_{i}: \omega_{d^{\prime}}(\overline{\mathrm{S}} ; \mathfrak{i}) \rightarrow \omega_{\mathrm{d}^{\prime}}(\overline{\mathrm{S}} ; i-1)$. We define f_{i} to be the identity on those $S \in \omega_{d^{\prime}}(\bar{S} ; i)$ with height at most $i-1$. If S has height i then either S contains σ_{i}, in which case we take $f_{i}(S)=S_{\sigma_{i}-}$, or S contains the upper envelope of σ_{i}. In this case $S=T_{\sigma_{i}^{+}}$for some $T \in \omega_{d^{\prime}}(\bar{S})$. We then define $f_{i}\left(T_{\sigma_{i}^{+}}\right)=T_{\sigma_{i}^{-}}$. In this way, the inverse image of an element $S \in \omega_{d^{\prime}}(\bar{S} ; i-1)$ is given as follows:
(i) It is S itself, if S does not contain the lower envelope of σ_{i}.
(ii) If S contains the lower envelope of σ_{i}, then $S=T_{\sigma_{i}-}$ for some $T \in \omega_{d^{\prime}}(\bar{S} ; i)$ and $f^{-1}(S)=f^{-1}\left(T_{\sigma_{i}-}\right)=\left\{T, T_{\sigma_{i}-}, T_{\sigma_{i}+}\right\}$.
Define the following order-preserving map:

$$
g_{i}:\left\{\begin{array}{rll}
\omega(\bar{S} ; i-1) & \rightarrow & \omega(\bar{S} ; i) \\
S & \mapsto \begin{cases}S & \text { in case }(i), \\
T & \text { in case (ii). }\end{cases}
\end{array}\right.
$$

Then $f_{i} \circ g_{i}=\operatorname{id}_{\omega_{d^{\prime}}(\bar{s} ; i-1)}$ and $g_{i} \circ f_{i} \geq \operatorname{id}_{\omega_{d^{\prime}}(\bar{s} ; i)}$, which means that f_{i} and g_{i} are homotopy inverses to each other by Quillen's order homotopy theorem [6, 10.11]. Thus, $\omega_{d^{\prime}}(\overline{\mathrm{S}} ; \mathfrak{i})$ is homotopy equivalent to $\omega_{d^{\prime}}(\overline{\mathrm{S}} ; \mathfrak{i}-1)$.

References

[1] C.A. Athanasiadis, J.A. De Loera, V. Reiner, and F. Santos, Fiber polytopes for the projections between cyclic polytopes, in "Combinatorics of Convex Polytopes" (K. Fukuda and G.M. Ziegler, eds.), European J. Combin., to appear.
[2] E.K. BABSON, A combinatorial flag space, Ph.D thesis, MIT, 1993.
[3] L.J. Billera, P. Filliman and B. Sturmfels, Constructions and complexity of secondary polytopes, Adv. in Math. 83 (1990), 155-179.
[4] L.J. Billera, M.M. Kapranov, and B. Sturmfels, Cellular strings on polytopes, Proc. Amer. Math. Soc. 122 (1994), 549-555.
[5] L.J. Billera and B. Sturmfels, Fiber polytopes, Ann. Math. 135 (1992), 527-549.
[6] A. BJÖRNER, Topological methods, in "Handbook of combinatorics", (R.L. Graham, M. Grötschel, and L. Lovász, eds.), North Holland, Amsterdam, 1995, pp. 1819-1872.
[7] P.H. Edelman and V. Reiner, The higher Stasheff-Tamari posets, Mathematika 43 (1996), 127154.
[8] P.H. Edelman and V. Reiner, Visibility complexes and the Baues problem for triangulations in the plane, Discrete Comput. Geom. 20 (1998), 35-59.
[9] P.H. Edelman, J. Rambau, and V. Reiner, On subdivision posets of cyclic polytopes, MSRI Preprint 1997-030.
[10] I.M. Gel'fand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.
[11] J. Rambau, Polyhedral subdivisions and projections of polytopes, Berichte aus der Mathematik, Shaker, Aachen, 1996, Dissertation, TU-Berlin.
[12] J. Rambau, Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika 44 (1997), 162-194.
[13] J. Rambau and F. Santos, The generalized Baues problem for cyclic polytopes I, in "Combinatorics of Convex Polytopes" (K. Fukuda and G.M. Ziegler, eds.), European J. Combin., to appear.
[14] J. Rambau and G.M. Ziegler, Projections of polytopes and the generalized Baues conjecture, Discrete Comput. Geom. 16 (1996), 215-237.
[15] V. Reiner, The generalized Baues problem, in "New Perspectives in Algebraic Combinatorics", MSRI Book Series, Cambridge University Press, to appear.
[16] V. Reiner, On some instances of the generalized Baues problem, Manuscript, 1998.
[17] B. Sturmfels and G.M. Ziegler, Extension spaces of oriented matroids, Discrete Comput. Geom. 10 (1993), 23-45.
[18] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995.

Christos A. Athanasiadis, Department of Mathematics, University of PennsylvaNiA, Philadelphia, PA 19104, USA

E-mail address: athana@math. upenn.edu
Jörg Rambau, Konrad-Zuse-Zentrum für Informationstechnik, Takustrasse 7, D14195 BERLIN, GERMANY

E-mail address: rambau@zib.de
Francisco Santos, Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Santander, E-39071, Spain

E-mail address: santos@matesco.unican.es

[^0]: Work of Francisco Santos is partially supported by CajaCantabria and by grant PB97-0358 of Spanish Dirección General de Enseñanza Superior e Investigación Científica.

