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Construction of real algebraic planenodal curveswith given topology

Francisco Santos

Abstract. We study a constructive method to �nd an algebraic curve in the real pro-jective plane with a (possibly singular) topological type given in advance. Our methodworks if the topological model T to be realized has only double singularities. In that case,it gives an algebraic curve of degree 4N + 2K or 4N + 2K � 1, where N and K are thenumbers of double points and connected components of T .The construction is based on a preliminar topological manipulation of the topologicalmodel and then some perturbation techniques to obtain the polynomial de�ning thealgebraic curve. Some algorithmic remarks are given.
1991 Mathematics Subject Classi�cation: 14P25, 14Q05

1. Introduction.
Throughout this paper we will use the term algebraic curve or simply curve asan abbreviation for real projective plane algebraic curve meaning by this a realhomogeneous polynomial f 2 IR[X;Y; Z] in three variables, considered up to aconstant factor. Sometimes, by abuse of language, we will call curve the zero setV (f) of such a polynomial in the real projective plane IRIP2. Two subsets V andWare said to have the same topological type if there exists a global homeomorphismof the projective plane into itself sending V to W . Note that this condition isstronger than V and W being homeomorphic.We want to �nd an algebraic curve f whose zero set has the same topologicaltype of a certain given T � IRIP2. The conditions that T must satisfy for this tobe possible are contained in the following de�nition.
De�nition 1.1 Let T be a subset of IRIP2. We say that T is a topologicalmodel for an algebraic curve if it has the topological type of some algebraic curve.This is equivalent to T being homeomorphic to a graph with an even (possiblyzero) number of edges incident to each vertex.
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We say that an algebraic curve f realizes T if its zero set V (f) has the sametopological type as T .
The equivalence between the two de�nitions of a topological model can befound, for example, in [BCR]. There, the second one is stated locally. The trans-lation to our global statement is easy because of compactness of the projectiveplane. We want to remark that such a characterization of the topology of realalgebraic sets is far from trivial in higher dimensional cases (cf. again [BCR], or[AK]) and that, even in the plane, the usual proofs of it use polynomial approxi-mation of C1 functions and thus say nothing about the degree needed to realizea given topological model with an algebraic curve. Our method would give a new,constructive proof of the characterization.Nevertheless, we are only able to work out the case of double singularities (seethe remark just before Proposition 2.2 for details). For this reason our topologicalmodels will always be supposed to have only order 2 singular points, where wede�ne the order of a point P in T to be half the number of edges incident to P ifP is a vertex of the graph and 1 if P lies on an edge. A singular point is a pointof order at least 2. Note that, here, \singular" has just a topological meaning. Tostate our main result (Theorem 1.3, which is a paraphrase of Theorem 3.7) let us�rst introduce some de�nitions.

De�nition 1.2 Let l be an embedded circle in IRIP2. Then, l has the topo-logical type of either a line or a circle and is called a pseudo-line or an oval,respectively.Let T be a topological model in IRIP2 and let l be a pseudo-line transversalto T . We will say that T is even (resp. odd) if T and l have an even (resp. odd)number of intersections. The de�nition does not depend on the choice of l and isa topological type invariant of T .A topological model T in IRIP2 is called orientable if it does not contain anypseudo-line or, equivalently, if there exists a pseudo-line not intersecting it.
Theorem (cf. 3.7) Let T be a topological model in IRIP2 with only singularpoints of order 2. Let N be the number of singular points of T and K its numberof connected components. Then, T can be realized with an algebraic curve of degree4N + 2K if T is even, or 4N + 2K � 1 if T is odd. ut

The �rst question that arises is how good the degree we obtain is. For non-singular curves our theorem gives degree 2K or 2K � 1, which is trivial (for wecan construct any non singular model as a product of K circles, or may be K � 1circles and a line) but also optimal in the worst case (if the model consists on Knested ovals it can not be realized with an algebraic curve of degree lower than2K).For singular curves, �gure 1 shows a connected topological model with 3 doublepoints that cannot be algebraically realized with degree lower than 8. The example
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easily generalizes to any number of double points and to non connected models(inserting connected components one inside another), giving:

For any given sequence of numbers n1; : : : ; nK there exists a topological model withK connected components having n1; : : : ; nK double points on each that cannot bealgebraically realized with degree lower than d = 2PK1 ni + 2K:

Figure 1

Thus, the degree we obtain is quite good (at most twice the optimal). Wehave reasons to think that the degree with which any topological model with onlydouble points can be realized is actually this degree 2N +2K. In fact, in [GS] wepresented (jointly with A.G. Corbal�an) a draft of another method for costructingalgebraic curves with given topology (in the a�ne plane instead of the projectiveone), that gave exactly that reachable bound. That construction had a conjecturalstep that we could not prove to work, but we are currently studying how to usesome of its ideas in a di�erent way.Let us remark that, on the other hand, Bezout's and Harnack's theorems givelower bounds for the degree needed to algebraically realize any topological model.This bounds go, roughly speaking, with the square roots of N and K. Moreover,they are optimal for some topological models of any degree.

Our construction of an algebraic curve from a topological model consists oftwo parts, respectively detailed in sections 2 and 3. We sketch here the contents ofeach. Section 4 is devoted to study some algorithmical aspects of the construction.

First, the problem is easily reduced to the connected case. We then make sometopological desingularization of the connected topological model T to obtain whatwe call a skeleton of T . The skeleton can be put in a standard form that consistsof a circle (or a straight line, depending on the parity of T ), that we call thecore of the skeleton, and some segments or arcs of conics {to be called bonds{joining di�erent pairs of points on it. See �gure 2 for an example (bonds are thelighter, grey lines). Bonds are disjoint and represent the places where there was asingular point of T . The topological type of T can be recovered from its skeletonby substituting all bonds by double crossings.
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Figure 2
In the second part we introduce an eight shaped curve, or lemniscata, alongeach bond. These lemniscatae are placed so not to intersect to one another andtangent to the core at the ends of the bonds (see �gure 3.a). Each lemniscata isconstructed with degree 4. Thus, the product of the core and the lemniscatae isan algebraic curve of degree 4N + 2 (or 4N + 1, depending on the parity of T )which has \almost" the same topological type as T . A slight perturbation of thisalgebraic curve will give us an algebraic curve with the same topology as T (as in�gure 3.b). The perturbation techniques used here (cf. Theorem 3.3) are similar to

some classically used in the constructive part of Hilbert's 16th problem (cf. [Vi])and are based in some results by Gudkov (cf. [Gu]).

Figure 3
We would like to thank the referee for his attentive reading and useful commentson the �rst version of this paper.

2. Topological manipulation of the model.
Throughout this section T will be a topological model for an algebraic curve inIRIP2 with only order 2 singular points. Let N denote the number of singularpoints of T . Next lemma will allow us to assume, moreover, that T is connected.
Lemma 2.1 Let T be a topological model in IRIP2 and suppose that each of itsconnected components T1; : : : ; TK is realizable with an algebraic curve fi of degreedi. Suppose, moreover, that whenever Ti is orientable the corresponding fi doesnot intersect the in�nity line of the projective plane.Then, the whole model T can be realized algebraically with a curve f which isthe product of a scaled translation of each fi. Thus, f has degree P di.
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Proof. First of all, it is easy to check that any topological model has at mostone non-orientable connected component. This is so because any non-orientableconnected component contains a pseudo-line and two di�erent pseudo-lines alwaysintersect to one another.Now, the condition that the orientable components are realized without inter-secting the in�nity line (i.e. in the a�ne part of the projective plane) implies thatwe can make these realizations as small as we want, just contracting the a�ne partof IRIP2. We can afterwards translate this contracted curves anywhere in IRIP2 bya projective translation, and none of these two operations will change the degreeof the curve.To realize the whole model T we realize �rst the non-orientable component (ifany) and then place the realization of each orientable one, su�ciently reduced, inthe appropiate place to have a curve with the topological type of T . This curve{the product of the curves realizing each component{ will have degree P di. ut

Thus, our aim is to realize T (supposed connected) with degree 4N + 2 if it iseven and 4N + 1 if it is odd. This will be achieved in Theorem 3.6.To start, let as assume that T is not a single point (which can trivially berealized with the curve X2 + Y 2 = 0). The condition that T is a connected graphwith even number of edges at every vertex implies that it has an eulerian cycle,i.e., a cycle passing once through each edge. Moreover, the next lemma permits toassume that the eulerian cycle has no proper self-crossings. By this we mean thatwhenever the cycle passes through a vertex P , the ingoing and outgoing edges ofthe cycle are consecutive in the circular ordering of the edges incident to P .Incidentally, let us remark that Proposition 2.2 is not true if the topologicalmodel has multiple points of order higher than 2. (The reader can convince himselfof this by just considering a model consisting on three circles tangent to one anotherat the same point). In our opinion, this is the main reason why our method cannotbe applied for points of higher order. Of course, the algebraic constructions to bedescribed in section 3 would also be more complicated in this case.
Proposition 2.2 Let T be a topological model connected and with only doublepoints. Then, T has an eulerian cycle that does not properly cross itself.
Proof. Suppose that we have an eulerian cycle C on T with some proper crossings.Choose one of these crossings, at a vertex P . Call a, b, c and d the four edgesincident to P , in their circular ordering (i.e. a opposite to c and b opposite to d).Without loss of generality the eulerian cycle on T is C = ac�bd
, where � and 
represent lists of edges in T . Then, the cycle C 0 = ab��1cd
 is also eulerian andcontains one proper crossing less than C. Repeating the process at every propercrossing of C we will obtain an eulerian cycle with no proper crossings. ut

Once we have an eulerian cycle on T with only non-proper crossings, we canslightly perturb the cycle at each vertex in order to desingularize T . In this way weobtain a topological model T 0 which is very close to T , but non-singular, and still
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connected. Let us clarify this with an example. Let T � IRIP2 be the topologicalmodel in �gure 4.a and consider the eulerian cycle C = abcfed which has no propercrossings. In �gure 4.b we show the nonsingular model T 0 obtained perturbing Taccording to C.

Figure 4
In order to be able to recover the topology of T from T 0 we introduce smalllines joining each two points of T 0 that were identi�ed in T . The �nal result T �(as shown in �gure 4.c) will be called a skeleton of the topological model T . Thenon-singular model T 0 obtained separating the double crossings of T will be calledthe core of the skeleton and the lines joining separated points will be called bonds.In all our �gures bonds will be represented as lighter, grey lines.
The de�nition of topological type for skeletons is the obvious one. Two skeletonsT �1 and T �2 have the same topological type if there is an homeomorphism of theprojective plane in itself sending the core and bonds of T �1 respectively to the coreand bonds of T �2 .Our next result says how to obtain from the skeleton T � another skeleton withthe same topological type than T �, but made of a circle or a straight line forthe core and line segments or arcs of conics for the bonds. This will make thefollowing steps of our algorithm (the algebraic constructions) easier. A skeleton inthe conditions of Proposition 2.3 will be said to be in standard form. In �gure 6 wehave some examples of skeletons in standard form and the data below the �guresare combinatorial descriptions of their topology. We will come back to this pointin section 4.

Proposition 2.3 Let T be a connected topological model with only double points.Then, any skeleton of T has the same topological type than a skeleton T � whosecore is either the X-axis or the unit circle (depending on the parity of T ) and suchthat:i) if T is even, each bond of T � is either a straight line segment joining twoopposite points in the unit circle and passing through in�nity, or an arc of circlejoining two points of the unit circle (either through the outside or the inside) andperpendicular to it.ii) if T is odd, each bound of T �0 is either a half-circle or an arc of hyperbolajoining two di�erent points of the straight line.
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