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Abstract
We study a constructive method to �nd an algebraic curve in the real pro-jective plane with a (possibly singular) topological type given in advance. Ourmethod works if the topological model T to be realized has only double sin-gularities. In that case, it gives an algebraic curve of degree 2N + 2K, whereN and K are the numbers of double points and connected components of T .This bound is generically optimal and the topological models T for which thedegree is optimal have a combinatorial characterization.The construction is based on a preliminar topological manipulation of thetopological model followed by some perturbation techniques to obtain the poly-nomial de�ning the algebraic curve. This paper considers only the case in whichT is orientable. The non-orientable case will appear in a separate paper.

1991 Mathematics Subject Classi�cation: 14P25, 14Q05

1 Introduction
In a previous paper by the author [Santos1] it is shown that any real algebraicplane nodal curve with N singular (double) points and K connected componentsin the projective plane is isotopic to a real algebraic plane curve of degree at most4N + 2K. Also, the conjecture is raised that the degree bound can be lowered to2N + 2K.In this paper we settle down the conjecture in the a�rmative, for orientablecurves. Moreover, we give a topological-combinatorial characterization of curves forwhich the degree bound is optimal. The conjecture also holds in the non-orientablecase [Santos2]. The proof of the non-orientable case is more intrincate and will bedetailed in a forthcoming paper [Santos3].

Let us �x some concepts and notation. Throughout this paper we will use theterm algebraic curve as an abbreviation for real projective algebraic plane curve.By this we mean a non-zero real homogeneous polynomial f 2 IR[X;Y; Z] in threevariables. Sometimes, by abuse of language, we will call algebraic curve the zero set
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2 Construction of algebaraic curves with given topology, I
V (f) � IRIP2 of the polynomial f . We will normally assume that we have an a�nechart given for the projective plane. This allows us to speak of the line at in�nityand to say, for example that a certain conic is an ellipse, or a circle.An algebraic curve f is called orientable if its zero set V (f) has an open neigh-borhood which is orientable; equivalently, if it can be moved by an isotopy to thea�ne chart in the projective plane. An algebraic curve f is called nodal if all itssingularities are order 2 singular points with two di�erent tangents, real or complex.If the tangents are real the singular point is called a node. If they are complex, wewill call it a simple double isolated point.

Two algebraic curves (in general, two subsets V andW of IRIP2) are said to havethe same topological type if there exists a global homeomorphism of the plane intoitself sending V toW , that is, if the pairs (IRIP2; V ) and (IRIP2;W ) are topologicallyequivalent. Note that this condition is equivalent to V and being isotopic toW , andstronger than V and W being homeomorphic. Our main result in this paper is thefollowing, which is a re-writting of Theorem 4.3:
Theorem 1.1 Let f be an orientable nodal algebraic curve with K connected com-ponents and N nodes. Then, f is topologically equivalent to a certain nodal algebraiccurve f" of degree 2N + 2K. Moreover, one can �nd such an f" as being a smallperturbation of the form f" := f + "g, where f is a product of N +K ellipses andg is the product of 2N + 2K lines.

Of course, for most curves the degree bound in our theorem can be signi�cantlylowered. For example, the classical optimal bounds by Bezout and Harnack indicatethat for every N and K there are algebraic curves with N double points and K con-nected components with degree, essentially, p2N + 2K. However, we can say thatour bound is generically optimal in the following sense: for every N and every K,there are orientable, nodal algebraic curves with N double points and K connectedcomponents which have not the topological type of any algebraic curve of degreelower than 2N +2K. This is shown in Section 5. Moreover, in that section, we givea topological characterization of algebraic curves for which the degree in our maintheorem cannot be lowered (see Theorem 5.2 and its Corollary 5.3 for the precisecharacterization)
The structure of the paper is as follows. In Section 2 we introuce the notion ofa topological model for an algebraic curve and the basic notions and results neededin our topological construction. Section 3 shows the main construction of a compli-cated topological model from simple pieces, in which our construction of algebraiccurves is based. The algebraic part of the construction consists in a perturbationtechnique, which is shown in Section 4. Finally, Section 5 shows under which con-ditions our construction produces optimal degree.

2 Topological preliminaries.
We want to �nd an algebraic curve whose zero set has the same topological type ofa certain algebraic curve given in advance. Equivalently, we could say that we aregiven a certain subset T � IRIP2 in the projective plane and want to �nd an algebraiccurve f such that V (f) has the same topological type as T . The conditions that
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such a T must satisfy for this to be possible are contained in the following de�nition(cf. for exampe [Boch-Cos-Roy]).
De�nicition 2.1 Let T be a subset of IRIP2. We say that T is a topological modelfor an algebraic curve if it is homeomorphic to a graph with an even (possibly zero)number of edges incident to each vertex. We say that an algebraic curve f realizesa topological model T if its zero set V (f) � IRIP2 has the same topological type asT . By a nodal (topological) model we mean a topological model such that all ofthe vertices of the underlying graph GT have degrees 0, 2 or 4. We say that atopological model is orientable if it can be isotopically moved to a position whereit does not intersect the line at in�nity (equivalently, if it has an orientable openneighborhood).

Let T be a nodal, orientable topological model in IRIP2. The points where Tis locally homeomorphic to a line will be called regular. The rest of the pointsare the vertices of degrees 0 and 4 of the underlying graph GT and will be called,respectively, isolated points and double points (or vertices) of T . A double point Pwill be called disconnecting if T n P has one connected component more than T .
Our basic topological operation on a topological model T will be the desingular-ization of some of its vertices. Let P a vertex (double point) of T . The desingualar-ization of T at P consists in considering a suitable small open neighborhood U of Pand substituting T \U for two disjoint open curves in such a way that we get a newmodel with one vertex less. This operation was called a `ip' in [G.Corb.-Recio]and [G.Corb.-Santos]. There are exactly two ways, up to topological equivalence,of desingularizing a double point. These are shown in Figure 1. If the double pointwas disconnecting, one of the two desingularizations leaves the number of connectedcomponents unchanged and the other one increases it by one.Whenever we perform a desingularization of a curve, we will mark the placewhere it has been done with a bonding line which joins the two branches which wehave inserted. In all our �gures, bonding lines will appear in greyish, dotted lines.The reason for including bonding lines is that topological models are consideredmodulo topological equivalence. Thus, we are allowed to transform them by glob-al homeomorphisms. The transformed bonding lines will tell us what topologicalchange is needed to recover the original topological type from the desingularizedone.

Figure 1: Desingularization of a double point P .
We call faces of T the connected components of IRIP2 n T . Clearly T has aunique non-orientable face F0. We will call depth of an arbitrary face F of T theminimal number of crossings with T needed to go from F0 to F (a crossing at adouble point of T counts twice). It is a well-known property that the parity of theintersection number with T of a path joining F to F0 does not depend on the path
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4 Construction of algebaraic curves with given topology, I
(this is not true in general for non-orientable models). Thus, adjacent faces havedepths which di�er by 1. Figure 2 shows the depth diagram of a certain topologicalmodel.

Figure 2: Depth of faces.
Let P be a vertex of T . Since the four faces around P have consecutive depths,we have two possibilities for the distribution of depths around P (see Figure 3):

Figure 3: Possible depth distributions around a vertex
� we will say that P is a vertex of Type I if the depths of faces around P are r,r + 1, r and r + 1, for some r � 0
� we will say that P is a vertex of Type II if the depths of faces around P arer, r + 1, r + 2 and r + 1, for some r � 0.
We will say that a desingularization of T at some of its vertices is depth-consistentif the two faces which are joined by the desingularization of each vertex have thesame depth. Figure 4 shows a depth-consistent desingularization of the curve ap-pearing in Figure 2.

Figure 4: A depth-consistent desingularization of the curve in Figure 2.
Depth-consistency can be equivalently stated saying that each face of the desin-gularized model T 0 has the same depth as all the faces of T from which it has beenobtained. Note that the di�erent faces of the original model T which form a faceof T 0 are still `separated' by the bonding lines. If the desingularization is depth-consistent, then there is no ambiguity in considering the bonding lines or not forcomputing the depth of a face of T 0. Both desingularizations of a vertex of type IIare depth consistent, but only one for vertices of type I.
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3 Main Construction
Figure 4 suggests the fact that for any topological model T , a non-singular modelT 0 obtained from T by a depth-consistent dsingularization can be drawn as a unionof disjoint ellipses with bonding lines being straight line segments. This propertywill be the basis for our algebraic construction. However, we will perform a partialdesingularization of T . That is, some vertices of T will not be desingularized. Inthe following results T is supposed to be connected. Only in Theorem 3.5 we willdeal with non-connected models.
Proposition 3.1 Let T be a connected, nodal, orientable topological model in IRIP2.Then, there is a connected, nodal, orientable topological model T 0 obtained as adesingularization of T in some of its vertices, and with the following properties (seeFigure 5):
(i) The desingularization is depth-consistent.
(ii) Every vertex of T 0 disconnects T 0 and is of type II.
(iii) Let b be a bonding line of T 0. Let r be the depth of the face in which b is.Then, at least one of the two faces adjacent to the extremal points of b hasdepth r � 1.

Figure 5: Desingularization of the model in Figure 2 which satis�es the conditionsin Proposition 3.1.
Proof: Let P be a vertex of type I. Let f0 and f2 be the two faces of maximaldepth r + 1 around P and let f1 and f3 be the faces of depth r. We claim thatthe desingularization at P that joins f0 to f2 does not disconnect T . Indeed, ifthe desingularization disconnects T , then for going from one of f1 or f3 to theunbounded face it will be necessary to cross the new face obtained joining f0 andf2. This contradicts the fact that this face has a higher depth. The claim will stillbe true if we desingularize all vertices of type I in the way that joins faces of themaximal depth. Moreover, this way of desingularizing ensures condition (iii) forthe bonding lines obtained.After desingularizing all vertices of type I, we proceed to desingularize non-disconnecting vertices of type II one by one, until all the remaining vertices aredisconnecting vertices. Condition (iii) is automatically satis�ed for the uniquedepth-consistent desingularization of a vertex of type II. 2
Proposition 3.2 Let T be a connected, nodal, oriented topological model in IRIP2.Then, a partial desingularization T 0 of T satisfying the conditions of Proposition 3.1can be transformed by a global homeomorphism of IRIP2 into the following form:



6 Construction of algebaraic curves with given topology, I
� T 0 is the union of a certain number of ellipses.
� if two of the ellipses intersect at a point P , then they do it tangentially andone is inside the other.
� the bonding lines are straight line segments.
Moreover, the points of the unique outermost ellipse in T 0 which are intersectionswith other ellipses or extremes of bonding lines can be prescribed from the beginning(maintaining their circular order).

Proof: The proof will use induction on the maximal depth of faces in T 0. If themaximal depth is 1 then T 0 has no vertices and consists on a unique oval with somebonding lines. Bonding lines must lie inside the oval, because of condition (iii) inProposition 3.1. Thus, T 0 can be transformed into an ellipse with the bonding linesbeing straight line segments.If the maximal depth of a face in T 0 is r > 1, we still have very particularproperties for T 0: for a certain vertex P of T 0, the depth-consistent desingularizationof T 0 at P is precisely the one that disconnects T 0. Moreover, one of the connectedcomponents resulting is inside the other one, because P is a vertex of type II. Letus call the inner one the ear at vertex P .Then, T 0 consists of an outer oval with some of these `ears' attached to it in itsinner side. Each ear itself is a topological model in the conditions of Proposition3.1, but with maximal depth strictly less than r. Moreover, di�erent ears are notconnected to each other by bonding lines, because of condition (iii) in Proposition3.1. However, an ear may have bonding lines connecting it to the outer oval, orthere might be bonding lines connecting the outer oval to itself, through its innerface. Let us do the following:First of all, draw the outer oval as an ellipse and prescribe along it the extremalpoints for bonding lines and the points where ears are to be attached, in a way thattheir circular order is preserved. Secondly, realize inner bonding lines of the outeroval as line segments joining the prescribed points. Then insert a small tangentellipse at each point where an ear has to be attached (small enough for not inter-secting other ears or bonding lines. Then, draw tha bonding lines joining the ears tothe prescribed points in the outer ellipse. This can be done in a unique way modulotopological equivalence. Finally, prescribe in each inner ellipse the points whereinner ears and bonding lines are to be attached, and draw them using inductivehypothesis.The fact that the resulting topological model and bonding lines is topologicallyequivalent to T 0 follows automatically from the fact that each step in the `drawing'process of T 0 is unique, modulo topological equivalence. 2
Corollary 3.3 Let T be a connected, nodal, orientable topological model with Nvertices (N > 0). Then, there is a connected, nodal, orientable topological model Tfrom which T can be obtained by desingularization of some vertices, in the followingconditions:

� T is a union of ellipses, one of which has the others inside.
� any two ellipses of T which intersect, do it tangentially.
� T has N + 1 ellipses and at most 2N vertices (tangencies between ellipses)
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Figure 6: The topological model T of Corollary 3.3.
� The singular points of T are in general position (no three of them on the sameline).

Proof: Consider the topological model T 0 obtained from T in Proposition 3.1, em-bedded in the form described in Propoition 3.2. T 0 has one ellipse more than it hasdouble points. In other words, T has N1 + 1 ellipses and N2 bonding lines, withN1 + N2 = N . Substitute each bonding line of T 0 by a su�ciently narrow ellipsejoining the two ends of the bonding line, and tangent to the ellipses at the ends andlet T the topological model so obtained (see Figure 6).Clearly, the topological model T can be recovered (modulo topological equiva-lence) by desingularizing one of the two tangency points of these new ellipses. Thisis exhibited in Figure 7 which shows the full sequence of topological manipulationsdone at a vertex.

Figure 7: Topological changes at a vertex.
General position of the tangency points can be obtained thanks the freedom wehave in Proposition 3.2 for choosing the extremal points of bonding lines and thetangency points of ellipses. 2

Remark 3.4 Suppose that the original topological model T has a non-disconnectingvertex. We claim that, in these conditions, the numbers of ellipses and vertices ofT in Corollary 3.3 can be decreased by one.Indeed, if T has a non-disconnecting vertex, then the desingularized model T 0 hasat least one bonding line connecting two nested ellipses. In this case, the insertionof the inner ellipse (the `ear') in the proof of Proposition 3.2 can save one bondingline with the following trick: instead of inserting the ear as a small ellipse, insertit as an ellipse (as narrow as needed) joining the contact point of the ear to theextremal point of the bonding line. Then, add the other bonding lines if any (seeFigure 8). The resulting model is not in the conditions of Proposition 3.1, but itstill serves for the construction in Corollary 3.3.
Let us �nally apply our last result to the non-connected case.



8 Construction of algebaraic curves with given topology, I

Figure 8: Saving one bonding line with a non-disconnenting vertex.
Theorem 3.5 Let T be a nodal, orientable topological model with N1 double pointsand N2 isolated points. Then, there is a nodal, orientable topological model T fromwhich T can be obtained by desingularization of some vertices, in the followingconditions:

� T is a union of N1 +K ellipses and N2 isolated points.
� any two ellipses of T which intersect, do it tangentially. There are at most2N1 such tangency points.
� The singular (i.e., double or isolated) points of T are in general position (nothree of them on the same line).

Proof: Follows from Corollary 3.3. Let T1; . . . ; TK be the connected componentsof T . Starting with the outermost ones, apply the Corollary to the connectedcomponents which have double points and realize the others by ellipses or isolatedpoints. Place a copy of the resulting models Ti in the appropriate part of IRIP2
(reducing them as needed) in order to get T in the required conditions. 2
4 Perturbation of algebraic curves.
In order to obtain our main theorem 4.3 from Theorem 3.5, we only need to considerthe topological model T obtained there as being an algebraic curve of degree 2N +2K and algebraically perturb it in order to desingularize some singular points. Oneway to do this could be enlarge some of the ellipses in small amounts so that everytangency point becomes two transversal crossings (nodes). Then we could use theclassical Brussotti's Theorem (cf. [Gudkov, p. 12]. This result says that a singularcurve having only nodal points can be perturbed to a curve of the same degreewhere some of the singular points are desingularized in an arbitrary, prescribed,way.Nevertheless, we will show an explicit way to perturb the curve T of Theorem3.5 in the desired way, which makes our results more algorithmic. Let us �rstof all formalize the concept of a perturbation of an algebraic curve. Perturbationtechniques are quite standard in the study of the topology of real algebraic curves(see [Gudkov, Viro]).

Let f0 be an algebraic curve with �nitely many singularities. Let (f")" 2 IRbe a family of algebraic curves de�ned by polynomials f" of the same degree asf0 and whose coe�cients vary continuously with ". Then, for " su�ciently closeto zero, the zero-sets V (f") are contained in an arbtrarily small neighborhood of
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V (f0) and their topology coincides with the topology of V (f0) except, maybe, atsmall neighborhoods of the singular points of f0. Moreover, the possible changesof topology at the singular points can be predicted, if the singularities of f0 aresu�ciently simple. Our perturbations will be explicitly given in the form f" = f+"g,where g is a polynomial of the same degree as f and with a �nite number of commonzeroes with f .The change in the topology of a curve in a neighborhood of a singular point willbe called a dissipation. In our perturbations, the singular points appearing will bedouble points with two di�erent analytic branches. If the two branches are complexthe point appears as an isolated point in V (f). If the two branches are real thetopology of the curve in a neighborhood of the singular point is that of a topologicaldouble point, and we call it a node. These two types of singularities are classi�edas A+k and A�k (with an odd k) in [Viro, p. 1098 �.] and are di�eomorphic to theones in Y 2+Xk+1 and Y 2�Xk+1, respectively (see also [Arn-Var-GusZ]). Finally,we will assume that a point P which is singular for f is either non-singular or nodalfor g.
Lemma 4.1 Let f 2 IR[X;Y; Z] be a homogeneous polynomial of a certain degree d,only having singularities in the A+k or A�k series. Let f" = f + "g be a perturbationof f by a certain homogeneous plynomial g 2 IR[X;Y; Z] of the same degree d.Suppose that for every singular point P of f , either g is non-singular at P or P isnodal for g. Then, the only possible dissipations of f are those appearing in Figure9.

Figure 9: Dissipations of an A+k or A�k singularity.
Proof: For the case of the A�1 and the A+1 we are not saying anything new; the twopossibilities shown are the only dissipations possible (except, of course, leaving thesingular point unchanged). For the case of the A+k and A�k some other things couldhappen but we can say the following things:

� no `new ovals' can appear near a singular point P by a perturbation of thetype f + "g, except in the A+k case. In this case only one such oval canappear and, if it appears, then the perturbed curve consists on only that oval(in a neighborhood of P ): this claim follows from the fact that in a certainsmall neighborhood of a singular point P of f , the curves f"1 and f"2 have nocommon zeroes (except maybe the point P itself), for di�erent values "1 6= "2
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of the parameter. This, together with the fact that any new oval shouldcollapse to P , prevents new ovals from appearing except if that oval containsP and decreases its radius to zero as " goes to zero. In this case no other partsof the perturbed curve can appear in the dissipation, because they should alsoisotopically move towards P as " goes to zero.

� in a small neighborhood U of a singular point P of f , the perturbed curvehas no singular point except, maybe, P itself: indeed, in U \ fg = 0g n fPgthere are no singular points because f 6= 0. In U \fg 6= 0g, a singular point off + "g is the same thing as a critical point of the function �f=g, with criticalvalue ". Sard's Lemma tells us that the set of such critical values is discrete.
� a singular point P of f is a singular point of the perturbed curve if and onlyif it is a singular point of g; in this case, P is a nodal point of f": this follows,for example, from a development of f and g as Taylor polynomials around P ,in a suitable a�ne chart.
The above three properties only permit the �ve dissipations shown in Figure 9,for the A+k and A�k cases. However, the last one is easily ruled out by countingintersection numbers with a suitable vertical line (the intersection numbers cannotincrease by a small perturbation). All the others are possible. 2
We can specify a bit more what dissipation will be produced in the followingcases, which will be the only cases needed in our construction:For the A+1 and A�1 cases the singular point P (and the topology in a neighbor-hood of P ) will change in a perturbation if and only if P is not a singular point ofg. If this is the case, only one of the two possible dissipations is compatible withthe signs of f and "g in a neighborhood of P (in particular, a change in the sign of" changes the dissipation obtained).For the A�k case, if g has a nodal singularity at P , than f + "g has a nodalsingularity at P and we can say that:- if one of the tangents to g coincides with the unique tangent to f , then thedissipation is the third one in the right column of Figure 9.- if none of the two tangents to g coincide with the tangent to f , then the thirdand forth dissipations are obtained, depending on the signs of f and "g.

Theorem 4.2 Let C0 2 IRIP2 be an algebraic curve de�ned by a homogeneouspolynomial f of degree d. Suppose that all the singularities of f are a certain numberof A+k or A�k points P1; . . . ; Pk and of A�k points Q1; . . . ; Ql. Suppose that we wantto perturb f preserving all the Pi, converting a number l1 of the Qi in nodes (with nochange in the topology), and desingularizing the other l2 = l� l1 Qi in a prescribedway.Suppose �nally that the singular points of f are in general position, i.e. no threeof them on the same line, and that we have l1+k+l=2 � d. Then, these dissipationscan be simultaneously obtained in the form f" = f + "g, where g is a product of ddi�erent lines.
Demostraci�on: Assume " > 0. According to what we said above, the followingconditions on g are su�cient to guarantee the desired perturbation:
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� For the k A1 points to be preserved, that g has a singular (nodal) point ateach of them.
� For the l2 tangency points to be desingularized, that g does not vanish atthem, and has the appropriate sign.
� For the l1 tangency points to be converted in nodes, that g has a singular(nodal) point at each of them, and the appropiate distribution of signs in aneighborhood of them.
Let r1; . . . ; rk+l1 be straight lines, each passing through two of the singular pointsto be preserved and such that each of the points lies in two of them. Then, theproduct g1 of those k+ l1 straight lines has a nodal singular point at each of them,because of the general position assumption on the points.Let s1; . . . ; sd�k�l1 be lines, each passing through two of the points Qi, notpassing through the points Pi and so that each of the Qi lies in exactly one of them.These lines exist, because of the condition l=2 � d� k � l1. Then, the lines can beslightly moved (as shown in Figure 10) in such a way that the product g2 of themhas a prescribed sign at each point Qi.

Figure 10: Obtention of the adequate sign at a point by moving si.
So, make the signs of g2 at the points Qi be the ones that we need in orderto obtain g = g1g2 with the appropriate signs, and take " su�ciently small andpositive. 2This, together with Theorem 3.5, gives our main theorem:

Theorem 4.3 Let T be an orientable, nodal topological model with N double pointsand K connected components. Then, T can be algebraically realized by a curvef" := f + "g of degree 2N + 2K, with f being a product of N + K ellipses ordegenerate conics and g being a product of 2N + 2K lines.
Proof:Let f be the product of the ellipses obtained in the model T of Theorem 3.5,and a factor of the form (cX � aZ)2 + (bX � aY )2 + (cY � bZ)2 for each isolatedpoint (a; b; c) 2 IRIP2 of T . Each connected component Ti of T contributes Ni + 1ellipses or degenerate conics to f , where Ni is the number of double points in Ti.Thus, f is as in the statement.Now, l1 + k = N and l = l1 + l2 � 2N . Thus, l1 + k + l=2 � 2N < d. Then,Theorem 4.2 proves the assertion. 2
5 Optimality of the construction
The degree produced by our construction is generically optimal, for any givenK andN . Indeed, let K and N be given positive integers. Consider a topological model
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generalizing the one in Figure 11, for N = 3. Insert inside itK�1 additional ellipsesinside the innermost face, one inside another. This produces a nodal, orientabletopological model with N vertices and K connected components. By our Theorem4.3, this model can be realized with a nodal algebraic curve of degree 2N + 2K. Inthe other hand, it cannot be realized by any algebraic curve of degree lower thanthat because, in any realization of the model, any straight line passing throughthe innermost face intersects the curve (at least) 2N + 2K times, counted withmultiplicity.

Figure 11: A simple model, not realizable with degree lower than 8.
Nevertheless, for most topological models our construction does not yield anoptimal degree. Let us remark that a construction producing the optimal degreefor any given model will provide a constructive answer to Hilbert's XVI problemfor nodal curves, while a general answer for the simpler case of non-singular curvesis only known up to degree 7 [Gudkov, Viro, Wilson]. Thus, there is no hope inobtaining such an optimal construction. The purpose of this section is to showin what cases our construction is really optimal. This will give us the somehowsurprising result that the only obstructions to lowering the degree in the constructionare those which are obvious (as the one in the example above).As a �rst result, in remark 3.4 we mentioned that if the topological model Thas a non-disconnecting vertex, then the degree of the construction can be lowered,at least, by two. Thus, we only need to consider the case of topological modelswith only disconnecting vertices. This condition is necessary but not su�cient: forexample, the seven topological models in Figure 12 can easily be constructed withdegree 4.

Figure 12: Some models which can be realized with degree 4.
Let T be a nodal, orientable topological model, all of whose double points discon-nect it. Let N be the number of double points of T and K the number of connectedcomponents. If we desingularize every vertex of T in the way that disconnects T we
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get a non-singular topological model T0 with N +K connected components. Thetopological structure of T0 can be represented in a rooted tree, with a node for eachconnected component of T0 and an extra node (the root of the tree) `at in�nity'.A component C1 is a son of a second component C2 in the tree if and only if C1 isinmediately inside C2. The sons of the root node are the outermost components.This tree structure of T0 easily suggests a di�erent construction procedure foran algebraic realization ofthe topological model T , which produces the same degree2N + 2K: starting with the outermost components, realize each of them indepen-dently, either with an ellipse or with a degenerate conic. Then, attach one by one theother components in the place indicated by their bonding line if they are connectedto an exterior one, or in the appropriate face if they are not. After all componentshave been inserted, perturb the curve so obtained, using Theorem 4.2, in order toobtain a nodal algebraic curve.The interesting point is that now a necessary condition for the model not beingrealizable with degree lower than 2N+2K is that the tree of connected componentsof T0 has at most two leaves (innermost connected components): if this is the case,then, for any algebraic realization of T0 any line intersecting the two innermostcomponents will cut every connected component of T0 at least twice (counted withmultiplicities). If T was realizable with degree lower than 2N + 2K, then T0 wouldalso be, by means of a small perturbation (via, e.g., Brussotti's Theorem). Thus, Titself cannot be realized with degree lower than 2N +2K. This necessary conditionturns out to be also su�cient:
Lemma 5.1 In the above conditions, if N + K � 3 and the tree of connectedcomponents of T0 has at least three leaves, then T can be realized with degree 2N +2K � 2.
Demostraci�on: For N +K = 3 all the possibilities are shown in Figure 12. The �rstone is obtained by perturbing the product of two ellipses. The second one, by thecurve Y 2Z2 = X2Z2�X4. The �rst in the second row by X2Y 2+X2Z2+Y 2Z2. Allthe others, by perturbations of the above. Moreover, in any of the cases, di�erentconnected components can be realized as small as one wants and passing throughprescribed points in the projective plane.In the case N +K > 3, consider the construction procedure described above, bymeans of the tree of connnected components of T0. As the tree has at least threeleaves, we can consider these three leaves as the three last components and insertthem at the same time by adding degree 4 to the construction, instead of 6. Thisis possible using the curves in Figure 12 and having into account that we don'treally need the connected components to be attached being tangent to the previousones. We can place them with two nodal intersections and then perturb (using, e.g.,Brussotti's Theorem) in order to desingularize one of them in the appropriate way.2
Theorem 5.2 Let T be a nodal, orientable topological model such that all its doublepoints disconnect it. Let T0 the desingularized model obtained from T disconnectingat every vertex. Then:
(i) If the tree of connected components of T0 has at most two leaves, then T cannotbe algebraically realized with degree lower than 2N + 2K.
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(ii) If the tree of connected components of T0 has at least three leaves, then T canbe algebraically realized with degree 2N + 2K � 2. 2
Finally, we can rewrite Theorem 5.2 in the following way. The statement tells usthat the only topological models which cannot be algebraically realized with degreelower than 2N + 2K are those for which this is evident, because such a realizationhas 2N + 2K intersection points with a certain line.

Corollary 5.3 Let T be a nodal, orientable topological model in the projective planewith K connected components and N double points. Then, the following conditionsare equivalent:
(i) T is not topologically equivalent to any algebraic curve of degree lower than2N + 2K.
(ii) there are two points in the projective plane such that any pseudoline passingthrough them intersects T in at least 2N+2K points, counted with multiplicity.

Proof: That the �rst statement implies the second follows from Theorem 5.2. Thatthe second implies the �rst is obvious. 2
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