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Abstract

We prove that the space of polyhedral subdivisions of a con�gura-

tion of r+3 vectors in r-space is spherical or contractible depending on

whether the con�guration is acyclic or not, thereby proving a special

case of the Generalized Baues Conjecture.

Introduction

The Baues problem concerns the study of the space of all the polyhedral

subdivisions of an acyclic vector con�guration [19].

A vector con�guration A in R

r

is a �nite spanning set of labelled vectors

(we allow repetitions) in the linear space R

r

. If there exists a linear hyper-

plane which leaves all the elements of A on the the same open half-space,

then A is said to be acyclic or pointed. The number r is called the rank of

A, while the corank of A is #(A)� r.

Following [3] and [11] we introduce the following de�nitions (see section

1 for precise de�nitions of the terms involved):

De�nition 1 � A polyhedral subdivision (or subdivision, for short) of A

is a covering collection of cells of A which pairwise intersect properly.

� A triangulation of A is a subdivision whose cells are simplices of A.

We will sometimes regard a triangulation not as a mere set of full-

dimensional simplices, but as a set of full-dimensional simplices and their

faces (i.e. as a simplicial complex). We will often switch between these two

points of view.

�
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Given subdivisions S

1

and S

2

of A, we say that S

1

re�nes S

2

(and denote

it by S

1

� S

2

) if every cell of S

1

is contained in some cell of S

2

. The

re�nement relation is a partial ordering in the set of all subdivisions of A.

The trivial subdivision (consisting of only one cell A and denoted by

^

1) is

clearly the unique maximal element.

De�nition 2 The Baues poset of A is the set

Baues(A) := fS : S subdivision of A; S 6=

^

1g

partially ordered by re�nement.

Every partially ordered �nite set (or poset) P has naturally associated

a simplicial complex, known as the order complex of P [6]. Its vertices are

the elements of P and its simplices are the chains in P . The order complex

associated to Baues(A) is known as the Baues complex of A. When talking

about topological properties of a poset, we refer to the associated order

complex (as it is usually done in the literature). Thus, for example, the

homotopy type of a poset means the homotopy type of its order complex,

and a contractible poset is one whose order complex has the homotopy type

of a single point.

The Generalized Baues Conjecture for Triangulations (or GBCT, for

short) claims that the Baues poset of a corank k acyclic vector con�guration

has the homotopy type of a (k � 1)-dimensional sphere. See [19] for an

overview on the matter. In rank or corank at most 2 the Baues poset is

known to be not only homotopy spherical, but homeomorphic to the (k�1)-

sphere: In these cases every subdivision is regular and the poset of regular

subdivisions is isomorphic to that of proper faces of a k-dimensional polytope

known as the secondary polytope of A (see [3], [4] or [11]). It has also been

shown in [10] that the GBCT is true in rank 3. There are other particular

cases in which the question has been answered a�rmatively, as the case in

which A is the set of vertices of a cyclic polytope (see [17]). There are no

results which strictly disprove the GBCT, but it is a particular case of the

Generalized Baues Conjecture (or GBC), which has been disproved in the

general case by Rambau and Ziegler [18]. Also, it is remarkable that the

natural generalization of the GBCT to oriented matroids (which are briey

introduced in section 1) is false, as a consequence of the results in [14] and

the Cayley trick [12].

An important feature related to the GBCT is the ip connectivity be-

tween triangulations. Without going into detail, we will just say that regu-

lar triangulations are represented by the vertices of the secondary polytope,

while ips between them are represented by the edges of the same polytope.

This implies that regular triangulations are connected by ips. Moreover,

according to Balinski's theorem [24, Theorem 3.14], regular triangulations

and their ips de�ne a k-connected graph (k being the corank of A): The
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1-skeleton of the secondary polytope. This leads to the question of ip

connectivity between triangulations, regular or not. The graph de�ned by

triangulations and ips happens to be homeomorphic to certain subcomplex

of Baues(A), and this fact suggests some relation between the pretended

(k � 1)-sphericity of Baues(A) and the k-connectivity of the graph. A fam-

ily of examples are shown in [22] in which the corank of A grows to in�nity

and the connectivity of the graph remains bounded. Moreover, Santos in

[20] exhibits an example in corank 317 which has a disconnected graph of

triangulations (in fact, the graph in his example has an isolated vertex).

Although this does not disprove the GBCT, it introduces serious suspicions

about its veracity.

It was shown in [2] that the graph of triangulations of an acyclic corank

3 vector con�guration is 3-connected. On the other hand, corank 4 examples

with connectivity number less than 4 exist. Thus corank 3 is the case just

in the border between good and bad behaviour (at least for the graph of

triangulations). This motivates the study of the GBCT in corank 3. In this

paper we prove that:

Theorem 3 The Baues poset of a corank 3 vector con�guration A is:

1. Homotopy equivalent to the 2-dimensional sphere S

2

if A is acyclic

(GBCT in corank 3).

2. Contractible if A is not acyclic.

We conjecture that the space of triangulations of a corank 3 oriented

matroid (realizable or not) as de�ned in [7] is also spherical in the acyclic

case and contractible in the non-acyclic one. We believe that the techniques

we present here can be applied to the non-realizable case. (See [7], [5], [21],

[1] and [2] for a deeper insight in triangulations and subdivisions of oriented

matroids.)

The structure of the article is as follows. In section 1 we de�ne the terms

involved in De�nition 1 and we recall some basic notions of oriented matroid

theory and Gale duality as well as some facts concerning triangulations of

circuits. In section 2 we reduce the proof of Theorem 3 to a problem of

contractibility of certain subposets of Baues(A) by means of Gale duality

and the Quillen's �bers Lemma. In section 3 we develop a technique of

\coarsening and re�ning" subdivisions that allow us to perform successive

retractions of the mentioned subposets, which we �nally prove to be con-

tractible in section 4 modulo Lemma 4.10. The mentioned lemma has a

rather long proof, so we devote the whole section 5 to it.
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1 Preliminaries

Throughout this section and section 2 A will denote a rank r vector con�g-

uration with n elements, and the results we present are valid in arbitrary

rank or corank.

The terms involved in De�nition 1

A cell (or full-dimensional subset) of A is any spanning subset of A. The

simplices of A are its independent subsets. The elements of A will be often

called vertices of A.

For any subset C � A the positive span of C is the polyhedral cone

conv(C) of all non-negative linear combinations of the elements of C. The

relative interior relconv(C) is the set of strictly positive linear combinations

of the elements of C. The linear span of C will be denoted by span(C). Later

on we will identify the cones with their intersections with the unit sphere,

which are spherical polytopes. Hence the notations conv(C) and relconv(C),

which stand for \convex hull" and \relative interior of the convex hull" of

C, respectively.

We say that two subsets C

1

and C

2

of A intersect properly if conv(C

1

\

C

2

) = conv(C

1

)\ conv(C

2

) and span(C

1

\C

2

)\C

1

= span(C

1

\C

2

)\C

2

. A

collection S of subsets of A is said to be covering if the positive span of A is

contained in (and hence, is equal to) the union of the positive spans of the

subsets in S. Given C � A, a subset F of C is said to be a face of C if it is

the intersection of C and some face of the cone conv(C) (which, therefore,

must be the positive span conv(F ) of F ). From this point of view, two

subsets C

1

and C

2

of A intersect properly if and only if their intersection is

a common face F and their positive spans conv(C

1

) and conv(C

2

) intersect

in conv(F ). It is easy to check that, for any C � A, a face of a face of C is

a face of C. If C � A is a simplex, then the faces of C are all the subsets

of C, and two simplices C

1

and C

2

of A intersect properly if and only if

conv(C

1

\ C

2

) = conv(C

1

) \ conv(C

2

).

Oriented Matroids

Most of our techniques in this paper come implicitly or explicitly from ori-

ented matroid theory, which we now introduce. A general reference on the

topic is [7].

Let A = fa

1

; : : : ; a

n

g � R

r

. A linear dependence of the elements of

A can be regarded as an element of R

n

de�ned by the ordered sequence

of coe�cients of the dependence. If we consider the signs (plus, minus or

zero) of the coe�cients rather than their values, what we get is known as

a signed vector (or vector, for short, if there is no ambiguity) of A. If the

support of a signed vector (i.e. the set of non-zero coordinates) is minimal
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with respect to inclusion, then it is said to be a circuit of A. Analogously,

the values that a linear form f 2 (R

r

)

�

takes on the elements of A de�ne an

element of R

n

which, if we consider the signs rather than the actual values,

is known as a signed covector (or covector, for short) of A. If the support of

a signed covector is minimal, then it is said to be a cocircuit of A. The sets

of circuits, cocircuits vectors and covectors of A contain the same amount

of information since either of them can be recovered from any other. This

information is known as the oriented matroid of A.

More precisely, oriented matroids are de�ned axiomatically in terms of

a ground set (which in the case of vector con�gurations is the mere set of

elements) and a set of circuits, cocircuits, vectors or covectors satisfying

certain properties. Not every oriented matroid in this axiomatic system can

be obtained from a vector con�guration as above. The ones which can are

said to be realizable.

An oriented matroid is acyclic if it has a positive covector (i.e. a covector

all whose entries are positive) or, equivalently, if all its circuits have both

positive and negative entries. Observe that this agrees with our de�nition

of acyclic vector con�guration. Such circuits will be called acyclic circuits.

On the other hand, an oriented matroid is said to be totally cyclic if it has

a positive vector or, equivalently, if all its cocircuits have both positive and

negative entries.

Every oriented matroidM has a dualM

�

, whose ground set is the same

and whose vectors (resp. circuits) are the covectors (resp. cocircuits) of M

and vice versa. Clearly, the operation of passing to the dual is involutive.

An oriented matroid is acyclic if and only if its dual is totally cyclic. An

oriented matroid may neither be acyclic nor totally cyclic.

Given an oriented matroid M on a ground set E and given p 2 E,

the deletion of p in M is de�ned to be the oriented matroid Mn p whose

ground set is E n fpg and whose circuits are the circuits of M in which the

coe�cient of p is zero. The contraction of p in M is the oriented matroid

M=p whose ground set is E n fpg and whose cocircuits are the cocircuits of

M in which the coe�cient of p is zero. IfM

�

is the dual oriented matroid of

M, thenM

�

np is the dual ofM=p and vice versa. That is, the operations of

deletion and contraction are dual to each other. When dealing with a vector

con�guration A, the deletion of an element p 2 A is denoted by Anp since it

can be realized by removing the element p from the vector con�guration A.

Analogously, the contraction of p is denoted by A=p and it can be realized

by projecting the elements of A along the direction of p to a hyperplane not

containing p.

Gale duality

We recall that A = fa

1

; : : : ; a

n

g � R

r

. A Gale transform of A (see [24]) is

a vector con�guration B = fb

1

; : : : ; b

n

g � R

n�r

such that

P

n

i=1

a

i


 b

i

= 0
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in R

r


 R

n�r

.

Observe that the de�nition produces an implicit 1-1 correspondence be-

tween A and B. This correspondence allows us to abuse notation without

ambiguity in the following way: For C = fa

i

1

; : : : ; a

i

k

g � A, B n C will

denote the set fb

i

k+1

; : : : ; b

i

n

g obtained by complementation of indices (and

the same for D � B and A nD). From now on, B will denote a Gale trans-

form of A, and hence, B will be a vector con�guration with n elements in

R

n�r

.

Remarks 1.1 The following are some straightforward properties of the Gale

transform:

1. B is unique up to linear automorphism of R

n�r

. In particular, the

oriented matroid of B is unique.

2. A is also a Gale transform of B.

3. The signed vectors of A are the signed covectors of B. Therefore, the

circuits of A are the cocircuits of B. I.e. the oriented matroids of A

and B are dual to each other.

4. A is acyclic if and only if B is totally cyclic.

5. The operations of deletion and contraction are dual to each other (in

the Gale sense too): B n p is a Gale transform of A=p.

6. A subset C � A is spanning in R

r

if and only if B nC is independent

in R

n�r

and vice versa. In particular, C � A is a basis of R

r

if and

only if B n C is a basis of R

n�r

.

Proposition 1.2 Let p; q 2 A. If either (fpg; ;) or (fpg; fqg) is a covector

of A, then Baues(A) is poset-isomorphic to Baues(A=p).

Proof: We consider the map which sends each subdivision S of A to the

link of p in S, which is a subdivision of A=p. This map can always be de-

�ned and is order preserving. It is routine to check that, in the conditions

of the lemma, this map is also bijective, and thus an isomorphism between

Baues(A) and Baues(A=p). Let us just describe its inverse in the less trivial

case; when (fpg; fqg) is a covector of A. Given a subdivision S of A=p we

construct the corresponding subdivision of A as follows: Let B be a cell of

S. If q 2 B we consider the cell B [ fp; qg of A. If q 62 B we consider the

cells B[fpg and B[fqg of A. The set of cells so obtained de�ne the desired

subdivision of A. 2

By Proposition 1.2, there is no loss of generality in assuming that B has

neither zero elements (which give circuits (fpg; ;)) nor positive multiples
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of one another (which give circuits (fpg; fqg)). Then, by normalisation of

its elements, B can be identi�ed with a set of distinct points in the sphere

S

n�r�1

. By this identi�cation, simplices of B identify with spherical sim-

plices: Independent subsets of B with 1, 2, 3 and n� r� 1 elements identify

with sets of points in S

n�r�1

which will be called vertices (or often simply

elements), edges, triangles and covertices of B respectively. The positive

span of any subset C � B intersects S

n�r�1

in a closed region which will

be also denoted by conv(C) but which we will call the convex hull of C. In

the same way, the relative interior of C intersects S

n�r�1

in a region which

we will keep calling relative interior of C and denoting by relconv(C). Sum-

ming up, in the sequel, when referring to B, we will always be thinking of

a spherical situation in which there are no multiple points. From this point

of view, a triangulation of B can be regarded as a geometric triangulation

of conv(B) whose vertices are elements of B.

Triangulations of a circuit

Given any circuit (or vector, or cocircuit or covector) Z it is customary to

denote Z

+

and Z

�

the subsets of A consisting of elements with positive and

negative entry, respectively. The support Z

+

[ Z

�

of Z is denoted Z.

An acyclic circuit Z can be triangulated in exactly the following two

ways:

T

�

(Z) := fZ n fpg : p 2 Z

�

g; � 2 f+;�g

where the simplices Znfpgmight not be full-dimensional. The triangulations

T

+

(Z) and T

�

(Z) are known as the positive and the negative triangulations

of Z respectively.

Analogously, every non-acyclic circuit can be triangulated in exactly one

way:

T

+

(Z) := fZ n fpg : p 2 Zg

Let C be a subset of A containing the support of precisely one circuit

Z (for example a spanning subset with r + 1 elements). Then C can be

triangulated in exactly as many ways as Z. If, for instance Z is an acyclic

circuit, those triangulations would be:

T

�

(C) := fC n fpg : p 2 Z

�

g; � 2 f+;�g

2 Subdivisions of A, simplices of B and Quillen's

�bers Lemma.

The aim of this section is to reduce the problem of determining the homotopy

type of Baues(A) to that of showing that certain subposets of Baues(A) are

contractible, by means of Quillen's Lemma. A key idea is to codify the

subdivisions of A in terms of set of simplices of the Gale transform B. This
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is done for triangulations in [8] and [2] via de notion of virtual chamber of B,

on which our ideas are inspired although we will not introduce it explicitly.

We recall that we are assuming A to have arbitrary corank.

De�nition 2.1 (i) If S is a subdivision of A and � is a simplex of B, we

say that:

� S lies on � if A n � is a cell of S.

� S lies on � if S lies on some face of � (possibly � itself).

(ii) A simplex � of B is empty if B \ conv(�) = �.

(iii) Two subsets of B overlap if their relative interiors intersect in a

non-empty set.

Lemma 2.2 Let S be a subdivision of A and let �

1

and �

2

be two simplices

of B. If S lies on both �

1

and �

2

, then �

1

and �

2

overlap.

Proof: The cells B

1

:= A n �

1

and B

2

:= A n �

2

of S intersect properly.

This implies there is a linear hyperplane H in R

r

which weakly separates

B

1

and B

2

with H \ (B

1

[ B

2

) = B

1

\ B

2

. That is, there is a covector Z

of A such that B

1

\ Z

+

= ;, B

2

\ Z

�

= ; and Z

0

\ (B

1

[ B

2

) = B

1

\ B

2

.

Thus, there is a vector Z of B such that �

1

n (�

1

\ �

2

) � Z

+

� �

1

and

�

2

n (�

1

\ �

2

) � Z

�

� �

2

. It is not hard to see that this is equivalent for �

1

and �

2

to overlap. 2

Every covertex l of B spans a linear hyperplane which divides R

n�r

into

two open half-spaces or, equivalently, de�nes a great sphere which divides

S

n�r�1

into two open hemispheres called sides (or sometimes open sides)

of l. The closed hemispheres de�ned by l are called closed sides of l. An

orientation of l is a choice of one side l

+

as the positive and the other one

l

�

as the negative. An oriented covertex of B is a covertex l of B together

with an orientation of l. The positive and negative closed sides de�ned by

an oriented covertex l are denoted by l

+

and l

�

respectively. The closed

sides of l (oriented or not) intersect in the great sphere de�ned by l which

we denote l

0

.

De�nition 2.3 Let l be an oriented covertex of B. We say that:

(i) S lies on l

+

if there is a simplex � of B in which S lies such that

relconv(�) � l

+

.

(ii) S lies on l

+

if there is a simplex � of B in which S lies such that

relconv(�) � l

+

(iii) S lies on l

0

if there is a simplex � of B in which S lies such that

relconv(�) � l

0

.
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Remarks 2.4 The following properties are straightforward for a subdivision

S of A and an oriented covertex l of B:

� S lies on l

+

if and only if there is a simplex � of B in which S lies

such that conv(�) � l

+

(i.e. � � l

+

) and l

+

\ � 6= ;.

� S lies on l

+

if there is a simplex � of B in which S lies such that

conv(�) � l

+

. Equivalently, if there is a simplex � of B in which S

lies such that � � l

+

.

� S lies on l

0

if and only if there is a simplex � of B in which S lies

such that conv(�) � l

0

. Equivalently, if there is a simplex � of B in

which S lies such that � � l

0

.

� S lies on l

0

if and only if S lies on both l

+

and l

�

.

� If � is a simplex of B and S lies on both � and l

+

, then � \ l

+

6= ;.

Lemma 2.5 Let S be a subdivision of A and let l be a covertex of B. Then

S lies on at most one of the sets l

+

, l

�

and l

0

.

Proof: If S lies on both l

+

and l

0

, then S lies on simplices �

+

and �

0

of

B with relconv(�

+

) � l

+

and relconv(�

0

) � l

0

. Hence, �

+

and �

0

do not

overlap, which is impossible by Lemma 2.2. The same argument proves that

S can neither lie on both l

�

and l

0

nor on both l

+

and l

�

. 2

The following example shows that S might lie on neither l

+

, l

�

nor l

0

:

Let A be the con�guration of column vectors in the matrix

A =

 

0 1 2 3

1 1 1 1

!

with Gale transform B represented by the matrix

B =

 

1 �2 1 0

0 1 �2 1

!

Let S = ffa

1

; a

4

gg, which lies only on the simplex fb

2

; b

3

g, and let

l = fb

1

g or l = fb

4

g.

Proposition 2.6 Let T be a triangulation of B. Then, for every subdivision

S 2 Baues(A), there is a unique simplex � of T (not necessarily a full

dimensional one) such that S lies on �.

Proof: First we prove existence. Let T

0

be a triangulation of A which re�nes

S (such a triangulation can always be constructed using, for example, the

pulling technique introduced in [13]). In [8] it was proved that there is a
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unique (full dimensional) simplex � of T

0

whose complementary set B n � is

a (full dimensional) simplex of T . On the other hand, there is a cell B of S

with � � B. Hence, � := B n B is contained in B n � and S lies on �. Since

� is a face of the simplex B n � (and is a nonempty one, since S is not the

trivial subdivision), � is a simplex of T .

For uniqueness, if there is another simplex of T in which S lies, then this

simplex must overlap � (by Lemma 2.2), which is impossible since both are

simplices of the same triangulation T . 2

The set of subdivisions of A which lie on a simplex � of B (together with

the re�nement relation) is a subposet of Baues(A) which we will denote

Baues

�

(A), while Baues

�

(A) will denote the subposet of those subdivisions

which lie on � (i.e. on some face of � which could be � itself).

Lemma 2.7 Let T be a triangulation of a subset C � B and let � be a

simplex of B with conv(�) � conv(C). If a subdivision S lies on � , then S

lies on some simplex of T .

Proof: Since T is a triangulation of C, the union of the convex hulls of the

simplices of T is conv(C), which is a convex set. Therefore, T can be ex-

tended to a triangulation T

0

of B (using, for example, the placing technique

introduced in [13]). By Proposition 2.6, S lies on some simplex � of T

0

.

By Lemma 2.2, � and � overlap, but since conv(�) � conv(C), the only

simplices of T

0

which overlap � are the simplices of T . Therefore, � is a

simplex of T . 2

In Figure 1 we depict two rank 3 con�gurations which are Gale trans-

forms of each other. The �rst one is acyclic and we show it projected to

the a�ne plane. One can see that the cells of the triangulation in (a) cor-

respond by complementation precisely to those simplices which contain in

their convex hulls the shaded region in (b). It is easy to see that exactly one

of such simplices belongs to each triangulation of the con�guration in (b),

since the shaded region is a cell of the cell complex de�ned as the coarsest

common re�nement of all the triangulations of (b) (i.e. the chamber complex

of (b)). Despite of Proposition 2.6 and Lemma 2.7, a subdivision of a vector

con�guration do not always correspond to a cell of the chamber complex in

this fashion.

The remaining of the section is devoted to show how the problem of the

homotopy type of Baues(A) can be reduced to that of the contractibility of

certain subposets of Baues(A). Let T be a triangulation of B. We consider

the reverse incidence relation in T : �

1

� �

2

if and only if �

2

� �

1

. This is a

partial ordering relation whose associated poset is the opposite to the usual

face poset. In particular, their order complexes are isomorphic. Since the

order complex of the face poset of a simplicial complex � is isomorphic to the
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Figure 1: Two rank 3 con�gurations which are Gale transforms of each

other. The triangulation in (a) corresponds by complementation to the set

of simplices containing the shaded region in (b).

�rst barycentric subdivision of � (which is homeomorphic to � itself), we

conclude that the order complex of (T ;�) (where \�" is the relation we have

de�ned above) is homeomorphic to T . But T is homeomorphic to conv(B),

and hence, to S

n�r�1

if B is totally cyclic and to the (n�r�1)-dimensional

ball, B

n�r�1

otherwise. In poset topology terms,

Remark 2.8 (T ;�) is homeomorphic to S

n�r�1

if A is acyclic and to

B

n�r�1

otherwise.

For any triangulation T of B we de�ne the Quillen map over T

F

T

: Baues(A) �! T

as follows. For any S 2 Baues(A), F

T

(S) is the (unique) simplex of T in

which S lies.

Our purpose is to show that if A is a corank 3 vector con�guration,

then, for a certain triangulation T of B, F

T

induces a homotopy equivalence

between Baues(A) (with the re�nement ordering) and (T ;�). We will thus

have that if A is acyclic, then Baues(A) is homotopy equivalent to S

2

, and

if A is not acyclic, then A is homotopy equivalent to B

2

, and therefore

contractible. We will make use of the following result.

Lemma 2.9 (Quillen's Lemma) Let P and Q be two posets. Let F :

P �! Q be an order-preserving surjection (i.e. a poset epimorphism) and

suppose that for every y 2 Q, the �ber F

�1

(Q

�y

) of y is contractible. Then,

F induces a homotopy equivalence between P and Q.
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For a proof of this lemma see, for example, [6].

Lemma 2.10 For any triangulation T of B, the map F

T

is surjective and

order preserving.

Proof: Let � be a simplex of T . Then B := A n � is a cell of A. B is not

A itself, since we are not considering the empty set as a simplex of T . By

extending fBg to a subdivision of A (this can be done, for example, in a

lexicographic fashion), we obtain a nontrivial subdivision S of A which has

B as a cell, that is, which lies on �. This gives surjectiveness.

Now let us show that F

T

is order preserving. Let S

1

; S

2

2 Baues(A)

with S

1

< S

2

. Let �

1

and �

2

be the simplices of T such that S

i

lies on �

i

,

i = 1; 2. We have to show that �

2

� �

1

, that is, if we de�ne B

i

:= A n �

i

for i 2 f1; 2g, we have to show that B

1

� B

2

. But since S

i

lies on �

i

for

i 2 f1; 2g, we have that B

i

is a cell of S

i

for i 2 f1; 2g, and since S

1

re�nes

S

2

, we conclude that B

1

is contained in some cell B

0

2

of S

2

. If B

0

2

6= B

2

,

then B

1

and B

2

do not overlap. Hence, there exists a linear hyperplane H

of R

r

which weakly separates B

1

and B

2

, that is, there is a covector Z of

A such that B

1

\ Z

+

= ; and B

2

\ Z

�

= ;. Therefore, there is a vector

Z of B such that Z

+

� �

1

and Z

�

� �

2

. As can be seen in, for example,

[16, Proposition 2.2], this implies that �

1

and �

2

do not intersect properly,

which is not possible since both are simplices of the same triangulation T

of B. 2

Remark 2.11 Taking into account Remark 2.8 and Lemmas 2.9 and 2.10,

in order to prove Theorem 3, it su�ces to exhibit a triangulation T of B

whose Quillen �bers by F

T

are contractible, that is, such that the subposet

of Baues(A) of those subdivisions which lie on some face of � (including �

itself) is contractible for every simplex � 2 T .

In section 4 we will show that, if A has corank 3, such a subposet is

contractible for any empty simplex � of B (Proposition 4.1 and Theorems

4.6 and 4.9). Thus, any triangulation T of B which uses all the elements of

B would satisfy our requirements.

3 Some useful homotopy equivalences

Throughout the remaining of this paper, A will be assumed to have corank

3.

In this section we introduce a technique of coarsening and re�ning sub-

divisions of A along a particular oriented covertex (i.e. edge) of B. This

will induce homotopy equivalences for appropriate subspaces of the Baues

complex. We do not know whether the analogous statements hold in higher

corank.
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De�nition 3.1 We say that two edges l

1

and l

2

cross each other (or that

one crosses the other) if they overlap and l

1

[ l

2

has rank 3 (i.e. spans a

3-dimensional vector subspace). Equivalently, l

1

and l

2

cross each other if

and only if (l

1

; l

2

) is a circuit.

Remarks 3.2 Let l, l

0

, � and �

0

be an edge, an empty edge, a triangle and

an empty triangle of B respectively. The following assertions are straight-

forward:

� Not all the (three) edges of � can overlap l.

� The simplices l and �

0

overlap if and only if l crosses some edge of �

0

.

� If l overlaps both � and some edge m of � , then l crosses m.

� If p, q and r are the vertices of �

0

and fp; qg is the only edge of �

0

which l

0

crosses, then r is a vertex of l

0

.

� If l and l

0

overlap but do not cross each other, then conv(l

0

) � conv(l).

Lemma 3.3 Let l be an edge of B which overlaps an empty triangle � of B.

If a subdivision S of A lies on � , then S lies on some closed side of l.

Proof: First suppose that l is empty. Let � = fp; q; rg and assume, without

loss of generality, that S crosses fp; qg. Since l and � are empty, either r 2 l

or l crosses some other edge of � , which we can assume to be fp; rg. In

either case, the triangle l[fpg can be extended to a triangulation T of � [ l

in which every simplex is contained in some closed side of l. By Lemma 2.7,

S lies on some simplex of T . If l is not empty, then it contains an empty

edge m in its convex hull which overlaps � , thus S lies on some closed side

of m. But clearly, S lies on some closed side of m if and only if S lies on

some closed side of l. 2

De�nition 3.4 Given an oriented empty edge m of B and subdivisions S

1

and S

2

of A, we say that:

(i) S

1

is incident to m

+

if S lies on every triangle m [ ftg with t 2 m

+

.

(ii) S

1

and S

2

are incident (to each other) along m

+

if one of them is

incident to m

+

, the other one lies on m and for every simplex � of B which

does not have an edge contained in m

0

, S

1

lies on � if and only if S

2

lies on

�.

Remarks 3.5 Let m be an oriented empty edge of B and let S be a subdi-

vision of A.
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1. S is incident to m

+

if and only if S lies on every triangle of the form

l [ ftg where l is an edge of B such that m � conv(l) and t 2 m

+

.

Suppose S is incident to m

+

, let l be an edge of B with m � conv(l)

and t 2 m

+

. Extend fl [ ftgg to a triangulation T of B. Since S lies

on m[ ftg, by Lemmas 2.7 and 2.2 there is a unique face � of l [ ftg

such that S lies on � and such a face � must overlap m [ ftg. Since

relconv(m [ ftg) � relconv(l [ ftg), l [ ftg is the only simplex of T

which overlaps m[ ftg. Therefore, � = l [ ftg, thus S lies on l [ ftg.

The converse is trivial.

2. Analogously, S lies on m if and only if S lies on every edge l of B such

that m � conv(l).

The proof is the same as in previous remark, except that one has to

choose t 62 m

0

arbitrarily in order to take l [ ftg as a starting triangle

for T .

3. If S

1

and S

2

are incident along m

+

, the one which is incident to m

+

re�nes the one which lies on m.

Say S

1

lies on m. For every edge l with m � conv(l) and for every

t 2m

+

, S

1

lies on l while S

2

lies on l[ftg, and for any other simplex

of B either both S

1

and S

2

lie on it or none of them lie on it. Passing

to complements in A we have that every cell of S

2

is contained in some

cell of S

1

.

4. Of course, we can reverse the orientation of m in the previous de�ni-

tion and, hence, de�ne the same notions with respect to m

�

.

Theorem 3.6 Let S be a subdivision of A and let m be an oriented empty

edge of B with m

+

6= ;. If S either lies on m or is incident to m

+

, then

there exists a unique subdivision S

0

of A which is incident to S along m

+

.

Proof: Suppose that S lies on m. The subdivision S

0

(in case it exists) is

determined by the simplices of B in which it lies, since their complements

in A are the cells of S

0

. Assume that there exists S

0

incident to S along

m

+

. In particular, S

0

is incident to m

+

, so by Remarks 3.5, S

0

must lie on

every triangle l[ftg, where t 2m

+

and l is an edge of B with m � conv(l).

We claim that these triangles, together with the simplices in which S lies

which do not have an edge contained in m

0

, de�ne (by taking complements

in A) a subdivision of A. The claim proves not only existence, but also

uniqueness of S

0

. This follows from the obvious fact that we cannot obtain

a new subdivision of A by adding cells to a given one.

Note that, by Remark 3.5, S lies on every edge l of B such that m �

conv(l). Moreover, since any two simplices of B on which S lies must overlap,

the simplices on which S lies and having an edge contained in m

0

are all
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edges overlappingm. Sincem is empty, they must containm in their convex

hulls.

Now we prove the claim. Let S

0

be the collection of cells of A obtained

by complementation of the simplices of described above (i.e. those of the

form l [ ftg, being l an edge with m � conv(l) and t 2 m

+

, and those on

which S lies having no edge contained in m

0

). Let Z be the cocircuit of B

de�ned by the oriented edge m, which we identify with the corresponding

circuit of A. Let l be an edge of B such that m � conv(l). Since l � Z

0

,

the cell An l of S contains Z. Moreover, every cell B of S which contains Z

is obtained this way: B n B must overlap m (which is an empty edge) and

B nB � Z

0

, thus B nB = l for some edge l of B such that m � conv(l). For

a �xed edge l in these conditions, the set ffl [ ftgg : t 2 m

+

g de�nes (by

complementation) the positive triangulation of A n l (which is a spanning

subset of A with r+1 elements). Thus, S

0

is obtained from S by substituting

every cell B of S which contains Z by its positive triangulation. Hence, S

0

covers conv(A). It remains to show that every new cell (meaning every cell

of S

0

which is not a cell of S) intersects properly with any other cell of S

0

.

Let B

1

and B

2

be two cells of S

0

and suppose B

1

is a new cell. Then, B

1

is a full-dimensional simplex of A which is contained in a unique cell B

0

1

of S

(and hence, B

1

is in the positive triangulation of B

0

1

by construction). First

suppose B

2

is not a new cell and let F be the common (possibly empty) face

of B

0

1

and B

2

. Since F is a face of B

0

1

, it is triangulated by any triangulation

of B

0

1

. Since B

2

is not new, it does not contain Z, thus Z 6� F . Therefore, F

is a simplex, and thus it is a face of some element in the positive triangulation

of B

0

1

, hence F and B

1

intersect properly in a simplex G = F \ B

1

. Now,

B

1

\ B

2

= B

1

\ B

0

1

\ B

2

= B

1

\ F = G, and since B

1

is a simplex and

G � B

1

, G is a face of B

1

. Also, since F is a simplex and G � F , G

is a face of F , and since F is a face of B

2

, G is a face of B

2

. Therefore,

B

1

and B

2

intersect in a common face. Moreover, conv(B

1

) \ conv(B

2

) =

conv(B

1

) \ conv(B

0

1

) \ conv(B

2

) = conv(B

1

) \ conv(F ) = conv(G), and

hence, B

1

and B

2

intersect properly.

On the other hand, if B

2

is new, then it is in the positive triangula-

tion of some cell B

0

2

of S. In this case, the common face F of B

0

1

and

B

0

2

contains Z. G

1

:= B

1

\ F is a simplex of the positive triangulation

of Z and so is G

2

:= B

2

\ F . Hence G

1

and G

2

intersect properly. B

1

is obtained from B

0

1

by dropping an element of Z, thus G

1

is obtained

from F by dropping the same element of Z. Hence, G

1

has the same

rank as F , thus conv(B

1

) \ conv(F ) � conv(B

1

) \ span(G

1

) = conv(G

1

),

so conv(B

1

) \ conv(F ) = conv(G

1

). Analogously, conv(B

2

) \ conv(F ) =

conv(G

2

). On the one hand, B

1

\ B

2

= B

1

\ B

2

\ B

0

1

\ B

0

2

= B

1

\ B

2

\

F = G

1

\ G

2

, thus B

1

and B

2

intersect in a common face. On the other

hand, conv(B

1

)\ conv(B

2

) = conv(B

1

)\ conv(B

2

)\ conv(B

0

1

)\ conv(B

0

2

) =

conv(B

1

) \ conv(B

2

) \ conv(F ) = conv(G

1

) \ conv(G

2

) = conv(G

1

\G

2

) =

conv(B

1

\B

2

), so B

1

and B

2

intersect properly.



16 Miguel Azaola

If S is incident to m

+

, the proof follows the same lines. For uniqueness,

the argument is word by word the same as above and, for existence, the idea

is to substitute the cells of the form A n (l [ ftg) by those of the form A n l

(where, as usual, t 2 m

+

and l is an edge of B with m � conv(l)). One has

to prove that the collection of cells of A so obtained is a subdivision of A,

and this can be done using an essentially identical argument. 2

Lemma 3.7 (Lemma 3.3 in [23]) Let f : P �! P be a poset endomor-

phism such that

f(f(x)) = f(x) � x;8x 2 P

Then the surjection f : P �! f(P ) is a homotopy equivalence.

Lemma 3.8 Let m be an oriented empty edge of B and let P be a subposet

of Baues(A) such that:

1. Every element of P lies on m

+

.

2. For every S 2 P which lies on m

0

, S lies on m and the subdivision

S

+

which is incident to S along m

+

is in P .

Let P

+

m

:= fS 2 P : S lies on m

+

g. The map R : P �! P , de�ned

by R(S) := S

+

if S is in the conditions of part 2 and R(S) := S otherwise,

induces a homotopy equivalence between P and P

+

m

.

Proof: We claim that R satis�es the hypotheses of Lemma 3.7, and hence, it

induces a homotopy equivalence between P and R(P ). Clearly, R(P ) = P

+

m

and R(R(S)) = R(S) � S;8S 2 P , and hence it remains to prove that R is

order preserving.

Let S

1

; S

2

2 P with S

1

< S

2

. If S

1

and S

2

are both in P

+

m

, there is

nothing to prove. On the other hand, if S

2

2 P

+

m

then S

1

2 P

+

m

: Otherwise

S

1

lies on m, and hence, S

2

lies on some face � of m, but since S

2

2 P

+

m

, S

2

lies on some simplex � of B with relconv(�) � m

+

, and thus, � and � do not

overlap, which is impossible. Therefore, we can assume S

2

2 P nP

+

m

, that is,

S

2

lies on m. If S

1

2 P

+

m

, we want to show that S

1

� S

+

2

. But if B

1

is a cell

of S

1

, then B

1

� B

2

for some cell B

2

of S

2

. If B

2

is a cell of S

+

2

, then there

is nothing to prove. If B

2

is not a cell of S

+

2

, then B

2

is a spanning set with

r+ 1 and it can be re�ned in exactly two ways (both triangulations of B

2

).

Since S

1

lies on m

+

, B

1

must be a simplex of the positive triangulation of

B

2

, and hence, B

1

is a cell of S

+

2

(i.e. S

+

2

lies onAnB

2

= l[ftg for some edge

l with m � conv(l) and some t 2 m

+

). It remains the case in which both S

1

and S

2

lie on m. We want to show that S

+

1

� S

+

2

, but since S

+

1

� S

1

� S

2

,

S

+

1

and S

2

are in the conditions of the previous case, and hence S

+

1

� S

+

2

. 2
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Lemma 3.9 Let m be an oriented empty edge of B and let P be a subposet

of Baues(A) such that:

1. Every element of P lies on some closed side of m.

2. For every S 2 P which lies on m

�

, S is incident to m

�

and the

subdivision S

0

which is incident to S along m

�

is in P .

Let P

+

m

:= fS 2 P : S lies on m

+

g. The map R : P �! P , de�ned

by R(S) := S

0

if S is in the conditions of part 2 and R(S) := S otherwise,

induces a homotopy equivalence between P and P

+

m

.

Proof: We claim that R satis�es the hypotheses of Lemma 3.7, and hence, it

induces a homotopy equivalence between P and R(P ). Clearly, R(P ) = P

+

m

and R(R(S)) = R(S) � S 8S 2 P . Thus, it remains to show that R is

order-preserving.

Let S

1

and S

2

be elements of P with S

1

< S

2

. If S

1

2 P

+

m

then

there is a simplex � � m

+

such that S

1

lies on sigma. Since S

1

< S

2

,

S

2

lies on some face of �, and hence, S

2

lies on m

+

. But, in this case,

R(S

1

) = S

1

< S

2

= R(S

2

). Thus, we can assume S

1

2 P n P

+

m

. If S

2

2 P

+

m

,

we want to show that S

0

1

� S

2

. If B

1

2 S

0

1

is not a new cell there is nothing

to prove. Let us assume that B

1

is a new cell. Then B

1

is of the form An l.

Let � be one of the full-dimensional simplices of the negative triangulation

of B

1

. The simplex � is a cell of S

1

, so there exists B

2

2 S

2

with � � B

2

.

Hence, S

2

lies on a face � = B n B

2

of B n � = l [ ftg (for some t 2 m

�

).

Since S

2

2 P

+

m

, S

2

lies on m

+

, thus � � l, which implies that A n l � A n �,

that is, B

1

� B

2

. It remains the case in which both S

1

and S

2

are in P nP

+

m

.

We want to prove that S

0

1

� S

0

2

, but since S

1

� S

2

� S

0

2

, S

1

and S

0

2

are in

the conditions of the previous case, thus S

0

1

� S

0

2

. 2

Lemma 3.10 Let m be an oriented empty edge of B and let P be a subposet

of Baues(A) such that:

1. Every element of P lies on some closed side of m.

2. For every S 2 P which lies on m

�

, S is incident to m

�

and the

subdivision S

0

which is incident to S along m

�

is in P .

3. For every S 2 P which lies on m

0

, S lies on m and the subdivision

S

+

which is incident to S along m

+

is in P .

Then P and P

+

m

:= fS 2 P : S lies on m

+

g are homotopy equivalent.
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Proof: By Lemma 3.9, P and P

+

m

are homotopy equivalent. By hypoth-

esis, for every S 2 P which lies on m

0

, S lies on m and the subdivision

S

+

which is incident to S along m

+

is in P . That is to say that for every

S 2 P

+

m

which lies on m

0

, S lies on m and S

+

is in P . Hence, Q := P

+

m

is in

the hypotheses of Lemma 3.8 and, therefore, Q is homotopy equivalent to

Q

+

m

:= fS 2 Q : S lies on m

+

g = fS 2 P : S lies on m

+

g = P

+

m

. Hence,

P and P

+

m

are homotopy equivalent. 2

Remark 3.11 Of course, Theorem 3.6 and Lemmas 3.8, 3.9 and 3.10 re-

main true if we substitute every plus sign by a minus sign and vice versa.

4 Empty simplices induce contractible subposets

In this section we prove Theorem 3. We recall (see Remark 2.11) that taking

into account Lemmas 2.9 and 2.10, it su�ces to show that the subposet of

Baues(A) induced by an empty simplex of B and its faces is contractible.

We also recall that we are assuming A to have corank 3.

4.1 Vertices

Proposition 4.1 Let p 2 B. Baues

fpg

(A) = Baues

fpg

(A) consists of a

single element S

p

, and hence it is contractible.

Proof: We will call S

p

the subdivision of A whose cells are An fpg together

with all those cells obtained by joining p to a facet of Anfpg which is visible

from p (if any). By a facet of Anfpg which is visible from p we mean a facet

of A n fpg which joined to p gives a cell of A (i.e. a spanning subset of A)

which intersects properly with Anfpg. It is well known that S

p

so de�ned is

a subdivision of A, and it lies on fpg. Let S be any subdivision of A which

lies on fpg. Then, Anfpg is a cell of S. Any cell B of S di�erent from Anfpg

must contain p as an element, and hence, B n fpg � An fpg must be a facet

of B and, therefore, a facet of A n fpg visible from p. Thus, S � S

p

, and

since no subdivision of A can be properly contained in any other, S = S

p

. 2

4.2 Edges

The main goal of this subsection is to prove Theorem 4.6. The successive

steps we take to do so (Lemmas 4.3, 4.4 and 4.5) are sketched in Figure 2,

which does not truly represent the geometric situation and is intended to

serve only as a quick guide of the proof. Note that the �rst step depicted in

Figure 2 corresponds to the last of the three lemmas.

Throughout this subsection, m = fp; qg will be an empty edge of B and


(m) will denote the set of empty edges of B which cross m. We de�ne
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A( ) A( )m (m (m (mω ω ω 
2 1 0Baues m ) ) )Baues

q

p p p p p

q q q q

Figure 2: Visual guide of section 4.2: The successive retractions are repre-

sented from left to right. In each case, the thick segment represents schemat-

ically the subposet under consideration. The �nal subposet !

0

(m) has a

single element.

a binary relation in 
(m) as follows. If l; l

0

2 
(m) are distinct and do

not cross each other, then they must not overlap (since both are empty).

Moreover, their relative interiors must intersect relconv(m) in exactly two

distinct points x and x

0

respectively. In these conditions we say that l

0

is

closer to q than l, and denote it by l�

q

l

0

, if x

0

2 relconv(fx; qg). This is

a partial ordering relation in 
(m). We extend it arbitrarily to a linear

ordering in 
(m) and denote the extended ordering by <

q

. Let 
(m) =

fl

1

; : : : ; l

k

g, with l

i

<

q

l

j

for i < j. We consider every l

i

oriented so that

p 2 l

+

i

. For every i = 0; 1; : : : ; k we de�ne !

i

(m) := fS 2 Baues

m

(A) :

S lies on l

+

j

; 8 j > ig. Note that !

k

(m) = Baues

m

(A).

Lemma 4.2 Let i 2 f1; : : : ; kg and let S 2 !

i

(m) n!

i�1

(m). Then S either

lies on l

i

or is incident to l

�

i

.

Proof: Let i 2 f1; : : : ; kg and let S 2 !

i

(m) n !

i�1

(m). Suppose S does

not lie on l

i

. The triangles l

i

[ fpg and l

i

[ fqg (and their faces) form a

triangulation T of l

i

[m. By Lemma 2.7, there is exactly one simplex � of

T in which S lies. Since S lies on m, � overlaps m. Thus, � is either l

i

[fpg,

l

i

[ fqg or l

i

. Since S does not lie on l

i

, � 6= l

i

. Since S 2 !

i

(m) n !

i�1

(m),

S does not lie on l

+

i

. Hence, � 6= l

i

[ fpg. Therefore, S lies on � := l

i

[ fqg.

Let t 2 l

�

i

, t 6= q. First suppose that t 62 conv(�). Then, either � �

conv(l

i

[ ftg) (and then, l

i

[ ftg de�nes a triangulation of � [ ftg in which

the unique simplex which overlaps � is l

i

[ftg, so S lies on l

i

[ftg) or some

edge l of l

i

[ ftg crosses an edge of �. In the last case, l crosses m and

l

i

<

q

l, thus l = l

j

for some j > i. Hence, S lies on l

+

j

. Say l

i

= fr; sg and

l

j

= l = fs; tg. The triangles l

j

[ fqg and l

j

[ frg de�ne a triangulation T

0

of �[ftg and S lies on some simplex of T

0

, which must overlap �. The only
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simplices of T

0

which overlap � are l

j

[ fqg, l

j

[ frg and l

j

. Since S lies on

l

+

j

, S lies on l

j

[ frg = l

i

[ ftg.

Finally suppose that t 2 conv(�). Then some edge of l

i

[ ftg di�erent

from l

i

(say fs; tg) crosses m. Thus, l

j

= fs; tg for some j > i, and there-

fore, S lies on l

+

j

. The triangles l

j

[ fqg, l

j

[ frg and fq; r; tg (in case it is

actually a triangle) de�ne a triangulation of �[ftg in one of whose simplices

S lies. Such a simplex cannot be a face of fq; r; tg, because no face of fq; r; tg

overlaps m, since r and t are on the same open side of m (and q is a vertex

of m). The only simplices of the simplicial complex de�ned by l

j

[ fqg and

l

j

[ frg which overlap m are l

j

[ fqg, l

j

[ frg and l

j

. Since S lies on l

+

j

, S

lies on l

j

[ frg = l

i

[ ftg. 2

Lemma 4.3 For each i 2 f0; : : : ; kg, the poset !

i

(m) is homotopy equiva-

lent to !

0

(m). In particular, Baues

m

(A) = !

k

(m) is homotopy equivalent

to !

0

(m).

Proof: If i = 0 there is nothing to prove. Let i 2 f1; : : : ; kg. We want

to apply Lemma 3.10 to !

i

(m) and the edge l

i

to show that !

i

(m) and

!

i�1

(m) are homotopy equivalent. The triangles l

i

[ fpg and l

i

[ fqg de�ne

a triangulation of m[ l

i

in which the simplices which overlap m are l

i

[fpg,

l

i

[ fqg and l

i

. Hence, every element of !

i

(m) lies on some of those three

simplices and, in particular, on some closed side of l

i

. Let S 2 !

i

(m). If S

lies on l

0

i

, by the previous argument, S lies on l

i

. Moreover, the subdivision

S

+

which is incident to S along l

+

i

is in !

i

(m): On one hand, S lies on m

and m is not one of the simplices on which S lies we remove when passing

to S

+

. On the other hand, if � is a simplex of B on which S lies with

relconv(�) � l

+

j

for some j > i, then, either relconv(l

i

) � relconv(�) and

S

+

lies on � [ fpg = l

i

[ fpg (and since relconv(l

i

[ fpg) � l

+

j

, S

+

lies on

l

+

j

) or S

+

lies on � and, therefore, on l

+

j

. We conclude that S

+

2 !

i

(m)

Now suppose S 2 !

i

(m) lies on l

�

i

. Then, S 2 !

i

(m) n !

i�1

(m) and S

does not lie on l

i

. By Lemma 4.2, S is incident to l

�

i

, and since m is not

one of the simplices on which S lies we remove when passing to S

0

, S

0

lies

on m. If S lies on a simplex � of B with relconv(�) � l

+

j

for some j > i,

then, either � is one of the triangles removed when passing to S

0

(in this

case relconv(l

i

) � l

+

j

, and since S

0

lies on l

i

, S

0

lies on l

+

j

) or S

0

lies on �

and, therefore, on j

+

. We conclude that S

0

2 !

i

(m)

Now we can apply Lemma 3.10 to conclude that !

i

(m) is homotopy

equivalent to !

i

(m)

+

l

i

= !

i�1

(m). By induction on i we are done. 2

For the next result we will introduce the following notation. For a vertex

v of a simplicial complex S, we denote the star, the link and the anti-star

of v in S by str

v

(S), lnk

v

(S) and astr

v

(S) respectively. The star and the

anti-star of v in S are subcomplexes whose union is the whole S and whose
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intersection is the link of v in S. In the following statement and in the sequel

S

p

denotes the unique subdivision which (according to Proposition 4.1) lies

on fpg.

Lemma 4.4 The subposets !

0

(m) and lnk

S

p

(Baues

m

(A)) coincide and con-

sist of exactly one element. In particular, they are contractible.

Proof: It is clear that S

p

is a maximal element of Baues(A), since the only

subdivision of A which is properly re�ned by S

p

is the trivial one (i.e. that

whose unique cell is A itself), which is not an element of Baues(A). There-

fore, S

p

is a maximal element of Baues

m

(A) too, so lnk

S

p

(Baues

m

(A))

consists of those elements of Baues

m

(A) which properly re�ne S

p

. Let

S 2 lnk

S

p

(Baues

m

(A)). Clearly, S

q

does not re�ne S

p

, thus S lies on m.

That is, Anm is a cell of S. On the other hand S re�nes S

p

, which implies

that S induces a subdivision of the deletion A n p, one of whose cells must

be Anm � An p. But Anm = (An p) n fqg, that is, the whole An p except

for the point q. In Proposition 4.1 we saw that there is only one subdivision

(let us call it S

p

q

) of A n p which lies on fqg (i.e. having (A n p) n fqg as

a cell). Hence, S

p

q

� S. The same argument as in Proposition 4.1 proves

that there is a unique way to extend S

p

q

to a subdivision of A, and thus,

S is determined. We conclude that lnk

S

p

(Baues

m

(A)) has at most one ele-

ment. Since the extension of S

p

q

considered lies on m and re�nes S

p

, it is in

lnk

S

p

(Baues

m

(A)), and thus, lnk

S

p

(Baues

m

(A)) has exactly one element.

Let us show that !

0

(m) � lnk

S

p

(Baues

m

(A)). Let S 2 !

0

(m). S lies on

m and m is empty. Hence, no vertex of B overlaps m. By Lemma 2.2, S

cannot lie on any vertex of B, that is, for any cell B � A of S, AnB has at

least two elements. Let B be a cell of S with p 2 B. Then � := B nB is an

edge or a triangle of B which by Lemma 2.2 overlaps m. Since S 2 !

0

(m),

S lies on l

+

for every empty edge l which crosses m (were we consider l

oriented so that p 2 l

+

), and hence so occurs for every edge which crosses

m, empty or not. This implies that if � is an edge, then � does not cross

m. Since � overlaps m and m is empty, � must contain m in its convex

hull. Thus p 2 conv(�). If � is a triangle, either it contains m in its convex

hull (and therefore p 2 conv(�)) or some edge l of � crosses m. No other

edge e of � can cross m, since S would lie on the wrong side of either l

or e, meaning the side which contains q. Therefore, some vertex of m is

in conv(�). Since S lies on the side of l which contains p, q 62 conv(�).

Hence, p 2 conv(�). So, no matter which the case is, p 2 conv(�), and since

p 2 B, we have that p 62 �. We conclude that there is a circuit Z of B

supported on � [ fpg with Z

+

= fpg. That is, there is a cocircuit Z of A

supported on (A n B) [ fpg such that Z

+

= fpg. Thus, B � Z

0

[ Z

+

and

A n fpg � Z

�

[ Z

0

. We conclude that B does not overlap A n fpg, that is,

every cell of S which overlaps A n fpg is contained in A n fpg, and hence, S

induces a subdivision of A n p. We conclude that S re�nes S

p

. Since S lies

on m, S 2 lnk

S

p

(Baues

m

(A)).
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It remains to show that !

0

(m) 6= ;, but this follows from the fact that it

is homotopy equivalent to Baues

m

(A), which is nonempty since it contains

lnk

S

p

(Baues

m

(A)). 2

Lemma 4.5 Baues

m

(A) is a deformation retract of Baues

m

(A).

Proof: Since lnk

S

p

(Baues

m

(A)) is a singleton and str

S

p

(Baues

m

(A)) is the

cone over lnk

S

p

(Baues

m

(A)) with apex in S

p

, str

S

p

(Baues

m

(A)) is home-

omorphic to an edge having lnk

S

p

(Baues

m

(A)) as a vertex. Therefore,

lnk

S

p

(Baues

m

(A)) is a deformation retract of str

S

p

(Baues

m

(A)). This re-

traction can be extended to Baues

m

(A) by de�ning it as the identity on

astr

S

p

(Baues

m

(A)).

The corresponding homotopy (which is relative to lnk

S

p

(Baues

m

(A)) can

be extended to [0; 1] � Baues

m

(A) (valuated in Baues

m

(A)) by de�ning it

as relative to astr

S

p

(Baues

m

(A)). We conclude that astr

S

p

(Baues

m

(A)) is a

deformation retract of Baues

m

(A).

Now we observe that

str

S

q

(astr

S

p

(Baues

m

(A))) = str

S

q

(Baues

m

(A)) (1)

since S

p

and S

q

do not re�ne each other, and hence, the stars of S

p

and S

q

intersect at most at their links. In particular,

lnk

S

q

(astr

S

p

(Baues

m

(A))) = lnk

S

q

(Baues

m

(A))

Joining these two facts, we conclude that lnk

S

q

(astr

S

p

(Baues

m

(A))) is a

deformation retract of str

S

q

(astr

S

p

(Baues

m

(A))). Repeating the argument

presented above, we conclude that astr

S

q

(astr

S

p

(Baues

m

(A))) is a deforma-

tion retract of astr

S

p

(Baues

m

(A)). But our observation (1) also implies that

astr

S

q

(astr

S

p

(Baues

m

(A))) = astr

S

q

(Baues

m

(A)) \ astr

S

p

(Baues

m

(A))

and, on the other hand, it is clear that

astr

S

q

(Baues

m

(A)) \ astr

S

p

(Baues

m

(A)) = Baues

m

(A)

thus Baues

m

(A) is a deformation retract of astr

S

p

(Baues

m

(A)), and hence,

of Baues

m

(A). 2

Theorem 4.6 Baues

m

(A) is contractible for each empty edge m of B.

Proof: By Lemma 4.5, Baues

m

(A) is a deformation retract of Baues

m

(A).

By Lemma 4.3, Baues

m

(A) and !

0

(m) are homotopy equivalent. By Lemma

4.4, !

0

(m) is contractible. 2



The Baues Conjecture in corank 3 23

The following is a result we will use later on. Before stating it, let us �x

some notation. Let l be an empty edge of B which crosses m and consider

it oriented so that p 2 l

+

. We de�ne Baues

m;l

+

(A) := fS 2 Baues

m

(A) :

S lies on l

+

g, and for each i 2 f0; : : : ; kg, !

i

(m; l

+

) := fS 2 !

i

(m) :

S lies on l

+

g. Observe that !

k

(m; l

+

) = Baues

m;l

+

(A). Also we de�ne

Baues

m;l

+

(A) := fS 2 Baues

m

(A) : S lies on l

+

g.

Lemma 4.7 Baues

m;l

+

(A) and Baues

m;l

+

(A) are contractible.

Proof: Let us show that Baues

m;l

+

(A) is contractible. Since l crosses m,

l = l

j

for some j 2 f1; : : : ; kg. Let i > j. We have shown in the proof

of Lemma 4.3 that !

i

(m) and l

i

satisfy the hypotheses of Lemma 3.10.

Since !

i

(m; l

+

) � !

i

(m), in order to prove that !

i

(m; l

+

) and l

i

satisfy the

hypotheses of Lemma 3.10, we only have to show that the following two

conditions are satis�ed for every S 2 !

i

(m; l

+

):

� If S is incident to l

�

i

, then the subdivision S

0

which is incident to S

along l

�

i

lies on l

+

.

� If S lies on l

i

, then the subdivision S

+

which is incident to S along l

+

i

lies on l

+

.

If a simplex � is contained in l

+

, then every face of � is contained in l

+

.

Therefore, if S is incident to l

�

i

and lies on l

+

, then S

0

lies on l

+

, which

proves the �rst item.

On the other hand, if an edge � is contained in l

+

, then, since p 2 l

+

,

� [ fpg is contained in l

+

, which proves the second item.

Therefore, by applying Lemma 3.10, we conclude that !

i

(m; l

+

) and

!

i�1

(m; l

+

) are homotopy equivalent. By composition of the homotopy

equivalences so obtained (where i ranges over fj + 1; : : : ; kg) we conclude

that Baues

m;l

+

(A) = !

k

(m; l

+

) is homotopy equivalent to !

j

(m; l

+

) = fS 2

!

j

(m) : S lies on l

+

j

g. It can be shown as in Lemma 4.3 that this poset

satisfy, with respect to l

j

, the conditions of Lemma 3.8, and hence, it is

homotopy equivalent to fS 2 !

j

(m) : S lies on l

+

j

g = !

j�1

(m), which, as

we already know, is contractible.

The proof for Baues

m;l

+

(A) is essentially the same. 2

4.3 Triangles

Throughout this subsection, � = fp; q; rg will denote an empty triangle of

B.

Let fe

1

; : : : ; e

h

g be the set of empty edges of B which cross fq; rg and

have p as a vertex, with e

i

<

r

e

j

, 8i < j, considering them all oriented so



24 Miguel Azaola

that r is in their positive sides. Set e

0

= fp; qg and e

h+1

= fp; rg. The

triangles of the form e

i

[ e

i+1

for 0 � i � h de�ne a simplicial complex

�. Consider fq; rg, e

h+1

and e

0

oriented so that p, q and r are in their

respective positive sides.

Note that fe

1

; : : : ; e

h

g could be empty (i.e. e

1

= fp; rg). If this is

the case, then either there is another vertex of � for which there are edges

overlapping � having it as a vertex, and in this case we make fe

1

; : : : ; e

h

g

nonempty by relabelling the vertices of � , or there is no edge of B overlapping

� and sharing a vertex with � . It is easy to check that in this latter case there

is no edge at all which overlaps � . This case we want to discuss separately.

Suppose that no edge of B overlaps � . We already know that exactly

one subdivision of A lies on each vertex of � . Let S lie on, say, fp; qg, and

suppose S lies on some other simplex � of B. The simplices fp; qg and � must

overlap, so � must contain fp; qg in its relative interior. On the other hand,

if some simplex � overlaps fp; qg, it overlaps every simplex which overlaps

fp; qg and, in particular, every simplex on which S lies. This means that

A n � intersects properly with every cell of S, and hence it is in S. Thus, S

lies precisely on those simplices of B which overlap fp; qg. In particular S is

unique. So, exactly one subdivision of A lies on each edge of � . The same

argument shows that exactly one subdivision of A lies on � . Hence, there is

a natural isomorphism between Baues

�

(A) and the barycentric subdivision

of � , which is contractible.

So, without loss of generality, we assume that fe

1

; : : : ; e

h

g 6= ;.

Lemma 4.8 Baues

�

(A) equals the set of subdivisions S 2 Baues(A) such

that S lies on some simplex of � and S lies on fq; rg

+

.

Proof: Let S lie on � . Recall that S lies on e

+

0

, e

+

0

and fq; rg

+

, and on

some closed side of e

i

for every 1 � i � h (since e

1

; : : : ; e

h

cross �). Let

j = maxfi : S lies on e

i

+
g and let k = minfi : S lies on e

i

�
g. By

triangulating � [ e

j

[ e

k

in such a way that e

j

[ e

k

is in the triangulation,

it is easy to show that j � k and that S lies on �, where � is the simplex

e

j

[ e

k

. If k = j, then � = e

j

= e

k

2 �. Clearly, if j < k, then k = j + 1 by

the de�nitions of j and k, and hence � 2 �.

Conversely, suppose S lies on some simplex of � and on fq; rg

+

. Let

� = e

j

[ e

j+1

, 1 � j � h� 1, such that S lies on �. We triangulate � [ � in

such a way that � is in the triangulation. Every simplex of such a triangu-

lation which is contained in fq; rg

+

is a face of � , and hence, S must lie on

� . 2

We de�ne f

�

: Baues

�

(A) �! � as the map which sends every subdi-

vision in Baues

�

(A) to the unique simplex of � on which it lies. This map

is order preserving when we consider � ordered by the reverse incidence
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relation. The proof is the same as the one we provided for the map F

T

in

Lemma 2.10.

We want to apply Quillen's Lemma to f

�

. We shall prove that the

�bers of f

�

: Baues

�

(A) �! Im(f

�

) are contractible, so f

�

is a homotopy

equivalence between Baues

�

(A) and Im(f

�

) (the image of f

�

). But

Im(f

�

) = � n fedges and vertices of � which do not belong to �g

which is obviously contractible. Therefore, the contractibility of the �bers

of f

�

: Baues

�

(A) �! Im(f

�

) is all we need to �nish the proof of Theorem

3.

Let � be a simplex in the image of f

�

. If � is a proper face of � , then

the �ber over � by f

�

is Baues

�

(A), which is contractible. If � is not a

proper face of � , then either � = e

i

for some i = 1; : : : ; h or � = e

i

[ e

i+1

for

some i = 0; : : : ; h. If � = e

i

, then the �ber over � by f

�

is Baues

e

i

;fq;rg

+

(A)

(considering fq; rg oriented so that p 2 fq; rg

+

), which is contractible by

Lemma 4.7. It remains to show that the �ber of a triangle � = e

i

[ e

i+1

is

contractible. Such a �bre is

fS 2 Baues

�

(A) : S lies on fq; rg

+

g

and the triangle � has the special property that no edge of B having p (which

is a vertex of �) as a vertex overlaps the edge of � opposite to p.

The following theorem is the goal of this subsection and all we need to

�nish the proof of our main result, Theorem 3.

Theorem 4.9 Baues

�

(A) is contractible for every empty triangle � of B.

Proof: We want to apply Quillen's Lemma to f

�

. The fact that f

�

is order

preserving can be shown in a similar way as for F

T

in Lemma 2.10. Let � be

a simplex in the image of f

�

. If � is a proper face of � , then the �ber of � by

f

�

is Baues

�

(A), and thus contractible. If � is not a proper face of � , then �

is either one of the edges e

i

for i 2 f1; : : : ; hg or one of the triangles e

i

[e

i+1

for i 2 f0; : : : ; hg. In the �rst case, the �ber of � is Baues

e

i

;fq;rg

+

(A), which

is contractible by Lemma 4.7. In the second, the �ber of � is

fS 2 Baues

�

(A) : S lies on fq; rg

+

g

which we claim is contractible. If we prove so, then, by Quillen's Lemma,

f

�

is a homotopy equivalence over its image. It is clear that the image of f

�

is

� n fedges and vertices of � which do not belong to �g

which is obviously contractible. Therefore, it su�ces to prove the claim.

Since the proof is rather technical, we prefer to state this assertion as the
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next lemma and work it out in a separate section. 2

Note that the triangle � involved in our claim above is an empty triangle,

has p as a vertex and satis�es that no edge of B having p as a vertex overlaps

�. Note also that fq; rg is an empty edge of B which overlaps � but does

not cross � n fpg (the edge of � opposite to p).

Lemma 4.10 Let � = fp; q; rg be an empty triangle of B such that that no

edge of B having p as a vertex overlaps � . Let l be an empty edge of B which

overlaps � but does not cross fq; rg, oriented so that p 2 l

+

. Then

Baues

� ;l

+

(A) := fS 2 Baues

�

(A) : S lies on l

+

g

is contractible.

5 Proof of Lemma 4.10

From now on � and l will be an empty triangle and an empty edge of B,

respectively, in the conditions of Lemma 4.10. Since l overlaps � , l crosses

some edge of � which cannot be fq; rg. Without loss of generality we assume

that l crosses fp; qg.

For a guide of this section see Figure 3, which is quite a sketch and does

not necessarily represent the actual geometric situation. The four arrows

represent lemmas 5.1, 5.2, 5.5 and 5.6 in that order.

A)(
,Baues
l+e

q

l

p

τ A)(
,Baues
l+

r

p

q

l

τ A)(
l+,Baues*

r

p

q

l

A( )τ A)(
l+,Baues* \ Baues{p,q}

r

p

q

l

ωk-1

ls

lklk-1
l1

rq

l

p

Figure 3: Visual guide of section 5: The arrows show the successive retrac-

tions. In each case, the shaded region together with the thick segments and

black dots represent schematically the subposet under consideration.
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First we proceed with some homotopy equivalences. We recall that the

notations str

v

(S), lnk

v

(S) and astr

v

(S) (for a vertex v of a simplicial com-

plex S) were introduced for Lemma 4.4. Let Baues

�

� ;l

+

(A) denote the set of

subdivisions in Baues

� ;l

+

(A) which do not lie on any vertex of � .

Lemma 5.1 Baues

� ;l

+

(A) and Baues

�

� ;l

+

(A) are homotopy equivalent.

Proof: First we want to show that lnk

S

p

(Baues

�

(A)) is a deformation retract

of str

S

p

(Baues

�

(A)).

Since S

p

is the only subdivision of A which has A n fpg as a cell, any

subdivision S which is re�ned by S

p

must have a cell which properly contains

A n fpg, and hence S must be the trivial subdivision of A, which is not an

element of Baues(A). Therefore, S

p

is a maximal element of Baues(A),

and hence, it is a maximal element of Baues

�

(A). Thus the link of S

p

in

Baues

�

(A) is the subposet induced by the elements of Baues

�

(A) which

properly re�ne S

p

. Any of such subdivisions induces a subdivision of the

deletion A n p, since A n p is a cell of S

p

. On the other hand, given a

subdivision S of An p, S can be extended to a subdivision of A in a unique

way, namely, by joining p to every facet of S which is \visible" from p.

Uniqueness follows straightforward from the fact that if S

0

extends S and

B is a cell of S

0

with p 2 B, then B n fpg � A n fpg, and hence, B n fpg is

a facet of some cell of S. Therefore, lnk

S

p

(Baues

�

(A)) is isomorphic to the

subposet of Baues(A n p) of those subdivisions of A n p one of whose cells

contains (A n p) n � = A n � = (A n p) n fq; rg. That is, lnk

S

p

(Baues

�

(A))

�

=

Baues

fq;rg

(A n p). But A n p is a corank 2 vector con�guration, and hence,

all its subdivisions are regular. Therefore, according to [3] , Baues(A n p)

is canonically isomorphic to the incidence poset of the chamber complex

of its Gale transform B=p, which has rank 2. Moreover, according to this

isomorphism, Baues

fq;rg

(A n p) is isomorphic to the subposet of those cells

of the chamber complex of B=p which are contained in conv(fq; rg), which

is homeomorphic to conv(fq; rg) itself, and hence, to a closed interval. We

conclude that lnk

S

p

(Baues

�

(A)) is homeomorphic to a closed interval. Thus,

lnk

S

p

(Baues

�

(A)) is a deformation retract of str

S

p

(Baues

�

(A)), which is a

cone over this interval.

Now observe that str

S

p

(Baues

� ;l

+

(A)) = str

S

p

(Baues

�

(A)); every subdi-

vision S 2 str

S

p

(Baues

�

(A)) lies on some closed side of l, and we want to

show that S does not lie on l

�

. If that was the case, there would be a simplex

� � l

�

such that S lies on �. Since S re�nes S

p

we would then have that

S

p

lies on some face of �a and, in particular, on l

�

. This is absurd since S

p

lies on fpg and hence on l

+

. Thus, str

S

p

(Baues

� ;l

+

(A)) = str

S

p

(Baues

�

(A))

and, in particular, lnk

S

p

(Baues

� ;l

+

(A)) = lnk

S

p

(Baues

�

(A)). Therefore,

lnk

S

p

(Baues

� ;l

+

(A)) is a deformation retract of str

S

p

(Baues

� ;l

+

(A)).

This deformation retraction can be naturally extended to a deformation
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retraction of Baues

� ;l

+

(A) onto astr

S

p

(Baues

� ;l

+

(A)). We conclude that

astr

S

p

(Baues

� ;l

+

(A)) is a deformation retract of Baues

� ;l

+

(A).

The subdivision S

q

is not in Baues

� ;l

+

(A) since q 2 l

�

. This could

be also the case of S

r

, but it could also happen that r is a vertex of l

(as in Figure 3). In this case l would be of the form fr; sg and now it

makes sense for a subdivision of A n r to lie on one side of s, which is

a covertex of B=r. With similar arguments as above, one concludes that

lnk

S

r

(Baues

� ;l

+

(A))

�

=

Baues

fp;sg

(A), and hence, that lnk

S

r

(Baues

� ;l

+

(A))

is a deformation retract of str

S

r

(Baues

� ;l

+

(A)).

Since S

p

and S

r

do not re�ne each other, their stars (in any subposet)

intersect at most at their links, and hence,

str

S

r

(astr

S

p

(Baues

� ;l

+

(A))) = str

S

r

(Baues

� ;l

+

(A))

and

astr

S

r

(astr

S

p

(Baues

� ;l

+

(A))) = astr

S

r

(Baues

� ;l

+

(A)) \ astr

S

p

(Baues

� ;l

+

(A))

Thus, the deformation retraction which maps str

S

r

(Baues

� ;l

+

(A)) onto

lnk

S

r

(Baues

� ;l

+

(A)) can be naturally extended to a deformation retraction

of astr

S

p

(Baues

� ;l

+

(A)) onto astr

S

p

(Baues

� ;l

+

(A)) \ astr

S

r

(Baues

� ;l

+

(A)).

It is clear that

astr

S

p

(Baues

� ;l

+

(A)) \ astr

S

r

(Baues

� ;l

+

(A)) = Baues

�

� ;l

+

(A)

and thus we are done. 2

Lemma 5.2 The posets Baues

�

� ;l

+

(A) and Baues

�

� ;l

+

(A)nBaues

fp;rg

(A) are

homotopy equivalent.

Proof: Let us consider fp; rg oriented so that q is in its positive side. It is

clear that every S 2 Baues

�

� ;l

+

(A) lies on fp; rg

+

. Let S 2 Baues

�

� ;l

+

(A)

lie on fp; rg

0

. Since S lies on � , S lies on some face � of � . Since S lies

on fp; rg

0

, S lies on some simplex � of B which is contained in fp; rg

0

.

Since � and � must overlap, � has to be either fpg, frg or fp; rg. But S

lies on none of the vertices of � , thus S lies on fp; rg. Since q 2 fp; rg

+

,

S

+

lies on � . Clearly, S

+

does not lie on any vertex of � . On the other

hand, S lies on some simplex � � l

+

. Since l overlaps � , some vertex t

of l is in fp; rg

+

. If � is an edge containing fp; rg in its convex hull, then

�[ftg � l

+

. Note that S

+

lies on �[ftg. If � is not an edge containing fp; rg

in its convex hull, then S

+

lies on �. Either way S

+

lies on l

+

, and hence,

S

+

2 Baues

�

� ;l

+

(A). By Lemma 3.8, Baues

�

� ;l

+

(A) is homotopy equivalent

to fS 2 Baues

�

� ;l

+

(A) : S lies on fp; rg

+

g = Baues

�

� ;l

+

(A) n Baues

fp;rg

(A),
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as we wanted to prove. 2

Now we need to introduce some more notation. 
(fp; rg) will denote

the set of empty edges which cross fp; rg, 


1

will be the set of empty edges

which cross both fp; rg and fp; qg, 


3

the set of empty edges which cross

both fp; rg and fq; rg, and 


2

:= 
(fp; rg) n (


1

[ 


3

). Thus, 


2

is the set

of empty edges which cross fp; rg and have q as a vertex.

We consider the order relation of \being closer to r" de�ned in 
(fp; rg)

and denoted by �

r

, analogous to the one introduced in section 4.2.

Lemma 5.3 There is a linear ordering <

r

in 
(fp; rg) that extends the

partial ordering �

r

and such that the edges in 


2

are greater than those in




1

, and the edges in 


3

are greater than those in 


2

(for the ordering <

r

).

Proof: Clearly, given two edges l

1

2 


1

and l

2

2 


2

, then either l

1

and l

2

are not comparable for the order relation �

r

or l

1

�

r

l

2

. The same situation

holds for edges l

2

2 


2

and l

3

2 


3

; either l

2

�

r

l

3

or they are not compa-

rable. We extend �

r

to an ordering relation in 
(fp; rg) which we denote

by <

r

by de�ning l

i

<

r

l

j

for every l

i

2 


i

, l

j

2 


j

with i < j. It is easy to

check that this is an ordering relation. Finally, the relation <

r

so obtained

can be extended to a linear ordering (which we still denote <

r

) in 
(fp; rg)

(possibly in several ways. We just choose one). 2

We �x a linear ordering <

r

in 
(fp; rg) that extends the partial ordering

�

r

and such that the edges in 


2

[ 


3

are greater than those in 


1

for the

ordering <

r

(provided by the previous lemma).

Let 


1

= fl

1

; : : : ; l

k�1

g and 


2

[ 


3

= fl

k

; : : : ; l

s

g with l

i

<

r

l

j

, 81 �

i < j � s. For every l

j

2 
(fp; rg) (that is, for every 1 � j � s), we de�ne

l

+

j

to be the side of l

j

on which p lies. For every i = k � 1; : : : ; s we de�ne

!

i

:= fS 2 Baues

�

� ;l

+

(A) n Baues

fp;rg

(A) : S lies on l

+

j

; 8 j > ig

Note that !

s

= Baues

�

� ;l

+

(A)nBaues

fp;rg

(A) contains all other !

i

's. Also

observe that every subdivision in !

s

lies on fq; rg

+

; this is easy to check by

taking a triangulation of � [ l which uses the triangle l [ p.

Lemma 5.4 Let i 2 fk; : : : ; sg. If S 2 !

i

n !

i�1

, then S either lies on l

i

or

is incident to l

�

i

.

Proof: Suppose S does not lie on l

i

. Since S 2 !

i

n!

i�1

, S does not lie on l

+

i

.

Therefore, by Lemma 3.3, S lies on l

�

i

. Since l

i

is empty and does not cross

fp; qg, either q 2 l

i

or l

i

crosses fq; rg. Thus, fl

i

[ frgg can be extended to

a triangulation T of � [ l

i

such that any triangle of T other than l

i

[ frg is

contained in l

+

i

. We know that there is a unique simplex � of T on which
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S lies. Since S lies on l

�

i

, � must be a face of l

i

[ frg. Moreover, � is either

l

i

[frg, l

i

, frg, fqg, or fq; rg (the last two, only if q 2 l

i

), since no other face

of l

i

[ frg overlaps a face of � . Since S lies on fq; rg

+

and we are assuming

that S does not lie on l

i

we have that � = l

i

[ frg.

Now let t 2 l

�

i

. If conv(�) � conv(l

i

[ ftg), by Lemmas 2.7 and 2.2, S

lies on some face of l

i

[ ftg which overlaps �. But l

i

[ ftg itself is the only

face of l

i

[ ftg which overlaps �, so S lies on l

i

[ ftg. On the other hand,

if conv(�) 6� conv(l

i

[ ftg), then some edge m of l

i

[ ftg is in 


2

[ 


3

with

l

i

<

r

m. Thus m = l

j

for some j > i and, since S 2 !

i

, S lies on l

+

j

= m

+

.

We extend fl

i

[ ftgg to a triangulation T of l

i

[ ft; rg. S lies on a simplex

� of T which must intersect m

+

and overlap a face of � . It is clear that the

only simplices which satisfy these conditions are l

i

, l

i

[ftg and fqg (the last

one, only if q 2 l

i

). Since S lies on fq; rg

+

and we are assuming that S does

not lie on l

i

, we have that S lies on l

i

[ ftg. 2

Lemma 5.5 The subposets !

i

and !

k�1

are homotopy equivalent for every

i > k � 1 (that is, for every i such that l

i

2 


2

[ 


3

).

Proof: For each i � k, we want to apply Lemma 3.10 to !

i

to show it is

homotopy equivalent to !

i�1

. The proof will �nish with the composition of

the resulting homotopy equivalences.

Let i � k. By Lemma 3.3, since !

i

� Baues

�

(A) and l

i

overlaps � ,

every element of !

i

lies on some closed side of l

i

. If S 2 !

i

lies on l

�

i

,

then S 2 !

i

n !

i�1

. By Lemma 5.4, S is incident to l

�

i

. None of � fp; qg

and fq; rg are simplices we remove when passing from S to S

0

, so S

0

2

Baues

�

�

(A) nBaues

fp;rg

(A). Let j > i and let � be a simplex in which S lies

with relconv(�) � l

+

j

. If � is a triangle of the form m [ ftg with t 2 l

�

i

and

l

i

� conv(m), then l

i

� l

+

j

. Since both l

i

and l

j

are empty and cross � , some

vertex of l

i

is in l

+

j

. Therefore, relconv(l

i

) � l

+

j

and, since S

0

lies on l

i

, S

0

lies on l

+

j

. If � is not of the form m [ ftg with t 2 l

�

i

and l

i

� conv(m),

then � is not one of the simplices we remove when passing from S to S

0

,

and hence, S

0

lies on �. Either way, S

0

lies on l

+

j

(for every j > i). On the

other hand, S lies on a simplex which is contained in l

+

, every face of such

a simplex is also contained in l

+

, so S

0

lies on l

+

. Hence, S

0

2 !

i

.

If S 2 !

i

lies on l

0

i

, we take a simplex � � l

0

i

in which S lies, which must

overlap a face of � . Since S 2 Baues

�

�

(A), such a face must be either � or

one of its edges. Therefore, � must be an edge containing l

i

in its convex

hull, and hence S lies on l

i

too. None of � , fp; qg and fq; rg are simplices

we remove when passing from S to S

+

. Hence, since S is an element of

Baues

�

�

(A) n Baues

fp;rg

(A), so does S

+

. Let j > i and let � be a simplex

in which S lies with relconv(�) � l

+

j

. If � is an edge of B containing l

i

in

its convex hull, then S

+

lies on � [ fpg and relconv(� [ fpg) � l

+

j

. If � is
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not an edge of B containing l

i

in its convex hull, then S

+

lies on �. Either

way, S

+

lies on l

+

j

(for every j > i). On the other hand, if S lies on an edge

contained in l

+

, then such an edge together with p is a triangle contained

in l

+

, so S

+

lies on l

+

. Thus, S

+

2 !

i

.

We have shown so far that l

i

and !

i

satisfy the hypotheses of Lemma

3.10, thus !

i

is homotopy equivalent to Q := fS 2 !

i

: S lies on l

+

i

g. But

it follows straightforward from the de�nitions that Q = !

i�1

. 2

Lemma 5.6 Let e denote the edge fp; qg of � . Then, the subposet !

k�1

is

homotopy equivalent to Baues

e;l

+

(A) (and thus, contractible).

Proof: We want to apply Lemma 3.9 to the poset !

k�1

and the edge e (which

we consider oriented so that r 2 e

+

). Clearly, every element of !

k�1

lies on

e

+

. In particular, condition 1 of Lemma 3.9 is satis�ed.

For condition 2, let S 2 !

k�1

lie on e

+

. Since S 2 Baues

�

�

(A) n

Baues

fp;rg

(A), S lies either on � , on fq; rg or on fp; qg = e. Since, moreover,

S lies on l

+

, S lies on fq; rg

+

. We are assuming that S lies on e

+

, thus S lies

on � . Now let t 2 e

+

. Since � is empty, either � � conv(fp; q; tg) or some

edge of fp; q; tg = e[ftg crosses an edge of � which must be either fp; rg or

fq; rg. If � � conv(fp; q; tg), then fp; q; tg de�nes a triangulation of � [ ftg

and S must lie on one of its simplices. Such a simplex must overlap � , and

hence it must be fp; q; tg itself. Thus, S lies on fp; q; tg. On the other hand,

if some edge of fp; q; tg crosses an edge of � (since no edge of B having p

as a vertex crosses fq; rg) such an edge of � must be fp; rg, and hence, the

edge of fp; q; tg which crosses fp; rg must be fq; tg. But this implies that

fq; tg 2 


2

, so S lies on fq; tg

+

. By extending ffp; q; tgg to a triangulation

T of � [ftg and then extending T to a triangulation of B, we conclude that

S lies on a face � of fp; q; tg. Since � must overlap � , � must be either fq; tg

or fp; q; tg. Since S lies on fq; tg

+

, � = fp; q; tg. Therefore, S is incident to

e

+

.

Now, since S

0

lies on e, in order to show that S

0

is an element of !

k�1

,

it remains to show it lies on l

+

and on l

+

j

, for each j � k. Let j � k and let

� be a simplex in which S lies with relconv(�) � l

+

j

. In particular, � � l

+

j

.

If S

0

lies on �, then S

0

lies on l

+

j

. If S

0

does not lie on �, then S

0

lies on a

face of � which must be an edge � containing e in its relative interior. Since

p 2 l

+

j

, some point of relconv(�) is in l

+

j

, thus relconv(�) � l

+

j

and S

0

lies on

l

+

j

. On the other hand, S lies on some simplex contained in l

+

, and every

face of such a simplex is contained in l

+

as well, so S

0

lies on l

+

.

We can apply Lemma 3.9 to conclude that !

k�1

is homotopy equivalent

to (!

k�1

)

�

e

:= fS 2 !

k�1

: S lies on e

�

g = fS 2 !

k�1

: S lies on e

0

g =

fS 2 !

k�1

: S lies on eg. Since e � l

+

j

for each j > k � 1, every subdi-

vision S of A which lies on e, lies on l

+

j

, for every j > k � 1. Therefore,
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fS 2 !

k�1

: S lies on eg = Baues

e;l

+

(A). 2
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