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Abstract

We consider the concept of triangulation of an oriented matroid. We provide a

de�nition which generalizes the previous ones by Billera{Munson and by Anderson

and which specializes to the usual notion of triangulation (or simplicial fan) in the

realizable case.

Then we study the relation existing between triangulations of an oriented ma-

troidM and extensions of its dual M

�

, via the so-called lifting triangulations. We

show that this duality behaves particularly well in the class of Lawrence matroid

polytopes. In particular, that the extension space conjecture for realizable oriented

matroids is equivalent to the restriction to Lawrence polytopes of the Generalized

Baues problem for subdivisions of polytopes.

We �nish by showing examples and a characterization of lifting triangulations.
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Introduction

Matroids (see [27]) and oriented matroids (see [11]) are axiomatic abstract

models for combinatorial geometry over general �elds and over ordered �elds, res-

pectively. Oriented matroids have some extra structure as compared to matroids,

one of whose features is the existence of a notion of convexity (see Chapter 9 of

[11]). This makes it natural to consider triangulations of oriented matroids as an

analogue of triangulations of usual polytopes or point con�gurations. This concept

is the object of this paper.

Triangulations of oriented matroids generalize the following situations, where

the oriented matroids involved are realized by geometric objects and where the

triangulations of the geometric objects considered are known to depend only on the

underlying oriented matroid:

� If M is the oriented matroid of a�ne dependences between the vertices

of a polytope P , the triangulations ofM coincide with the triangulations

of the polytope P , meaning by this the geometric simplicial complexes

which cover P and use only the vertices of P as vertices. There is a recent

survey by Lee [25] on this topic.

� If M is the oriented matroid of a�ne dependences between the points

in a �nite point set A in R

d

, the triangulations of M coincide with the

triangulations of A, meaning by this the geometric simplicial complexes

which cover the convex hull of A and which use (perhaps not all) the

points of A as vertices. This is a generalization of the previous case

which has been often considered in recent literature (see [6, 13, 14, 15,

16, 28, 30, 36] and Chapter 7 of [19]).

� IfM is the oriented matroid of linear dependences between a �nite set of

vectors V in R

d

, the triangulations ofM coincide with the triangulations

of V , meaning by this the simplicial fans covering the positive span of V

and whose rank-1 cones are generated by (perhaps not all) the vectors of

A. See [19, De�nition 4.1] or [7]. This is a further generalization of the

previous case: if A is a point con�guration in R

d

, then triangulations of

A coincide with the simplicial fans of the vector con�guration obtained

by embedding R

d

as an a�ne hyperplane in the vector space R

d+1

.

Triangulations of oriented matroids were �rst de�ned by Billera and Munson

in [9], for the special case of polytopal oriented matroids. An account of them for

the more general case of acyclic oriented matroids appears in Section 9.6 of [11].

Deciding which is the best, or natural, de�nition of triangulation of a general

oriented matroid is not trivial. Apart of the problem of translating geometric

conditions into oriented matroid language, di�erent possible characterizations of

triangulations in the realized case may translate to non-equivalent de�nitions in
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2 INTRODUCTION

oriented matroid terms. For example, Billera and Munson [9] consider two possible

de�nitions, one apparently stronger than the other, and work with the weaker one

for practical reasons although they admit the stronger one to be a perhaps more

direct translation of the usual de�nition of triangulation of a polytope (see Remark

2.5(ii)). One of our �rst results in this paper says that the two de�nitions were in

fact equivalent. Actually, in Theorem 2.4 we give seven di�erent characterizations of

oriented matroid triangulations, which include (more precisely, generalize, since we

do not assume our oriented matroids to be neither acyclic nor totally cyclic) the two

de�nitions by Billera and Munson and the recursive one given later by Anderson in

[1]. Anderson is primarily interested in the totally cyclic case, although she proves

that the polytopal version of her de�nition is equivalent to the weak one of Billera

and Munson.

After the de�nition problem is solved, the goals of this paper are two-fold. On

the one hand we generalize to triangulations of perhaps non-realizable oriented ma-

troids results which are known for triangulations of point or vector con�gurations.

For example, Sections 3.1 and 3.2 generalize most of the results in Sections 2 and

5 of [14]. On the other hand, we use the insight provided by oriented matroids to

obtain results which are new even in the realized case. For example, the main result

of Chapter 4 is that the extension space of an oriented matroid is isomorphic to the

poset of proper subdivisions of a Lawrence polytope. This shows the equivalence

of two open cases of the generalized Baues conjecture (see below).

?

One motivation for studying triangulations of non-realizable oriented matroids

comes from the theory of combinatorial di�erential manifolds introduced by Mac-

Pherson [26], see also [2]. These manifolds provide a promising interplay between

di�erential and combinatorial geometry, one of whose �rst outcomes has been the

combinatorial formula for the Pontrjagin classes of triangulated di�erential mani-

folds obtained by Gel'fand and MacPherson in [20].

The connection between di�erential combinatorial manifolds and triangulations

of oriented matroids was exhibited by Anderson [1]. Roughly speaking, combinato-

rial di�erential manifolds are simplicial topological pseudo-manifolds with a combi-

natorial analogue to a di�erential structure de�ned by means of oriented matroids.

Anderson has proved that the link of every cell of a combinatorial di�erential man-

ifold is an oriented matroid triangulation. In particular, the topology type problem

for triangulations of oriented matroids (see the open problems at the end of this

introduction, or Section 2.4) is equivalent to deciding whether all di�erential com-

binatorial manifolds are really manifolds.

Concerning triangulations of realized oriented matroids, the problems we have

in mind have to do with the notion of bistellar ip { a sort of \elementary move"

between triangulations { and the order poset of subdivisions of a polytope or point

con�guration. Both objects have received attention in recent literature, partially

as a result of the theory of secondary polytopes developed by Gel'fand, Kapranov

and Zelevinsky (see Chapter 7 of [19], in particular pages 231{233 for the original

de�nition of bistellar ip). The following two questions are natural: has the order

complex of polytopal subdivisions of a point con�guration with n vertices in di-

mension d the homotopy type of a (n� d� 2)-sphere? Is any pair of triangulations

connected by a sequence of bistellar ips?
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The �rst question is still open, and is a special case of the generalized Baues

conjecture posed by Billera et al. [8] (the conjecture in its full generality was

disproved in [31]; see [32] for a survey on this problem). The second is a weak

version of it, for which a counter-example has been recently exhibited by the author

[36]. Previous to that, only very few cases had been answered, always in the

a�rmative: The case of \few points" (n � d + 3) is answered by the results of

Lee [24] and the theory of secondary polytopes [19, Chapter 7] and [6]. Azaola [3]

has recently proved the case n = d + 4. In the case of \low dimension" (d � 2)

the connectivity question is known since some time ago [23] while the homotopy

question has been solved by Edelman and Reiner [16]. A particular case interesting

because of the amount of extra combinatorial structure available is that of cyclic

polytopes, solved in [28] and [30].

The most interesting new result for the realizable case obtained in this paper

is that we prove in Section 4.3 (see Corollary 4.16) the equivalence of the following

two open cases of the generalized Baues conjecture. After this paper was �nished

a di�erent, geometric, proof of this same equivalence has appeared in [21]:

� The extension space conjecture of oriented matroid theory (see [11, pages

295{296] or [39]), stating that the poset of non-trivial single-element ex-

tensions of any rank r realizable oriented matroid has the homotopy type

of an (r � 1)-sphere. Via the Bohne-Dress theorem on zonotopal tilings

(see [11, Theorem 2.2.13] or [40, Theorem 7.32]) this was previously

known to be equivalent to the conjecture that the poset of proper zono-

topal subdivisions of any zonotope with n generators and dimension n�r

has this same homotopy type. I.e., to the generalized Baues conjecture

for the case of projections from a cube.

� The conjecture that the poset of all proper subdivisions of any (realized)

Lawrence polytope of dimension d with n vertices is homotopy equivalent

to an (n� d� 2)-sphere. I.e., to the generalized Baues conjecture in the

particular case of the projection from a simplex to a Lawrence polytope.

?

Summarizing, the main results of the paper are:

(a) We settle the problem of de�ning triangulations of oriented matroids by

providing a de�nition which suits any oriented matroid and giving several

di�erent characterizations of it (Theorem 2.4).

(b) We generalize to non-realizable oriented matroids the results in [14] con-

cerning the duality between triangulations of a con�guration and cham-

bers (related to extensions, in the oriented matroid setting) of the dual

con�guration (Sections 3.1 and 3.2). Under this duality, bistellar ips be-

tween triangulations are related to mutations between extensions (Theo-

rem 3.14).

(c) We prove that in the case of Lawrence polytopes the duality behaves

specially well, because the correspondence between triangulations of a

Lawrence polytope and extensions of its dual oriented matroid is bijective

and makes bistellar ips correspond exactly to mutations (Theorem 4.14).
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(d) In particular, this implies that the extension space conjecture of oriented

matroid theory is equivalent to the Generalized Baues problem for re-

alized Lawrence polytopes (Corollary 4.16). Also, that there are (non-

realizable) Lawrence polytopes of corank four whose triangulations are

not connected by bistellar ips (Corollary 4.15).

(e) We introduce a reoriented version of the Lawrence construction (Section

4.4, Theorem 4.18), which shows that the \polytopal case" cannot be con-

sidered simpler than the \acyclic case" when dealing with triangulations,

unless the dimension is �xed.

(f) Not all the triangulations of an oriented matroid correspond to extensions

of the dual. The ones which do correspond are called lifting (see [11, Sec-

tion 9.6], or our Section 4.1). We give necessary conditions (Proposition

5.3) and two characterizations (Theorem 5.10) for an oriented matroid

triangulation to be a lifting triangulation. Actually, these conditions are

proved in the more general case of lifting subdivisions.

(g) We construct non-lifting triangulations of the 4-cube and of a unimod-

ular polytope (Sections 5.2.3 and 5.2.2). We also show bad behavior of

triangulations of non-Euclidean oriented matroids, with an example in

the Edmonds-Fukuda-Mandel oriented matroid EFM(8) (Section 5.2.1).

The following is a more detailed description of some of these points, and of the

structure of the paper:

The technical tools from oriented matroid theory that we will need concern

mainly single-element extensions and convexity. That is, the �rst part of Chapter

7 and Chapter 9 in [11]. In Chapter 1 we recall these concepts and prove some

preliminary results which will be frequently used. Readers familiar with oriented

matroid theory can skip this section and come to it only for reference. Other readers

may �nd this section useful for understanding the convex geometry of oriented

matroids.

In Sections 2.1 and 2.2 we give our de�nition of oriented matroid triangulation,

based in the \weak" one by Billera and Munson, and provide the above mentioned

equivalent characterizations of it (Theorem 2.4). In Section 2.3 we prove properties

of triangulations which will be needed afterwards. Section 2.4 states what is known

about the topological type of triangulations of oriented matroids, based mostly on

[1] and on personal communications by J. Rambau.

In Section 3.1 we introduce the duality existing between lifting triangulations

of an oriented matroid and extensions in general position of its dual. Lifting trian-

gulations were introduced in [11, Section 9.6] (a particular case was mentioned in

[9]). We give two equivalent de�nitions of them, dual to one another (de�nitions

3.4 and 4.1).

This duality is a generalization of the duality between regular triangulations of

a point con�guration A and chambers of its Gale transform A

�

, exhibited by Billera

et al. in [6]. De Loera et al. [14] have already given a generalized version of this

duality, still in the realizable case, with the introduction of virtual chambers. Section

3.2 is the translation into the oriented matroid setting of Sections 2 and 5 of [14],

and some of the proofs required few changes. In particular, we show that for any

triangulations T ofM and T

0

of the dualM

0

there are unique maximal simplices of

T and T

0

which are complements (Theorem 3.8). In Section 3.3 we show the exact

relation between the natural notions of elementary change on triangulations (the
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notion of bistellar ip) and on extensions (the notion ofmutation) under the duality.

Namely, that whenever two extensions di�er by a mutation the corresponding lifting

triangulations either coincide or di�er by a bistellar ip (Theorem 3.14).

Subdivisions of oriented matroids are a generalization of triangulations intro-

duced in [11, Section 9.6]. We devote Section 4.1 to study them in some detail.

Going further on the duality mentioned above, it is easy to establish a surjective

order-preserving map from the poset of extensions of an oriented matroid ordered

by weak maps and the poset of lifting subdivisions of the dual oriented matroid or-

dered by re�nement (see Exercises 9.30 and 9.31 in [11]). Section 4.2 is devoted to

the specially nice case of Lawrence polytopes, leading to the isomorphism between

the two posets mentioned. Section 4.3 describes the consequences of this in the

context of the Baues problem.

In Section 4.4 we introduce a reoriented version of the Lawrence construction,

which translates results on triangulations of polytopes to non-polytopal point con-

�gurations and vice-versa.

Since lifting triangulations have played an important role in the results so

far, we devote to them the last chapter. We show some good properties of them

and their relation with regular triangulations of point con�gurations in Section

5.1. We construct interesting examples of non-lifting triangulations in Section 5.2.

In Section 5.3 we prove the following surprising fact: although the de�nition of

liftingness for a triangulation or subdivision relies strongly in the notion of oriented

matroid, there are two \oriented-matroid-free" characterizations of liftingness for

triangulations of a realized oriented matroid (Theorem 5.10): lifting subdivisions

of M are the links of subdivisions of the Lawrence polytope over M and they are

also the ones which are compatible with subdivisions of every restriction of M, in

a sense speci�ed in De�nition 5.9. This seems to imply that liftingness is a natural

concept even outside oriented matroid theory. The second characterization has

been used in [30] to prove that cyclic polytopes only have lifting triangulations and

in [21] to provide a di�erent proof of our Theorem 4.14 and Corollary 4.16.

?

We �nish this introduction pointing out some open problems:

� We have proved the equivalence of the extension space conjecture to the

conjecture on the order complex of subdivisions of a realizable Lawrence

polytope. But it remains to �nd out whether they are both true or both

false. See the details in Section 4.3.

� What is the topological type of an oriented matroid triangulation, consi-

dered as a simplicial complex? The expected answer is that a trian-

gulation of an oriented matroid M of rank r is homeomorphic to an

(r � 1)-ball if M is totally cyclic and to an (r � 1)-sphere otherwise.

No proof of this exists in the general case, although it holds trivially for

realizable oriented matroids and, by [11, Proposition 9.1.1], for lifting

triangulations of arbitrary oriented matroids. Anderson [1] has provided

a proof for Euclidean oriented matroids (see Theorem 2.16). We recall

that euclideanness is a property satis�ed by realizable oriented matroids

and which can be rephrased vaguely as \every line and hyperplane meet

in a point" (see Section 1.3, or [11, Sections 7.5 and 10.5]).
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� There are other properties of triangulations which are known to hold

under some euclideanness assumption, but open in general:

{ Can two simplices of a triangulation contain respectively the positive

and negative parts of a circuit? That the answer is \no" appeared

as Conjecture 6.01 in Laura Anderson's Ph. D. thesis, on which [1]

is based. See Remark 2.5(v).

{ In De�nition 2.7 we construct a graph which tries to mimic the

sequence of simplices intersected by a segment in a triangulation of

a point con�guration. This graph was �rst used by Anderson [1].

Can the graph have cycles? See the comments after Lemma 2.8 and

Section 2.4. Proposition 2.17 (by Rambau) relates this question to

the previous one.

{ We say that two subsets A and B of the ground set E of an orien-

ted matroid are separated if there is a covector (C

+

; C

�

) with A \

C

+

= B \ C

�

= ; and such that A \ C

0

and B \ C

0

are sep-

arated in the (lower rank) oriented matroid M(C

0

) (here, C

0

de-

notes E n (C

+

[ C

�

)). Can every separated pair of simplices be

completed to a triangulation? In the presence of some euclideanness

condition, every pair of separated simplices belongs to some lifting

triangulation. In Proposition 5.6 we show two separated simplices

which do not belong to any lifting triangulation, but they belong to

a non-lifting one.

� All the non-lifting subdivisions which appear in this paper have the prop-

erty that their restriction to some minor cannot be extended to a subdivi-

sion of that minor (which proves that they are non-lifting, by Proposition

5.3). Is this a general property of non-lifting subdivisions? If yes, then

every subdivision of a rank 3 oriented matroid will be lifting.

� In [35] the author proves that every non-regular subdivision can be re-

�ned to a non-regular triangulation. Can every non-lifting subdivision

be re�ned to a non-lifting triangulation? This is not obvious; for exam-

ple, the proof of liftingness for all triangulations of cyclic polytopes given

in [30] does not extend to subdivisions. Is every subdivision of a cyclic

polytope lifting?



CHAPTER 1

Preliminaries on Oriented Matroids

Throughout the paper we will assume familiarity with the basics of oriented

matroid theory. In this section we sum up the main speci�c concepts and properties

that we will need, related mainly to convexity and extensions. We will follow the

book by Bj�orner et al. [11] for notation and reference, unless otherwise indicated.

Since we will be very seldom concerned with (non-oriented) matroids, we will

use the terms circuits, cocircuits, vectors and covectors always referring to signed

ones. We will indistinctly consider them signed subsets C = (C

+

; C

�

) of E or

functions C : E �! f�1; 0;+1g, where E is the ground set of the oriented matroid.

Using the second point of view we can say that a circuit \is positive" or that it

\vanishes" at some elements of E, and will write C(p) = +1 with the same meaning

as p 2 C

+

, for p 2 E. As usual, C denotes the support C

+

[ C

�

of C.

1.1. Convexity.

Let M be an oriented matroid of rank r on a set E. In order to stress the

geometrical meaning of oriented matroid concepts we will call simplices of M the

independent subsets of E. A k-simplex is a simplex with k-elements. Thus, r-

simplices are the same thing as bases. IfM is a realizable oriented matroid and V �

R

r

is a vector realization ofM then the geometric counterpart of the k-simplices of

M are simplicial cones of dimension k positively spanned by independent subsets

of M. If M is acyclic and realized by a point con�guration A � R

r�1

then the

k-simplices of M correspond to simplices of A of dimension k � 1, with vertex set

contained in A.

Following [11, Chapter 9], we call facets of M the complements of supports of

non-negative cocircuits ofM and faces the complements of supports of non-negative

covectors. Facets are the maximal proper faces (faces di�erent from E itself). In

contrast with [11], we do not assume M to be acyclic. The faces of an oriented

matroid form a lattice called the Las Vergnas face lattice. The unique maximal face

is E and the unique minimal face is the family F

0

of elements which lie in positive

circuits. It is the empty set if M is acyclic. If M is totally cyclic then F

0

= E and

M has no proper faces.

For any A � E we denote by M(A) the restriction of M to A. We call faces

(resp. facets) of A the faces (resp. facets) of M(A). In particular, every subset of

a k-simplex is a face of it, and it is a facet if and only if it has k � 1 elements. Of

course, all the faces of a simplex are simplices.

The convex hull of a subset A � E is the union of A and those elements p of

E n A for which there is a signed circuit C of M with C

+

= fpg and C

�

� A.

We denote this set by conv

M

(A). The relative interior of A is the set obtained

7



8 1. PRELIMINARIES ON ORIENTED MATROIDS

removing the convex hulls of facets of A from the convex hull of A. We denote it

relint

M

(A).

Lemma 1.1. Let M be an oriented matroid of rank r on a set E. Let p 2 E

and A � E. Then:

(i) p 2 conv

M

(A) if and only if p 2 conv

M(A[p)

(A), where M(A [ p) is the

restriction of M to A [ p.

(ii) if rank

M

(A) = k, then p 2 conv

M

(A) if and only if there is a k-simplex

� � A with p 2 conv

M

(�).

(iii) p 2 conv

M

(A) if and only if every cocircuit of M which is nonnegative

on A is nonnegative at p.

(iv) if p 2 conv

M

(A) and A � conv

M

(B) (B � E) then p 2 conv

M

(B).

(v) if A is an r-simplex, then p 2 conv

M

(A) if and only if for every a 2 A the

unique cocircuit ofM vanishing on Ana and positive on a is non-negative

at p.

Proof. Part (i) follows from the fact that circuits of M(A [ p) correspond

exactly with circuits of M with support contained in A [ p. Part (ii), considered

on the oriented matroid M(A [ p), is \Carath�eodory's Theorem" [11, Theorem

9.2.1(1)]. Part (iii) is \Weyl's Theorem" [11, Theorem 9.2.1(2)]. Part (iv) follows

from (iii).

The \only-if" part in (v) is a consequence of (iii). For the \if" part consider

a circuit C with support contained in the spanning but not independent subset

A [ fpg. Since A is independent, p is in the support of C and without loss of

generality we assume C(p) = +1. If C was positive at some element a 2 A, then

the orthogonality of C and the cocircuit vanishing on A n a would be violated in

the restricted oriented matroid M(A [ fpg). �

Lemma 1.2. Let M be an oriented matroid on a set E. Let a 2 E and A;B �

E. Then:

(i) p 2 relint

M

(A) if and only if p 2 conv

M

(A) and for every covector C =

(C

+

; C

�

) vanishing on p, either C vanishes on A or has both negative

and positive elements in A.

(ii) if p 2 relint

M

(A) and A � conv

M

(B), but A is not contained in the

convex hull of any facet of B, then p 2 relint

M

(B).

(iii) if A is an independent set, then p 2 relint

M

(A) if and only if (fpg; A)

is a circuit of M.

Proof. If p 2 relint

M

(A), then any cocircuit which is nonnegative on A either

vanishes on A or does not vanish at p; otherwise p will be in the convex hull of

a facet of A, or not in the convex hull of A. Reciprocally, if p 2 conv

M

(A), but

p 62 relint

M

(A), then there is a cocircuit which is nonnegative on A, vanishes at p

and does not vanish on A. This proves (i).

For (ii), consider a cocircuit C vanishing at p but not on all of B. If C vanishes

on A, as A is not in a facet of B, C takes both signs on B. If C does not vanish

on A, it takes both signs on A and, hence, also on B (because A � conv

M

(B),

and using part (iii) of Lemma 1.1). We conclude that p 2 relint

M

(B), by the

characterization in part (i).

In (iii), A being independent implies that there is at most one circuit with

support contained in A[ p. By de�nition of convex hull, p 2 conv

M

(A) if and only
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if the circuit is of the form (fpg; B) for some B � A. If this is the case we have

two possibilities: if B 6= A, then p is in the convex hull of a proper face of A, and

thus not in relint

M

(A). If B = A, then the orthogonality between circuits and

covectors implies, with part (i), that p 2 relint

M

(A). �

1.2. Extensions. Lexicographic extensions.

Let M and M

0

be two oriented matroids on sets E and E

0

. If E � E

0

, and

every circuit of M is a circuit in M

0

then M

0

is an extension of M. Equivalently,

M

0

is an extension of M if M is a restriction of M

0

by deleting some elements.

We will only consider extensions which do not increase the rank, i.e., for which

rank(M) = rank(M

0

). If E

0

n E = fpg has one element we say that M

0

is a

one-element extension, and use the notation M[ p for M

0

. This will be usually

our case.

LetM[p be a one-element extension ofM. For every cocircuit C = (C

+

; C

�

)

of M, exactly one of (C

+

[ fpg; C

�

), (C

+

; C

�

[ fpg) and (C

+

; C

�

) is a cocircuit

of M. In other words, there is a unique way to extend each cocircuit of M into

a cocircuit of M[ p. This means that there is no ambiguity in considering C as

a cocircuit in M[ p, and we can write C(p) = +1;�1 and 0, respectively. The

function assigning to each cocircuit of M its value C(p) 2 f�1; 0;+1g on the new

element p is called the signature of the extension M[ p.

Not every map from the set of cocircuits of M to f�1; 0;+1g is the signature

function of an extension. Also, not every cocircuit of an extension M[ p is the

extension of a cocircuit of M. However, it is true that a valid signature function

on the cocircuits of M uniquely determines the extension. More information on

this can be found in [11, Section 7.1]. In particular, the way to obtain all the

cocircuits of M[ p from the cocircuits of M and the signature function of M[ p

is in Proposition 7.1.4. The conditions that a signature function has to satisfy to

be valid are in Theorem 7.1.8, which we reproduce below. Both results come from

the paper [22] by Las Vergnas.

Lemma 1.3 (Las Vergnas). Let M be an oriented matroid on a ground set E,

and C

�

its set of cocircuits. Let � : C

�

! f+;�; 0g be a cocircuit signature satisfying

�(�C) = ��(C) for every C 2 C

�

. Then, the following conditions are equivalent:

(a) � is the cocircuit signature function of a single-element extension of M.

(b) For every subset A � E of corank 2, � restricted to the cocircuits not

intersecting A is the cocircuit signature function of an extension ofM=A.

I.e., � de�nes a single-element extension on every corank 2 contraction.

(c) M has no minor of rank 2 on three elements on which � induces one

of the three forbidden subcon�gurations displayed in Figure 1.1. (The

�gure should be read as follows: the three lines represent the complement

of cocircuits, i.e. ats of rank 1 of M. A plus or minus sign on one

side of a at mean that p lies in this or the other part of the cocircuit,

respectively. A zero means that p lies on the at). �

Definition 1.4. LetM[ p be a one-element extension of an oriented matroid

M of rank r on a set E. We say that the extension is interior if p 2 conv

M[p

(E).

We say that the extension is in general position if C(p) 6= 0, for every cocircuit C of

M; equivalently, if the support of every circuit ofM[ p containing p is a spanning

subset.
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0

0

0

0

- 

0 0

+ + 

- + 

- 

+ - 

- + 

- + 

Figure 1.1. Forbidden subcon�gurations for cocircuit signatures.

Definition 1.5. Let M[ p and M[ p

0

be two one-element extensions of an

oriented matroid M. We say that p

0

is a perturbation of p if there is a weak map

from M[ p to M[ p

0

. Equivalently, if for every cocircuit C of M

C(p) 6= 0 =) C(p) = C(p

0

)

We will be particularly interested in the so-called lexicographic extensions,

which were also introduced by Las Vergnas. We take as a de�nition the follow-

ing characterization of them which appears in [11, Proposition 7.2.4].

Definition 1.6. LetM be an oriented matroid on a set E. Let fa

1

; : : : ; a

k

g be

a subset of E and choose a sign �

i

2 f+;�g for each i = 1; : : : ; k. The lexicographic

extensionM[p ofM by the element p := [a

�

1

1

; : : : ; a

�

k

k

] is de�ned as the one whose

cocircuit signature is given by:

C(p) =

�

�

i

C(a

i

) if i is minimal with C(a

i

) 6= 0

0 if C(a

i

) = 0; 8i = 1; : : : ; k

If �

i

= + for all i then we call M[ p a positive lexicographic extension.

In particular, with p := [a

+

] we obtain the extension by an element p parallel

to a, and with p := [a

�

] the extension by an element antiparallel to a. In the

de�nition, there is no loss of generality if we assume a

1

; : : : ; a

k

to be independent.

In fact, if l is the �rst index for which a

1

; : : : ; a

l

is dependent, then the element a

l

can be removed from the de�nition without a�ecting the extension obtained.

For another example, letM[p be any one-element extension ofM and consider

the lexicographic extension of M[ p by an element p

0

:= [p

+

; a

�

1

1

; : : : ; a

�

k

k

]. Then,

the extension M[ p

0

:= (M[ p) [ p

0

n p is a perturbation of M[ p (In [11, p.

292] this extension is called the composition of p

1

and the lexicographic extension

[a

�

1

1

; : : : ; a

�

k

k

]). In case that p itself is a lexicographic extension p := [b

�

1

1

; : : : ; b

�

l

l

],

then p

0

is the lexicographic extension given by p

0

:= [b

�

1

1

; : : : ; b

�

l

l

; a

�

1

1

; : : : ; a

�

k

k

].

Lemma 1.7. Let M be an oriented matroid of rank r. Let M[ p be a lexico-

graphic extension of M by the element p := [a

�

1

1

; : : : ; a

�

k

k

]. Then,

(i) the extension is in general position if and only if rank(fa

1

; : : : ; a

k

g) = r.

(ii) if �

i

= + for all i, then p 2 relint

M[p

(fa

1

; : : : ; a

k

g). In particular, it is

an interior extension.

Proof. Both parts are special cases of [11, Lemma 7.2.6], originally proved

by Todd in 1984. �
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Lemma 1.8. Let M be an oriented matroid of rank r on a set E. Let A � E

and let M[ p and M[ p

0

be two extensions of M, with p

0

being a perturbation of

p. Then:

(i) if p

00

is a perturbation of p

0

, then p

00

is a perturbation of p as well.

(ii) if p

0

2 conv

M[p

0

(A), then p 2 conv

M[p

(A).

(iii) if A has rank r and p 2 relint

M[p

(A), then p

0

2 relint

M[p

0

(A).

(iv) if p 2 conv

M[p

(A) and p

0

:= [p

+

; a

+

1

; : : : ; a

+

k

], then p

0

2 conv

M[p

0

(A [

fa

1

; : : : ; a

k

g).

Proof. Part (i) is obvious from the de�nition. Part (ii) follows from the

characterization of the convex hull by cocircuits (part (iii) of Lemma 1.1). Part

(iii) follows from the characterization of the relative interior by cocircuits (part

(i) of Lemma 1.2) and the fact that every cocircuit of M which vanishes on p

0

also vanishes at p. Part (iv) follows from the fact that, in the oriented matroid

M[ fp; p

0

g, p

0

is in the convex hull of fp; a

1

; : : : :a

k

g (part (ii) of Lemma 1.7) and

p is in the convex hull of A. �

An important di�culty concerning extensions is that given an oriented matroid

M on a set E, a subset A � E, and an extension M(A) [ p of a restriction of M,

there might not exist an extension M[ p of M which extends the given one. By

this we mean that (M[ p)(A [ fpg) =M(A) [ p.

For example, the oriented matroid M realized as a point con�guration by the

six vertices of a convex hexagon has two extensions which are incompatible: the

extensionM[p

1

by an element lying in the intersection of the three main diagonals

and an extensionM[p

2

by an element lying in the intersection of two of them, but

not on the third one. This means that the extension p

2

of M can not be extended

to M[ p

1

. Our next result implies that this bad behaviour does not occur if one

of the extensions is lexicographic. After that we prove that the corresponding bad

behaviour for contractions never arises.

Lemma 1.9. Let M be an oriented matroid on a set E and let A � E. Let

M(A) [ p be a lexicographic extension of the restriction M(A). Let M[ p denote

the lexicographic extension of M with the same lexicographic expression. Then:

(i) (M[ p)(A [ fpg) =M(A) [ p.

(ii) if p is interior in M(A), then p is interior in M.

(iii) if p is in general position and A spans M, then p

0

is in general position.

Proof. Every cocircuit of M(A) extends to a cocircuit of M. The fact that

p has the same lexicographic expression in M and M(A) implies that its cocircuit

signature on those cocircuits of M coincides with the one it has in M(A). Hence

(M[ p)(A [ fpg) =M(A) [ p.

Part (ii) is a direct consequence of parts (i) and (iv) of Lemma 1.1. Part (iii)

follows from part (i) of Lemma 1.7. �

Lemma 1.10. Let M be an oriented matroid on a set E and let a 2 E. Let

(M=a) [ p be an extension of the contraction M=a. Every cocircuit of M which

vanishes on a is a cocircuit of M=a; thus, the following cocircuit signature on M

is well de�ned: C(p

0

) = C(a) if C(a) 6= 0 and C(p

0

) = C(p) otherwise. Then,

(i) The cocircuit signature de�nes an extension M[ p

0

of M which satis�es

(M[ p

0

)=a = (M=a) [ p.
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(ii) if p is interior in M=a, then p

0

is interior in M.

(iii) if p is in general position, then p

0

is in general position.

(iv) if p is lexicographic, de�ned by an expression [a

�

1

1

; : : : a

�

k

k

], then p

0

is the

lexicographic extension de�ned by the expression [a

+

; a

�

1

1

; : : : a

�

k

k

].

(v) p

0

is the only perturbation of the extension of M by an element which

satis�es (M[ p

0

)=a = (M=a) [ p.

(vi) For every subset A � E n fag, we have

p 2 conv

(M=a)[p

(A) () p

0

2 conv

M[p

0

(A [ fag):

Proof. The lexicographic case stated in part (iv) is trivial. For the general

case, letM=A be a rank-2 contraction ofM. M=(A[fag) has rank at most 2 and

its extension ((M=a) [ p)(A [ fag) is a lexicographic extension. (every extension

in rank at most 2 is lexicographic) By the lexicographic case, the procedure of the

statement restricted to the cocircuits vanishing on A de�nes a valid extension of

M=a. Then, by Lemma 1.3 the cocircuit signature of p

0

de�nes an extension. The

formula (M[ p

0

)=a = (M=a)[ p holds by construction, which �nishes the proof of

part (i).

Suppose that p is interior in (M=a) [ p. Then p 2 conv

(M=a)[p

(A) for some

independent set A � Ena ofM=a (Lemma 1.1(ii)). But then A[fag is independent

in M and p

0

2 conv

M[p

0

(A [ fag) (for example, by Lemma 1.1(v)). This proves

(ii).

For (iii), suppose that p

0

is not in general position. Then there is a cocircuit of

M vanishing at p

0

. By de�nition of p

0

, this cocircuit vanishes at a. But then the

contracted cocircuit vanishes at p and, hence, p is not in general position.

For part (v), observe that an extension p

0

of M is a perturbation of the exten-

sion parallel to a if and only if C(p

0

) = C(a) for every cocircuit not vanishing at a,

and an extension satis�es (M[ p

0

)=a = (M=a) [ p if and only if C(p) = C(p

0

) for

every cocircuit vanishing at a.

In part (vi), the implication from left to right follows from the formula (M[

p

0

)=a = (M=a) [ p. The other implication follows easily from part (iii) of Lemma

1.1: By de�nition of the cocircuit signature of p

0

, every cocircuit nonnegative on

A [ fag which is not zero at a is positive at p

0

. For a cocircuit nonnegative on

A [ fag and zero at a, the fact that p 2 conv

(M=a)[p

(A) implies that the cocircuit

(contracted to M=a) is nonnegative at p and hence the (non-contracted) circuit is

nonnegative at p

0

. �

1.3. Euclideanness.

In De�nition 7.5.2 of [11] a list of several \intersection properties" that an

oriented matroid may or may not satisfy is given. Most of the open questions

concerning triangulations of oriented matroids have been answered under the as-

sumption that the oriented matroid satis�es one of them. We will be interested in

the following two:

Definition 1.11. Let M be an oriented matroid.

(i) We say that M has the Euclidean intersection property IP

3

, or that M

is Euclidean, if for every hyperplane H (i.e. at of corank 1) of M and

every line l (at of rank 2) of M there is an extension M[ p of M such

that H[fpg and l[fpg are respectively a hyperplane and a line ofM[p.
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(ii) We say that M has the generalized Euclidean intersection property IP

2

if for every pair of ats F and G of M with rank(M) + 1 = rank(F ) +

rank(G) there is an extensionM[p ofM such that F [fpg and G[fpg

are ats of of M[ p of the same ranks they had in M. Clearly, this is

stronger than the condition IP

3

.

Lemma 1.12. Let M be an oriented matroid with the generalized Euclidean

intersection property IP

2

. Let C = (C

+

; C

�

) be a circuit of M. Then, there is an

extension M[ p of M with p 2 relint

M[p

(C

+

) and p 2 relint

M[p

(C

�

).

Proof. There are ats F

+

and F

�

containing C

+

and C

�

respectively and

with rank(M) + 1 = rank(F

+

) + rank(F

�

). The property IP

3

guarantees the

existence of an extension M[ p meeting both ats. In the restriction of M[ p

to C

+

[ C

�

[ fpg we have that C

+

[ fpg and C

�

[ fpg are dependent, i.e. they

contain the supports of two circuits. The elimination of p in these circuits must

produce a circuit with support contained in C

+

[C

�

, i.e. the original circuit C (or

its opposite). Hence, the mentioned circuits of M[ p are (C

+

; fpg) and (C

�

; fpg)

(or their opposites). Part (iii) of Lemma 1.2 �nishes the proof. �





CHAPTER 2

Triangulations of Oriented Matroids

2.1. De�nition, characterizations and remarks

We will de�ne a triangulation of an oriented matroid M of rank r as a collec-

tion of r-simplices (i.e. bases) of M satisfying certain properties. These properties

should be the natural translation to oriented matroid terminology of properties

characterizing triangulations of point con�gurations (for the acyclic case) or sim-

plicial fans of vector con�gurations (for the general case). Candidate properties fall

mainly in the following three categories: \covering properties" telling us that the

union of the (convex hulls of) simplices of a triangulation covers the convex hull

of the con�guration; \pseudo-manifold properties" telling us that co-dimension 1

simplices which are not in a facet of M belong either to 0 or 2 full-dimensional

simplices of the triangulation; and \good intersection properties" telling us that

the intersection of any two simplices is a face of both. Also, \good intersection

properties" are related to \circuit properties" of the simplices, such as \no circuit

has its positive and negative parts contained in simplices of a triangulation". The

following are translations of these properties to oriented matroid terminology, in

several degrees. All of them are satis�ed by triangulations of point con�gurations:

Definition 2.1. Let M be an oriented matroid of rank r on a set E. Let T

be a non-empty collection of r-simplices of M.

� We say that T has the pseudo-manifold property if for every � 2 T , each

facet � of � is either contained in a facet of M or there exists another

simplex �

0

6= � in T with � � �

0

.

We say that T has the oriented pseudo-manifold property if, moreover,

for every (r � 1)-simplex � contained in at least two r-simplices � [ a

1

and � [ a

2

of T , the unique (up to sign reversal) cocircuit vanishing on �

has opposite signs at a

1

and a

2

. In particular, this implies that � is not

contained in any other element of T .

� We say that T covers an extension M[ p of M if p 2 conv

M[p

(�) for

some � 2 T (clearly, p has to be an interior extension for this to be

possible). We say that T covers the extension once if the simplex � is

unique in T .

� We say that two simplices �

1

and �

2

of T intersect properly if for every

one-element extension M[ p of M

p 2 conv

M[p

(�

1

) \ conv

M[p

(�

2

) =) p 2 conv

M[p

(�

1

\ �

2

):

We say that the simplices of T intersect properly if this happens for every

pair of simplices.

� We say that two simplices �

1

and �

2

overlap on a circuit C = (C

+

; C

�

)

if C

+

� �

1

and there is an element a 2 C

+

such that C n fag � �

2

.

15
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We take as a starting de�nition of oriented matroid triangulations a slightly

modi�ed version of the de�nition by Billera and Munson in [9].

Definition 2.2. LetM be an oriented matroid of rank r. Let T be a collection

of r-simplices of M. We say that T is a triangulation if it satis�es the pseudo-

manifold property and its simplices intersect properly.

A di�erent de�nition of triangulations of oriented matroids is given by Ander-

son in [1, Section 2.3]. Roughly speaking, a collection of full-rank simplices is a

triangulation if and only if for every (perhaps non-full-rank) simplex � contained

in some simplex of T the link of � in T is a triangulation of M=� . The link is

a standard concept in piecewise linear topology, but our de�nition slightly di�ers

from the usual one (compare [34]) because we deal with the maximal simplices of

a simplicial complex, and not with the whole complex:

Definition 2.3. LetM be an oriented matroid of rank r. Let T be a collection

of r-simplices of M. Let � be a k-simplex, for some 0 < k � r, contained in some

element of T . We call link of � in T the collection of (r � k)-simplices f� n � : � �

�; � 2 Tg. We denote it link

T

(�).

We can now state the main result of Chapter 2, which is the equivalence between

several properties, all characterizing triangulations of oriented matroids.

Theorem 2.4. Let T be a non-empty collection of r-simplices of an oriented

matroid M of rank r. Then, the following properties are equivalent:

(a) The simplices of T intersect properly and T satis�es the pseudo-manifold

property (i.e., T is a triangulation of M).

(b) The simplices of T intersect properly and T covers every interior exten-

sion of M.

(c) T satis�es the oriented pseudo-manifold property and covers some inte-

rior extension of M in general position exactly once.

(d) T satis�es the oriented pseudo-manifold property and covers all interior

extensions of M in general position exactly once.

(e) If rank(M) = 1 then T consists of one simplex if M is acyclic and two

simplices with opposite elements if M is totally cyclic. If rank(M) > 1

then for every element a 2 E the collection T

a

:= link

T

(a) of (r � 1)-

simplices of M=a is either empty or a triangulation of M=a and there is

an element a 2 E such that

8� 2 T a 2 � () a 2 conv

M

(�):

(f) T satis�es the pseudo-manifold property and no two simplices of T over-

lap on a circuit.

(g) T satis�es the oriented pseudo-manifold property and for every triangu-

lation T

�

of the dual oriented matroid M

�

there is a unique simplex in

T whose complement is in T

�

.

Remarks 2.5. (i) As we have already mentioned, statement (a) of our

theorem is essentially the de�nition of an oriented matroid triangulation

by Billera and Munson [9] (see also [11, Section 9.6]). The di�erences are

that there the oriented matroid M was assumed to be acyclic and poly-

topal, and that the original de�nition included the condition that every

element appears in some simplex of the triangulation. This condition is
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redundant for polytopal oriented matroids. For non-polytopal oriented

matroids we prefer to allow triangulations not to use all the elements, as

is already done in Section 9.6 of [11], because this gives a richer structure

to the collection of triangulations of M.

(ii) In the same paper Billera and Munson mention our statement (b) as \a

perhaps more obvious parallel to" the usual de�nition of a triangulation.

They observe that (b) implies (a) [9, p.520] but discard (b) as a de�ni-

tion because it was not clear to them whether (b) is satis�ed for every

lifting triangulation, while statement (a) was. We will introduce lifting

triangulations in De�nition 3.4.

(iii) Observe that from (e) it follows by induction the stronger property that

for every face � of a simplex of T the link link

T

(�) is a triangulation

of M=� . This is essentially Anderson's de�nition of a (perhaps partial)

triangulation of an oriented matroid (she calls triangulations \partial" if

they do not use all the elements). Although she is primarily interested in

the totally cyclic case, she proves that in the acyclic and polytopal case

statements (e) and (a) are equivalent [1, Proposition 5.5].

(iv) Statements (c) and (d) only di�er by the word \some" which changes to

\all". The combination of the two provides the following simple crite-

rion to decide whether a collection T of r-simplices is a triangulation:

�rst check whether T has the oriented pseudo-manifold property. If

yes, choose an arbitrary interior extension in general position and check

whether it is covered exactly once by T . If yes, then T is a triangulation,

by (c). If not, then T is not a triangulation, by (d). For a lexicographic

extension checking this is rather easy.

On the other hand, to check properties (a), (b) or (g) a-priori we need

to construct either all the interior extensions ofM in general position or

all the triangulations of M

�

, which is extremely hard.

Conditions (f) and (e) might be considered at the same level as (c)

and (d) for algorithmic purposes, but (f) is specially suitable for the

construction of all the triangulations of a �xed oriented matroid: one

can iteratively construct all the collections of r-simplices in which no

pair overlaps on a circuit and, for the maximal ones, check whether they

satisfy the pseudo-manifold property.

(v) Can a triangulation of an oriented matroid have two simplices �

1

and

�

2

containing respectively the positive and negative part of a circuit

C = (C

+

; C

�

)? Lemma 1.12 says that the answer is no if M satis�es

the Generalized Euclidean intersection property IP

2

, because �

1

and �

2

would intersect improperly. Hence, in the presence of IP

2

a collection

of full-dimensional simplices is a triangulation if and only if it has the

pseudo-manifold property and no pair of simplices contain respectively

the positive and negative parts of a circuit. This characterization is used

in the realizable case in [28, Proposition 2.2]. It is taken as a de�nition

of circuit admissible triangulation of an oriented matroid in [29].

But we do not know the answer to the question above for general

oriented matroids. In Proposition 5.6 we will show two r-simplices in

the dual of the non-Euclidean oriented matroid EMF(8) which contain the

positive and negative parts of a circuit and still intersect properly. This
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example was obtained after J�org Rambau had shown to the author a

similar behaviour in the oriented matroid R(12) of [33]. In our example,

the two bad simplices do not simultaneously belong to any triangulation

(Proposition 5.6). This issue will appear again in Section 2.4, when we

discuss what is known about the topological type of oriented matroid

triangulations.

2.2. Equivalence of the di�erent characterizations

In this section we prove the equivalence of properties (a) to (f) in Theorem 2.4.

The equivalence of properties (a) and (g) is postponed, and appears as part of the

statement of Theorem 3.8.

Lemma 2.6. Let M be an oriented matroid of rank r. Let T be a collection of

full-rank simplices of M which intersect properly.

(i) Let � = fa

1

; : : : ; a

r�1

g be an (r � 1)-simplex of M contained in two

di�erent r-simplices � [ b

1

and � [ b

2

of T . Then the unique (up to sign

reversal) cocircuit vanishing on � has opposite signs at b

1

and b

2

. In

particular, � is not in a facet of M and � [ b

1

and � [ b

2

are the only

simplices of T containing � .

(ii) Let M[ p be an extension of M in general position. Then there is at

most one simplex � 2 T with p 2 conv

M[p

(�).

(iii) No two simplices of T overlap on a circuit.

Proof. (i) Let � = fa

1

; : : : ; a

r�1

g. Consider the lexicographic extensions of

M by p

1

= [a

+

1

; : : : ; a

+

r�1

; b

+

1

] and p

2

= [a

+

1

; : : : ; a

+

r�1

; b

+

2

]. The signatures of the

two extensions can only di�er in the pair of opposite cocircuits vanishing on � , so

our task is to prove that the two extensions do not coincide. But, if they coincide,

then p

1

= p

2

2 conv(� [ b

1

)\ conv(� [ b

2

) implies that p

1

2 conv(�), by the proper

intersection property. This is impossible since p

1

and p

2

are in general position by

Lemma 1.7(i).

(ii) If � 6= �

0

are two di�erent simplices of T having p in their convex hull, then

p 2 conv

M[p

(� \ �

0

) violates the general position assumption of p.

(iii) Suppose that two simplices �

1

and �

2

overlap on a circuit; that is, there

is a circuit C = (C

+

; C

�

) with C

+

� �

1

and an element a

1

2 C

+

such that

C n fa

1

g � �

2

. Since �

1

and �

2

are independent, C

�

6= ; and a

1

62 �

2

.

Let C

+

:= fa

1

; : : : ; a

k

g and consider the lexicographic extension of M by the

element p := [a

+

k

; : : : ; a

+

1

]. By part (ii) of Lemma 1.7, p 2 conv

M[p

(fa

1

; : : : ; a

k

g) �

conv

M[p

(�

1

). On the other hand, �

1

\ �

2

� �

1

n fa

1

g, and the pair of cocircuits

vanishing on �

1

n fa

1

g do not vanish at p. Thus, p 62 conv

M[p

(�

1

\ �

2

). We will

prove that p 2 conv

M[p

(�

2

), which violates the proper intersection property of �

1

and �

2

.

We will use part (v) of Lemma 1.1, since �

2

is an r-simplex. That is, for

each element a 2 �

2

we consider the cocircuit D vanishing on the facet �

2

n fag

of �

2

and positive at a, and prove that D is non-negative at p. This is clear if

a 2 fa

2

; : : : ; a

k

g = C

+

\ �

2

. In every other case D(p) = D(a

1

). If a 2 �

2

n fCg,

then a

1

lies on the at spanned by �

2

n fag and thus D(p) = D(a

1

) = 0. If

a 2 C

�

� �

2

, then D vanishes on every element of C except a

1

2 C

+

and a 2 C

�

.
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Orthogonality of C and D implies that D has the same sign (possibly zero) at a

and a

1

, and hence at p. �

For a collection T of geometric d-simplices in R

d

, even if it is not a simplicial

complex, it makes sense to de�ne the adjacency graph of T as a graph G whose

vertices are all the d-simplices and in which two d-simplices are joined by an edge if

they have a facet in common. Moreover, given a segment [a; b] in general position

with respect to T , one can de�ne the restriction of G to [a; b] as the subgraph

containing only the vertices and edges corresponding to simplices and facets which

intersect [a; b]. The edges in the graph can naturally be oriented from a to b and

the �nal graph will not have cycles. In the following de�nition and lemma we try to

reproduce this behaviour in the oriented matroid world, the main di�erence being

that we cannot guarantee that cycles do not appear.

Definition 2.7. Let M be an oriented matroid of rank r.

(a) Let T be a non-empty collection of full rank simplices of M. For any

facet � of a simplex of T which is not contained in a facet of M, let C

�

denote a cocircuit vanishing on � . We say that T is a multi-triangulation

if for every such facet � the following two sets have the same cardinality:

f� [ a 2 T : a 2 C

+

�

g; f� [ a 2 T : a 2 C

�

�

g:

(b) Let M

0

= M[ fp

1

; p

2

g be an extension of M by two interior elements

in general position. By this we mean that all the non-zero vectors of

M[fp

1

; p

2

g having either p

1

or p

2

(or both) in their support are spanning

sets. Let T be a multi-triangulation of M. We call adjacency graph of T

restricted to [p

1

; p

2

] any directed graph G

[p

1

;p

2

]

obtained as follows:

� The nodes of G

[p

1

;p

2

]

are the elements � of T for which (fp

1

; p

2

g; �)

is a vector of M

0

.

� The edges of G

[p

1

;p

2

]

arise in the following way: let � be an (r � 1)-

simplex of M for which (fp

1

; p

2

g; �) is a vector (actually a circuit)

of M

0

. In particular, � is not in a facet of M. Let C = (C

+

; C

�

)

be the unique cocircuit of M

0

vanishing on � and with p

1

2 C

�

and p

2

2 C

+

. Let f�

+

1

; : : : ; �

+

k

g be the simplices of T containing

� and with � n � 2 C

+

, and let f�

�

1

; : : : ; �

�

l

g be the simplices of

T containing � and with � n � 2 C

�

. Observe that our notation

implicitly introduces an (arbitrary) ordering on the �

+

i

's and �

�

j

's.

All the simplices �

�

i

satisfy that (�

�

i

; fp

1

; p

2

g) is a covector of M

0

.

Hence they are nodes in G

[p

1

;p

2

]

. Since T is a multi-triangulation,

k = l. We introduce a directed edge going from �

�

i

to �

+

i

for each

i = 1; : : : ; k. We do this for every � .

Observe that the oriented pseudo-manifold property for a collection T of full-

rank simplices of M can be rephrased as \M is a multi-triangulation and the

cardinality of the sets in the de�nition of multi-triangulation is always zero or

one". In particular, every triangulation is a multi-triangulation as well (if we accept

Theorem 2.4, whose proof comes below) and for triangulations the graphs G

[p

1

;p

2

]

are uniquely de�ned: the choice of ordering for the simplices �

�

i

does not appear.

We prefer to de�ne the adjacency graphs G

[p

1

;p

2

]

in the general context of multi-

triangulations as a preparation for Section 3.1 (we will need it in the proof of

Proposition 3.1).
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From the following lemma it is easy to conclude that the oriented pseudo-

manifold property in parts (c), (d) and (f) of Theorem 2.4 can be weakened to \T

is a multi-triangulation".

Lemma 2.8. Let T be a multi-triangulation of an oriented matroid M of rank

r.

(i) There is a certain integer number m � 1 such that any interior extension

of M in general position is covered by exactly m simplices of T (that is,

such that the extension belongs to the convex hull of exactly m simplices).

(ii) For any pair of interior extensions p

1

and p

2

in general position, the

adjacency graph of T restricted to [p

1

; p

2

] consists of exactly m \open"

components which are either isolated nodes or directed paths and perhaps

some \closed" components which are directed cycles.

(iii) If m = 1, then any two simplices � and �

0

of T are connected by a chain

� = �

0

; : : : ; �

k

= �

0

in T such that every two consecutive simplices in the

chain share a facet.

Proof. We start with part (ii) and prove that for any two-element extension

M

0

= M [ fp

1

; p

2

g of M in general position the connected components of the

graph G

[p

1

;p

2

]

are either isolated points, or directed paths, or directed cycles. In

other words, that G

[p

1

;p

2

]

is an oriented 1-manifold with boundary except perhaps

for some isolated points. We also claim that the isolated points correspond to r-

simplices containing both p

1

and p

2

in the convex hull and that the starting and

ending points of the directed paths correspond, respectively, to r-simplices of T

having p

1

or p

2

(but not both) in the convex hull. These claims imply that p

1

and p

2

are covered by exactly the same number of simplices of T , namely, by the

number m of connected components of G

[p

1

;p

2

]

which are not cycles. Since this is

true for any choice of p

1

and p

2

, we will have proved parts (i) and (ii) (but see the

remark at the end of the proof).

If m = 1, then the unique \open" component in the graph G

[p

1

;p

2

]

, where p

1

and p

2

are interior extensions in general position in the convex hulls of simplices

� and �

0

of T , produces a chain joining � to �

0

. For example, let p

1

and p

2

be

positive lexicographic extensions de�ned by the elements of � and �

0

. This proves

part (iii).

The claims we have made on G

[p

1

;p

2

]

follow from the following facts:

(1) if a simplex � has p

1

2 conv

M

0

(�) and p

2

62 conv

M

0

(�), then it is a node

of the graph and there is a unique edge incident to it, which is out-going.

(2) if a simplex � has p

1

62 conv

M

0

(�) and p

2

2 conv

M

0

(�), then it is a node

of the graph and there is a unique edge incident to it, which is in-going.

(3) if a simplex � has p

1

2 conv

M

0

(�) and p

2

2 conv

M

0

(�), then it is an isolated

node of the graph.

(4) if a simplex � has p

1

62 conv

M

0

(�) and p

2

62 conv

M

0

(�), then either it is

not a vertex of the graph, or it is a vertex of the graph with two edges incident to

it, one in-going and one out-going.

All the four facts can be easily proved considering the restriction of M

0

to

� [ fp

1

; p

2

g, which is realizable and uniform (the latter because of the de�nition of

\general position"). In the realized setting, a signed subset (fp

1

; p

2

g; A) is a vector

if and only if the relative interiors of conv(A) and the segment going from p

1

to p

2

intersect.



2.2. EQUIVALENCE OF THE DIFFERENT CHARACTERIZATIONS 21

One remark is in order. Strictly speaking, we have proved that the number m

of part (i) is the same for two extensions M[ fp

1

g and M[ fp

2

g only if they are

the restrictions of a common two-element extensionM[fp

1

; p

2

g ofM. We saw in

the remark after Lemma 1.7 that not every pair of extensions have this property.

If p

1

and p

2

do not have this property, what we can do is consider a lexicographic

extensionM[fp

0

g and construct the adjacency graphs for the two-element exten-

sionsM[fp

1

; p

0

g andM[fp

2

; p

0

g, meaning by these the lexicographic extensions

of M[ fp

1

g and M[ fp

2

g with the same expression used in M[ fp

0

g. Lemma

1.9 ensures that these two-element extensions restrict to M[ fp

0

g under deletion

of p

1

and p

2

, respectively. �

As in the realizable case, one would expect that the adjacency graphs G

[p

1

;p

2

]

never have cycles, but this is obvious only if the extended oriented matroid M[

fp

1

; p

2

g is realizable (more generally, if it is Euclidean in the sense of De�nition

1.11). For non-Euclidean oriented matroids we neither have a proof that the graph

is acyclic nor an example in which it is not.

Showing that ifM[fp

1

; p

2

g is Euclidean then the graph G

[p

1

;p

2

]

is homeomor-

phic to either a point or a segment (and a generalization of this to extensions by

more than two elements) is a key-step in the proof by Anderson [1] of the fact that

any triangulation of a Euclidean oriented matroid is PL-homeomorphic to a sphere

or ball. Our Lemma 2.8 was inspired by Proposition 3.5 in that paper.

The graph G

[p

1

;p

2

]

is also connected to the question of intersection circuits

raised in Remark 2.5(v). See Section 2.4 and, in particular, Proposition 2.17.

Lemma 2.9. Let T be a collection of simplices of an oriented matroid M satis-

fying the oriented pseudo-manifold property. Let � be a face of one of the simplices

of T and let M[ p be an extension with p 2 relint

M[p

(�). Then,

(i) link

T

(�), considered as a collection of full-rank simplices of M=� has the

oriented pseudo-manifold property.

(ii) For every perturbation p

0

of p, interior and in general position, there is

an r-simplex � of T containing � and with p

0

2 conv

M[p

0

(�).

Proof. (i) The independent sets and bases of the contracted oriented matroid

M=� are in bijection with the independent sets and bases of M containing � , via

the map � 7! � [ � . Thus, link

T

(�) is a collection of full-rank simplices in M=� .

The oriented pseudo-manifold property for T in M implies the same property for

link

T

(�) in M=� .

(ii) The element p

0

in the contraction (M[ p

0

)=� is still interior and in general

position. By Lemma 2.8, there is a simplex � in link

T

(�) with p

0

2 conv

(M[p

0

)=�

(�).

We only need to prove that p

0

2 conv

M[p

0

(� [ �), since � [ � 2 T .

We prove this using part (v) of Lemma 1.1: let a be an element in �, let C be

the unique cocircuit C vanishing on � [ � n fag and positive at a. If a 2 � , then

C is non-negative on � , and thus at p (part (iii) of Lemma 1.1) but cannot vanish

at p (part (i) of Lemma 1.2). Thus, C(p) = +1 and since p

0

is a perturbation of p,

C(p

0

) = +1. If a 62 � , then C vanishes on � , which implies that C contracts to a

cocircuit C

�

of M=� with C(p

0

) = C

�

(p

0

�

). As p

0

�

is in the convex hull of �, this

cocircuit C

�

is nonnegative at p

0

�

and C is nonnegative at p

0

. �

Proof of equivalences (a) to (f) in Theorem 2.4:

(d))(b): Since T covers all interior extensions in general position, it also covers

interior extensions not in general position, by part (ii) of Lemma 1.8.
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For the proper intersection property, consider an extension M [ p and two

simplices �

1

and �

2

of T with p 2 conv

M[p

(�

1

) \ conv

M[p

(�

2

). Let � be the

minimal face of �

1

such that p 2 conv

M[p

(�). This implies that p 2 relint

M[p

(�).

We will prove that � � �

2

, that is, that the simplices intersect properly. Consider

the lexicographic perturbation p

0

of p using the elements of �

2

with positive signs,

so that p

0

2 conv

M[p

0

(�

2

), by part (iv) of Lemma 1.8 and the fact that p 2

conv

M[p

(�

2

). Since p

0

is a perturbation of p into general position, part (ii) of

Lemma 2.9 implies that there is a simplex �

0

of T containing � and with p

0

2

conv

M[p

0

(�

0

). We must have �

0

= �

2

since T covers all interior extensions in

general position exactly once.

(b))(a): Let � := fa

1

; : : : ; a

r�1

g be an (r�1)-simplex not contained in a facet

of M, and contained in a simplex � = � [ b of T . Since � is not in a facet, there is

an element a

r

such that the cocircuit C vanishing on � has opposite signs at b and

a

r

. Consider the lexicographic extensions ofM by elements p := [a

+

1

; : : : ; a

+

r�1

] and

p

0

:= [a

+

1

; : : : ; a

+

r

]. The extension by p

0

is interior and in general position and thus

there is a simplex �

0

in T with p

0

2 conv

M[p

0

(�

0

). Since p

0

is a perturbation of p,

also p 2 conv

M[p

(�

0

) (part (ii) of Lemma 1.8). But p 2 conv

M[p

(�) as well, and

thus p 2 conv

M[p

(� \ �

0

). The fact that p is in the relative interior of � implies

� � �

0

. This proves the pseudo-manifold property for T .

(a))(c): That the oriented pseudo-manifold property is satis�ed is part (i) of

Lemma 2.6. For proving that T covers some interior extension in general position

exactly once consider the lexicographic extension ofM by p := [a

+

1

; : : : ; a

+

r

], where

� = fa

1

; : : : ; a

r

g is an r-simplex in T . Clearly p 2 conv

M[p

(�). By part (ii) of

Lemma 2.6, T covers p only once.

(c)) (d): Straightforward from Lemma 2.8, since the oriented pseudo-manifold

property is stronger than the hypothesis in the lemma. This �nishes the equiva-

lences (a) , (b), (c), (d).

(d) ) (e): The case of rank 1 is trivial. Suppose rank(M) > 1. We �rst

claim that for every a 2 E contained in some element of T and every � 2 T with

a 2 conv

M

(�) one has a 2 �. This proves the last assertion in statement (e) since

T is not empty.

For the claim, let � 2 T with a 2 conv

M

(�). If a 62 � then there is a subset

� � � such that (fag; �) is a circuit. Let p be the extension of M parallel to a,

and let p

0

be any perturbation of p interior and in general position. By part (ii) of

Lemma 2.9, applied once with fag and once with � as the face of a simplex of T ,

there are simplices �

1

and �

2

in T covering p

0

and containing respectively a and

� . These two simplices must be di�erent, since � [ fag is dependent. But this is

impossible since T satis�es (d). This proves that a 2 �.

Now we prove that for every a 2 E, link

T

(a) is either empty or a triangulation

of M=a. If it is not empty, it has the oriented pseudo-manifold property (con-

sidered in M=a) by part (i) of Lemma 2.9. We will prove that link

T

(a) satis�es

characterization (c) of triangulations.

Let p

0

be any perturbation interior and in general position of the extension ofM

parallel to a. Let p denote the extension ofM=a de�ned by (M=a)[p = (M[p

0

)=a.

Every � 2 T with p

0

2 conv

M[p

0

(�) has also a 2 conv

M[p

0

(�) (part (ii) of Lemma

1.8) and, hence, by what we proved above, it has a 2 �. By (d), exactly one such

� exists. Clearly one also has p 2 conv

(M[p)=a

(� n fag).
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We have to prove that no other �

a

2 link

T

(a) has p

0

2 conv

(M[p

0

)=a

(�

a

). In

other words, that if p

0

2 conv

(M[p

0

)=a

(�

a

) then the pair of cocircuits ofM vanishing

on �

a

have the same sign at a and p

0

(and hence p

0

2 conv

M[p

0

(�

a

[ fag)). But

this is trivial since those cocircuits cannot vanish at a and since p

0

is a perturbation

of the extension parallel to a.

(e))(c): The fact that the link of every element is either empty or a triangu-

lation and that triangulations satisfy (e) recursively implies that the link of every

simplex � is either empty or a triangulation of M=� . This property applied to

the simplices of rank rank(M) � 1 is stronger than the oriented pseudo-manifold

property.

In order to �nd an extension which is covered exactly once, let a be an element

such that a 2 conv

M

(�) and � 2 T implies that a 2 �. Let � := fa; a

2

; : : : ; a

r

g be

an r-simplex of T containing a (it exists since a, considered as an extension, has

to be covered by a simplex of T having a as a vertex). Consider the lexicographic

extension by the element p := [a

+

; a

+

2

; : : : ; a

+

r

]. We have that p 2 conv

M[p

(�) and

will show that � is the only simplex of T with this property.

For this we consider the contraction (M[ p)=a of M[ p, which is an interior

extension in general position of M=a, and denote it (M=a) [ p

a

. The extensions

(M [ p)=a and (M=a) [ p

a

are in the conditions of Lemma 1.10. The simplex

fa

2

; : : : ; a

r

g is the unique element of T

a

having p

a

in its convex hull, since T

a

is a

triangulation. By part (vi) of Lemma 1.10 � = fa; a

2

; : : : ; a

r

g is the unique simplex

of T containing a and which has p in its convex hull. On the other hand, simplices

of T not containing a do not have a in their convex hull and, thus, do not have p.

Hence, T covers p exactly once.

(a))(f) Follows from part (iii) of Lemma 2.6.

(f))(e) The case of rank 1 is trivial. For the general case, let a be an arbitrary

vertex of a simplex of T . If a 2 conv

M

(�) for a simplex � 2 T with a 62 �, then

there is a circuit ofM of the form (fag; B) with B � A. That is, � and any simplex

of T having a as a vertex overlap on the circuit (fag; B). This proves the last part

of (e).

We will now prove that the link of every vertex of T satis�es (f). Inductively we

assume that (f) and (a) are equivalent in rank lower than rank(M), which implies

that the link of every vertex in T is a triangulation.

Thus, let a 2 E be a vertex of T . The pseudo-manifold property for link

T

(a)

follows from the pseudo-manifold property of T in the same way as we proved the

oriented pseudo-manifold property in part (i) of Lemma 2.9. Now suppose that two

simplices �

1

and �

2

of link

T

(a) overlap on a circuit C = (C

+

; C

�

) of M=a. That

is, C

+

� �

1

and there is an element a

1

in C

+

such that C n fa

1

g � �

2

. If (C

+

; C

�

)

is a circuit ofM=a, then one of (C

+

; C

�

), (C

+

[fag; C

�

) and (C

+

; C

�

[fag) is a

circuit in M. In the three cases we have that �

1

[ fag and �

2

[ fag overlap in that

circuit. �

2.3. Some properties of triangulations

Here we prove several properties of triangulations which either are interesting

by themselves or will be used later on. Given two collections A and B of subsets of

two disjoint sets E and F respectively, the join A�B denotes the following collection

of subsets of E [ F :

A �B := f� [ � : � 2 A; � 2 Bg:
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We will use A � b as an abbreviation for A � ffbgg.

Proposition 2.10. Let M be an oriented matroid of rank r on a set E and let

a be any element of E. Let T be a triangulation of the restricted oriented matroid

M(E n a).

(i) If a 2 conv

M

(E n fag), then T is a triangulation of M.

(ii) If a 62 conv

M

(E n a) (i.e., a is a vertex of M), let T

a

be the collection

of facets of simplices of T which \are visible" from a. More precisely, an

(r� 1)-simplex � of M is in T

a

if and only if it is contained in a simplex

of T and there is a cocircuit of M which is zero on � , positive at a and

non-positive on E n fag. Then, T [ (T

a

� a) is a triangulation of M.

(iii) In the conditions of (ii), T

a

is a triangulation of M=a.

Moreover, in parts (i) and (ii) the triangulation of M exhibited is the only trian-

gulation of M which extends T .

Proof. (i) This is obvious from characterization (c) in Theorem 2.4.

(ii) We will prove that T

0

:= T[(T

a

�a) satis�es characterization (c) of Theorem

2.4. We �rst prove that T

0

covers some interior extension exactly once. Consider

an interior extensionM[ p with p 2 conv

M[p

(E n a). Since T is a triangulation of

M(E n a) the simplices of T cover p exactly once. In the other hand, the simplices

of the form � [ a with � 2 T

a

do not cover p, since there is a cocircuit vanishing on

� and with opposite signs at p and a (compare Lemma 1.1(v)).

Secondly we prove that T

0

satis�es the oriented pseudo-manifold property: for

those (r�1)-simplices which are interior inM(E na) this is clear, from the oriented

pseudo-manifold property of T . For an (r�1)-simplex � = fa

1

; : : : ; a

r�1

g in T

a

, let

a

r

be any negative element of the cocircuit positive at a and which vanishes on � .

There is at least one r-simplex of T containing � , by de�nition of T

a

, and at most one

because any such simplex covers the lexicographic extension p = [a

+

1

; : : : ; a

+

r�1

; a

�

r

]

of M(E n a), which is interior and in general position. This simplex and � [ fag

are the only simplices in T [ (T

a

� a) containing � and they are in the conditions of

the oriented pseudo-manifold property by de�nition of visible.

We �nally have to deal with the (r � 1)-simplices of T

0

which are interior and

use the element a. These simplices are of the form � [ a, where � is an (r � 2)-

simplex in a facet of M(E n a) such that � [ b

1

is a boundary (r � 1)-simplex of T

visible from a for some b

1

2 E n a.

Consider the link L := link

T

(�). By characterization (e) of Theorem 2.4, L

is a triangulation of the oriented matroid M(E n a)=�, which has rank 2 and is

not totally cyclic. Rank 2 easily implies the following properties: L has exactly

two boundary rank-1 simplices. One is fb

1

g for the afore mentioned b

1

and we let

the other be fb

2

g (i.e. � is contained in exactly two boundary (r � 1)-simplices

�

1

= � [ fb

1

g and �

2

= � [ fb

2

g of the triangulation T ). Since a is interior in M=�

but an exterior extension of M(E n a)=� (because �[ fag is interior in M but a is

the only positive element in one of the two cocircuits vanishing on � [ b

1

) both b

1

and b

2

are visible from a and they lie in opposite sides of the cocircuits (of M=�)

vanishing at a. We conclude that the link of �[a in T

a

�a consists exactly of the two

elements b

1

and b

2

, and that they lie on opposite sides of the cocircuits vanishing

on � [ a. I.e. we conclude the oriented pseudo-manifold property for � [ a.

(iii) Since T

a

= link

T[(T

a

�a)

(a), this follows from part (ii) and characterization

(e) in Theorem 2.4.
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The �nal sentence is trivial: both in parts (i) and (ii) it is obvious that any trian-

gulation of M extending T will contain the one we state. But two triangulations

of an oriented matroid cannot be one properly contained in the other, for example

by characterization (d) of Theorem 2.4. �

Proposition 2.10 provides a natural way of iteratively constructing a triangula-

tion of an oriented matroidM. Let k be the corank ofM and let �

�

= fa

1

; : : : ; a

k

g

be any basis of the dual oriented matroidM

�

, whose elements we consider ordered

by their labels. Let � = E n �

�

, which is a basis of M. Then, T

0

:= f�g is a trian-

gulation of M(�) and for each i = 1; : : : ; k we let T

i

be the unique triangulation of

M(� [ fa

1

; : : : ; a

i

g) which extends T

i�1

. The triangulation T

k

of M obtained in

this way is well-known in the realized case and called the placing triangulation for

that speci�c order of the elements (see [25]). It is also called pushing triangulation

for reasons which will become apparent in Remark 4.4. Our next result shows that

this triangulation is a particular case of the lexicographic triangulations that will

be introduced in De�nition 3.4. In the statement and in the proof, �(M) denotes

the collection of all full-rank simplices (bases) of an oriented matroid M.

Proposition 2.11. LetM be an oriented matroid of rank r and corank k, with

dual M

�

. Let � be a basis of M and let its complement be �

�

= fa

1

; a

2

; : : : ; a

k

g,

with its elements ordered as shown by their labels. Let M

�

[ p be the positive

lexicographic extension of M

�

with p := [a

+

k

; : : : ; a

+

2

; a

+

1

].

Then, the placing triangulation of M associated with the given ordering of the

elements of �

�

, i.e. the triangulation obtained by starting with � and then placing

the points of �

�

in the order of their labels, equals

f� 2 �(M) : p 2 conv

M

�

[p

(E n �)g:

Proof. For any interior extension p in general position of the dual M

�

, the

collection T

p

:= f� 2 �(M) : p 2 conv

M

�

[p

(E n �)g is a triangulation of M (this

will be proved in Corollary 3.3). In the case of the lexicographic extension p :=

[a

+

k

; : : : ; a

+

2

; a

+

1

], Lemma 1.10 (specially parts (iv) and (vi)) implies that T

p

extends

the triangulation T

p

0

:= f� 2 �(Mn a

k

) : p

0

2 conv

(M

�

[p

0

)=a

k

(E n (� [ fa

k

g))g of

Mn a

k

given by the lexicographic extension p

0

= [a

+

k�1

; : : : ; a

+

2

; a

+

1

] of M

�

=a

k

.

By induction on k, T

p

0

is the placing triangulation ofMna

k

. Then, uniqueness

in Proposition 2.10 implies that T

p

is the placing triangulation as well. �

We now consider the following notion of restriction of a triangulation to a face.

Let T be a triangulation of an oriented matroidM and let F be a face ofM of rank

k. We will call restriction of T to F the following collection of full-rank-simplices

of M(F ):

f� : rank(�) = k; � � F; 9� 2 T with � � �g:

Corollary 2.12. Let T be a triangulation of an oriented matroid M and F

be a face of M of rank k. Then, the restriction of T to F is a triangulation of

M(F ).

Proof. Using recursion we only need to prove the case of F being a facet, i.e.,

rank(M) = k + 1. In this case let fa

1

; : : : ; a

k

g be a k-simplex in F and let b 62 F

be an element of M. Then the lexicographic extension by p := [a

+

1

; : : : ; a

+

k

; b

�

]

is exterior to M. Moreover, the triangulation T

p

of (M [ p)=p of part (iii) of

Proposition 2.10 is precisely the collection of simplices T

F

. Observe that although
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(M[ p)=p and M(F ) are di�erent oriented matroids, the �rst one is an extension

of the second one by some interior elements. This implies that T

p

= T

F

is a

triangulation of M(F ) as well, as stated in Proposition 2.10. �

Proposition 2.13. Let M be an oriented matroid of corank 1 on a set E. Let

C = (C

+

; C

�

) be one of the two (opposite) circuits of M. Then,

� If both parts of C are non-empty (i.e., if M is acyclic) the only triangu-

lations of M are

T

+

:= fE n feg : e 2 C

+

g

and

T

�

:= fE n feg : e 2 C

�

g:

� Otherwise, the only triangulation of M is

T := fE n feg : e 2 Cg:

Proof. The oriented matroidM has one more element than its rank. Actually,

its maximal simplices (bases) are the subsets C n feg, for e 2 C. In case (ii) this

implies that any triangulation of M is contained in T . In case (i), the fact that

no two simplices of a triangulation overlap on a circuit (characterization (f) in

Theorem 2.4) implies that every triangulation is contained in either T

+

or T

�

.

Since no two triangulations of an oriented matroid can be contained in one

another, we will have �nished if we prove that T , T

+

and T

�

are in fact triangu-

lations. This is easy to verify; it will also be a trivial consequence of Corollary 3.3

in the next section, since the dual M

�

has rank 1. �

2.4. Topology of triangulations

For any triangulation T of an oriented matroid M we consider the simplicial

complex P(T ) of which T is the collection of maximal simplices. If M is realizable

of rank r, then P(T ) is PL-homeomorphic to an (r � 1)-sphere or to an (r � 1)-

ball, depending on whether M is totally cyclic or not. Probably the central open

problem in the theory of oriented matroid triangulations is whether this is also the

case for non-realizable oriented matroids. Here we give a partial answer, following

mostly the work of Laura Anderson [1].

Proposition 2.14. Let T be a triangulation of an oriented matroid M of rank

r. Let P(T ) be the simplicial complex induced by T .

(i) If M is totally cyclic, then P(T ) is an orientable, strongly connected,

pseudo-manifold of dimension r � 1 without boundary.

(ii) Otherwise, P(T ) is an orientable, strongly connected, pseudo-manifold of

rank r � 1 whose boundary is a triangulation of a totally cyclic oriented

matroid of rank r�1. If M is uniform, then the boundary is a PL-sphere

of dimension r � 2.

Proof. The oriented pseudo-manifold property of a triangulation T implies

that P(T ) is a pseudo-manifold whose boundary is made of (r�1)-simplices all lying

in proper faces ofM and that the chirotope ofM induces a coherent orientation on

P(T ). Part (ii) of Lemma 2.8 has the consequence that P(T ) is strongly connected

(this appears also in [1, Proposition 4.2]). This proves the statement, except for

the assertions concerning the boundary of P(T ).
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IfM is totally cyclic, the boundary is clearly empty. If not, let p be an exterior

extension of M, meaning that p 62 conv

M[p

(E), where E is the ground set of M.

M[ p is a totally cyclic oriented matroid. Applying the procedure of Proposition

2.10 we get a triangulation T

0

= T[(T

p

�p) ofM[p which extends T . The boundary

of P(T ) clearly coincides with link

T

0

(p), which is a triangulation of (M[ p)=p.

If M is uniform or, more generally, if every proper face of M is a simplex,

then the boundary of P(T ) is precisely the Las Vergnas face lattice of M, which

is a PL-sphere of dimension r � 2 by [11, Proposition 9.1.1]. (Remark: that result

assumes M to be acyclic, but can be adapted to the non-totally cyclic case, which

is more general, without di�culty). �

Proposition 2.15. Let r be a natural number. The following statements are

equivalent:

(a) For every triangulation T of every rank r + 1 oriented matroid, P(T ) is

an r-manifold (possibly with boundary).

(b) For every triangulation T of every rank r oriented matroid, P(T ) is an

(r � 1)-sphere if M is totally cyclic and an (r � 1)-ball otherwise.

(c) For every triangulation T of every totally cyclic rank r oriented matroid,

P(T ) is an (r � 1)-sphere.

Proof. The implications from (b) to both (a) and (c) are obvious. The impli-

cation from (a) to (b) is also obvious, taking into account that every triangulation

T of rank r appears as a link in a triangulation of rank r + 1, namely the cone of

T with apex in a coloop.

For the implication from (c) to (b), observe that any non-totally cyclic oriented

matroid M has a totally cyclic extension M [ p (take as p the opposite of any

relative interior extension). Any triangulation T of M extends to a triangulation

T

0

of M[ p with the placing procedure of Proposition 2.10. P(T ) is the antistar

of p in the simplicial complex P(T

0

) and, thus, it is an (r � 1)-ball. �

Any of the conditions in the statement of Proposition 2.15 is easy to check for

the class of lifting triangulations de�ned in [11, Section 9.6], using that the proper

faces of an acyclic oriented matroid of rank r form a poset isomorphic to a cell

decomposition of an (r � 2)-sphere [11, Proposition 9.1.1]. Lifting triangulations

will be of central importance in the second half of this paper (see De�nitions 3.4 and

4.1). Anderson [1] has shown that the conditions hold when restricted to Euclidean

oriented matroids. Observe that all oriented matroids of rank up to 3 are Euclidean.

Theorem 2.16 (Anderson). All triangulations of totally cyclic Euclidean orien-

ted matroids of rank r are spheres of dimension r � 1.

Sketch of proof (see [1] for details). LetM be a totally cyclic oriented ma-

troid. Then:

(i) M has triangulations which are spheres; for example, lifting triangula-

tions. Hence, we only need to prove that any two triangulations T

1

and

T

2

of M are PL-homeomorphic.

(ii) Without loss of generality we assume that T

1

and T

2

do not use any

common element of M. To obtain this, \double" each element of M

(i.e., extend by an element parallel to it) and consider one copy of the

element as used in T

1

and the other in T

2

.
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(iii) Consider the collection R

M

(T

1

; T

2

) of vectors of M with positive part

in P(T

1

) and negative part in P(T

2

). This collection of vectors can be

given a topology in two equivalent ways: either as the order complex of

its natural poset structure or as a subcomplex of the topological repre-

sentation of the dual M

�

as a cell decomposition of a sphere. If M is a

realized oriented matroid then R

M

(T

1

; T

2

) coincides with the face poset

of the common re�nement of T

1

and T

2

that one gets by superimposing

the two triangulations.

(iv) Using Euclideanness of M, prove that R

M

(T

1

; T

2

) is indeed a PL-re�ne-

ment of both P(T

1

) an P(T

2

). This is the hard part of the proof. �

Part of step (iv) above consists in proving that the adjacency graphs G

[p

1

;p

2

]

of

De�nition 2.7 and Lemma 2.8 cannot have cycles, for triangulations of Euclidean

oriented matroids. Our following statement, due to Rambau, shows that this prop-

erty is in turn related to the question of \circuit intersections" between simplices

of a triangulation, in the sense of Remark 2.5(v). Remember that:

� In De�nition 2.8, from a triangulation T of M and an extension M[

fp

1

; p

2

g by two interior elements in general position we constructed the

adjacency graph G

[p

1

;p

2

]

whose vertices and edges were respectively the

full-rank and corank 1 simplices � in T such that (�; fp

1

; p

2

g) is a vector

in M[ fp

1

; p

2

g. We proved in Lemma 2.8 that the graph consists of a

distinguished \open" component homeomorphic to a point or a segment

and, perhaps, some closed components homeomorphic to cycles.

� In Remark 2.5(v) we asked whether a circuit C = (C

+

; C

�

) can exist

with both C

+

and C

�

in P(T ). If this happens, let us say that the

circuit C is an intersection circuit of T . Part (g) of Theorem 2.4 implies

that C

+

and C

�

have at least two elements each if C is an intersection

circuit.

Proposition 2.17 (Rambau). Let T be a triangulation of an oriented matroid

M:

(i) If the graph G

[p

1

;p

2

]

has a cycle for some pair of extensions, then T has

an intersection circuit.

(ii) Conversely, if T has an intersection circuit and one of C

+

or C

�

has only

2 elements, then the graph G

[p

1

;p

2

]

constructed with certain perturbations

of those two elements has a cycle.

Proof. Part (i) is the main result in [29]. Let us prove (ii).

Let (C

+

; C

�

) be an intersection circuit of a triangulation T , so that both C

+

and C

�

are contained in simplices of T . Suppose further that C

+

has only two

elements.

Let C

+

= fa

1

; a

2

g and C

�

= fb

1

; : : : ; b

k

g (k � r�1). Let � = fb

1

; : : : ; b

r�1

g be

a corank 1 simplex of T containing C

�

and such that �[fa

1

g is a basis. This can be

obtained starting with any full-rank simplex � of T containing C

�

and extracting

from � [ fa

1

g a basis which extends the independent set C

�

[ fa

1

g. We will have

that � [ fa

2

g is a basis too, since the unique circuit with support in � [ fa

1

; a

2

g is

(fa

1

; a

2

g; C

�

).

Consider the positive lexicographic extension of M by two elements p

1

:=

[a

+

1

; a

+

2

; b

+

1

; : : : ; b

+

r�1

] and p

2

:= [a

+

2

; a

+

1

; b

+

1

; : : : ; b

+

r�1

]. More precisely, �rst extend

M by p

1

and then M[ fp

1

g by p

2

. Observe that the lexicographic expressions
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contain redundancy, since the elements in them are not independent. Let M

0

=

M[ fp

1

; p

2

g.

We �rst look at the contraction of M and M

0

at fa

1

; a

2

g. The extensions

p

1

and p

2

become two lexicographic extensions in general position obtained with

the same lexicographic expression. In particular, both of them lie in the relative

interior of a unique and the same simplex of the triangulation link

T

(fa

1

; a

2

g). Let

� be this simplex. Then, � [ fa

1

; a

2

g is a simplex of T containing both p

1

and

p

2

in its relative interior, by part (vi) of Lemma 1.10. In particular, � [ fa

1

; a

2

g

represents an isolated node in the graph G

[p

1

;p

2

]

.

On the other hand, Lemma 2.8, together with characterrizations (c) or (d)

of Theorem 2.4, implies that all but one of the components of G

[p

1

;p

2

]

are cycles.

Hence, we just need to prove that � [ fa

1

; a

2

g is not the only node in G

[p

1

;p

2

]

.

The oriented matroid M(� [ fa

1

; a

2

g) is realizable and has (C

+

; C

�

) as its

unique circuit. In particular, in any realization of it the segment conv(fa

1

; a

2

g)

and the simplex conv(�) intersect in an interior point of the former. The restriction

of M

0

to � [ fa

1

; a

2

; p

1

; p

2

g is a lexicographic two-element extension of M(� [

fa

1

; a

2

g) obtained by perturbing the points a

1

and a

2

in a certain way \towards

the interior". In a suitable realization, we will have p

1

and p

2

in the relative interior

and \arbitrarily close" to a

1

and a

2

respectively. The description ofM(�[fa

1

; a

2

g)

above implies that (in the realization) the segment conv(fp

1

; p

2

g) and the simplex

conv(�) intersect in a point in the relative interior of both. I.e., (fp

1

; p

2

g; �) is a

vector inM

0

(� [fa

1

; a

2

; p

1

; p

2

g) and, hence, also inM

0

. In particular, � is an edge

in the graph G

[p

1

;p

2

]

. �

To close the circle of concepts, there is a simple reason why Anderson's proof of

Theorem 2.16 has little hope of working for triangulations that contain intersection

circuits, in case they exist. Let T be such a triangulation and let's try to apply

the ideas in the proof of Theorem 2.16 with T

1

= T

2

= T . We get that the poset

R

M

(T; T ) indeed has a part homeomorphic to P(T ), consisting of vectors whose

positive and negative parts are parallel copies of the di�erent simplices in P(T ).

But the intersection circuits provide extra cells in R

M

(T; T ). Hence, R

M

(T; T ) is

no longer a PL-re�nement of P(T ).

?

Let us �nish with a description of the situation in rank 4. This is the �rst

open case, since every rank 3 oriented matroid is Euclidean. We know by Proposi-

tions 2.14 and 2.15 that rank 4 triangulations are orientable connected manifolds,

without boundary if M is totally cyclic and with a boundary homeomorphic to

S

2

otherwise. Knowing that they are simply connected would imply that they

are homotopy equivalent to 3-spheres or 3-balls (and \homeomorphic to", modulo

Poincar�e conjecture. . . ) Studying the fundamental group of triangulations seems

to be a crucial step in resolving the topology problem. This study essentially boils

down to have an analogue of the graph G

[p

1

;p

2

]

and, more importantly, of Lemma

2.8, for extensions by three elements.

As for the adjacency graphs and intersection circuits, observe that circuits in

rank 4 have at most 5 elements and, hence, at most two elements in one of the

sides. Proposition 2.17 implies that in rank 4 the existence of intersection circuits

is equivalent to the existence of extensions for which the adjacency graph have

cycles.





CHAPTER 3

Duality between Triangulations and Extensions

3.1. Circuit, cocircuit, extension and triangulation vectors

The goal of this section is to prove that every interior extension in general po-

sition of an oriented matroidM has associated a triangulation of the dual oriented

matroid M

�

. The triangulations which can be obtained in this way will be called

lifting triangulations ofM

�

(De�nition 3.4) and in a certain sense are the analogue

in oriented matroid terms of the regular triangulations (see Examples 5.1) of a point

con�guration. A di�erent, more geometric, de�nition of lifting triangulations ap-

pears in [11, Section 9.6]. In Section 4.1 we will prove the equivalence of the two

de�nitions. De�nition 3.4 makes more explicit the importance of duality in the

context of triangulations.

The use of lifting triangulations will allow us to extend to the non-realizable

case most of the results in Sections 2 and 5 of [14]. In particular, the following

notations come from Section 5 in that paper.

Let M be an oriented matroid of rank r. Let �(M) denote the collection of

all bases (r-simplices) of M. Let e

�

denote the standard basis vector of R

�(M)

corresponding to an r-simplex � of M. For any triangulation T � �(M) we

consider its characteristic vector v

T

2 R

�(M)

, which has coordinates (v

T

)

�

= 1 if

� 2 T and (v

T

)

�

= 0 if � 62 T .

Let � be an (r � 1)-simplex of M. Let C = (C

+

; C

�

) be the unique (up

to sign reversal) cocircuit vanishing on � . We de�ne the cocircuit vector Co

�

2

f�1; 0; 1g

�(M)

by

Co

�

:=

X

i2C

+

e

�[i

�

X

j2C

�

e

�[j

:

We say that a cocircuit vector is interior if both +1 and �1 appear among the

coordinates of Co

�

(i.e., if � is not in a facet of M). Let Co(M) denote the

collection of all cocircuit vectors Co

�

, where � runs over all (r � 1)-simplices of

M. We denote by Co

int

(M) the set of interior cocircuit vectors, i.e of cocircuit

vectors which have positive and negative entries. M is totally cyclic if and only if

Co(M) = Co

int

(M).

Dually, let � be a spanning (r+1)-subset ofM. Then � contains a unique (up

to sign reversal) signed circuit C = (C

+

; C

�

) of M. We de�ne the circuit vector

Ci

�

2 f�1; 0; 1g

�(M)

by

Ci

�

:=

X

a2C

�

e

�nfag

�

X

a2C

+

e

�nfag

:

We say that Ci

�

is an acyclic circuit vector if both +1 and �1 appear among the

coordinates of Ci

�

(i.e., if the restriction M(�) is acyclic). Let Ci(M) denote the

31
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set of all circuit vectors and Ci

ac

(M) the subset of acyclic circuit vectors. M is

acyclic if and only if Ci(M) = Ci

ac

(M).

Finally, let M[ p be an extension of M with p in general position. We de�ne

the extension vector Ext

p

2 R

�(M)

of p by

Ext

p

:=

X

�2�(M)

p2conv

M[p

(�)

e

�

:

Observe that di�erent extensions can produce the same extension vector. An ex-

tension is interior if and only if its extension vector is non-zero.

We �x the standard inner product h � ; � i on R

�(M)

. An r-subset � of E is a

basis of M if and only if its complementary E n � is a basis in the dual oriented

matroidM

�

, which has rank (jEj�r). Thus, we can identify �(M) and �(M

�

) by

complementarity, and this induces an identi�cation of R

�(M)

with R

�(M

�

)

. From

duality between circuits and cocircuits it follows that, under this identi�cation,

Ci(M) = Co(M

�

) and Ci

ac

(M) = Co

int

(M

�

). The utility of the above notation

becomes clear in the following statement. Observe that the equations hCo

�

; v

T

i = 0

of parts (b) and (c) are the same as saying that T is a multi-triangulation, in the

sense of De�nition 2.7.

Proposition 3.1. Let T be a collection of r-simplices of an oriented matroid

M of rank r. Let v

T

2 R

�(M)

be its characteristic vector. Then, the following

conditions are equivalent:

(a) T is a triangulation of M.

(b) hCo

�

; v

T

i = 0 for every interior cocircuit vector Co

�

and hExt

p

; v

T

i = 1

for some interior extension M[ p of M in general position.

(c) hCo

�

; v

T

i = 0 for every interior cocircuit vector Co

�

and hExt

p

; v

T

i = 1

for every interior extension M[ p of M in general position.

Proof. The \extension equation" hExt

p

; v

T

i = 1 means the same as \T covers

p exactly once". The \cocircuit equations" hCo

�

; v

T

i = 0 for interior co-rank 1

simplices are weaker than the oriented pseudo-manifold property. This gives the

implication from (a) to (b), using characterization (c) of triangulations in Theorem

2.4. The implication from (b) to (c) follows from Lemma 2.8, since the cocircuit

equations are a reformulation of being a multi-triangulation.

Suppose now that T is in the conditions of (c). By Theorem 2.4 we only

need to prove that T satis�es the oriented pseudo-manifold property. Let � =

fa

1

; : : : ; a

r�1

g be a codimension-one simplex ofM not contained in a facet and let

C = (C

+

; C

�

) be a cocircuit vanishing on � . From the cocircuit equations in part

(c) it follows that the number of simplices of T of the form � [a with a 2 C

+

equals

the number of those with a 2 C

�

. The oriented pseudo-manifold property will be

established if we prove that this number is at most one.

If the number is at least two then let a; b 2 C

+

such that �[a and �[b are in T .

The lexicographic extensions by [a

+

1

; : : : ; a

+

r�1

; a

+

] and [a

+

1

; : : : ; a

+

r�1

; b

+

] coincide:

By de�nition, their cocircuit signatures could only di�er on the cocircuits vanishing

on � , but at these cocircuits the sign of a and b is the same. Hence, this interior

and in general position lexicographic extension is contained in two simplices of T ,

violating (c). �

Proposition 3.2. Let M be a rank r oriented matroid on E. Let M

�

be the

dual oriented matroid. Let M[ p an extension of M in general position. Then,
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(i) For any extensionM

�

[p

�

ofM

�

in general position, there is at most one

r-simplex � ofM such that p 2 conv

M

(�) and p

�

2 conv

M

�

(En�). That

is, hExt

p

; Ext

p

�

i � 1, under the identi�cation of �(M) and �(M

�

).

(ii) If p is interior, then there exists a p

�

for which equality holds in the

previous equation.

(iii) hCi

�

; Ext

p

i = 0, for every acyclic circuit vector Ci

�

of M.

Proof. Suppose that there were two r-simplices �

1

6= �

2

in M with p 2

conv

M[p

(�

i

) and p

�

2 conv

M

�

[p

�

(E n �

i

), for i = 1; 2. By the general position

assumption, (fpg; �

1

) and (fpg; �

2

) are circuits in M. Hence, there are �

1

and

�

2

with �

1

n �

2

� �

1

� �

1

and �

2

n �

1

� �

2

� �

2

such that (�

1

; �

2

) is a vector

in M. The same argument (in the dual) implies that there are �

�

1

and �

�

2

with

�

2

n �

1

� �

�

1

� E n �

1

and �

1

n �

2

� �

�

2

� E n �

2

and such that (�

�

1

; �

�

2

) is a vector

inM

�

, i.e. a covector in M . These violates orthogonality of vectors and covectors,

which proves (i).

If p is interior then there is an r-simplex � ofM for which p lies in conv

M[p

(�).

Let �

�

:= fa

1

; : : : ; a

jEj�r

g be the complement of � in E. To prove (ii), take p

�

to

be the lexicographic extension by the element p

�

:= [a

+

1

; : : : ; a

+

jEj�r

].

For (iii), we can assume that p 2 conv

M[p

(�), since otherwise the inner product

is clearly zero. If this is the case, the value of the inner product will be the same

in M[ p and in M

0

:= (M[ p)(� [ p), which is acyclic. In the oriented matroid

M

0

the equation hCi

�

; Ext

p

i = 0 follows from parts (i) and (ii) using the fact that

the positive and negative parts of Ci

�

are the characteristic vectors of the two only

triangulations of M(�), shown in Proposition 2.13. �

Corollary 3.3. Let M be an oriented matroid on a set E and let M

�

be

its dual oriented matroid. Let M

�

[ p

�

be an interior extension of M

�

in general

position. Then, the following is a triangulation of M:

f� 2 �(M) : p

�

2 convM

�

[ p

�

(E n �):

In other words, the extension vector Ext

p

�

in R

�(M

�

)

is the characteristic vector

of a triangulation of M, under the identi�cation between �(M

�

) and �(M).

Proof. Straightforward from Propositions 3.1 and 3.2, taking into account

that the interior cocircuit vectors of M correspond to the acyclic circuit vectors of

M

�

in the identi�cation of �(M) and �(M

�

). �

Definition 3.4. The triangulations of M obtained by interior extensions in

general position of the dual oriented matroid M

�

, as in Corollary 3.3, are called

lifting triangulations. Those obtained by lexicographic extensions are called lexico-

graphic triangulations.

Lifting triangulations and in particular lexicographic ones will play an impor-

tant role in the rest of the paper. The placing triangulations introduced in Section

2.3 were an example of them and Chapter 5 is explicitly devoted to their study. A

geometric interpretation of lifting triangulations is given in Section 4.1. In partic-

ular, Remark 4.4 shows how to understand lexicographic triangulations in terms of

\pushings" and \pullings", as was done in [24].

3.2. The a�ne span of characteristic vectors of triangulations

The following two results are dual to one another and inspired by Theorem

2.2 in [14]; actually our proof of Theorem 3.5 is essentially taken from that paper,
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except that it has been restructured and there are the obvious changes in notation

and dualization. The role of regular triangulations is played here by lexicographic

extensions.

Theorem 3.5. Let M be an oriented matroid of rank r on a set E. Let v be

any vector in R

�(M)

. The following properties are equivalent:

(i) v is a linear combination of the acyclic circuit vectors Ci

�

of M.

(ii) hv

T

�

; vi = 0 for the characteristic vector v

T

�

of every triangulation of the

dual oriented matroid M

�

.

(iii) hExt

p

; vi = 0 for every extension in general position M[ p of M.

(iv) hExt

p

; vi = 0 for every positive lexicographic extension in general po-

sition. I.e. for every extension of the form p := [b

+

1

; : : : ; b

+

r

] where

fb

1

; : : : ; b

r

g is an r-simplex of M.

Moreover, if v is integer the combination in part (i) can be taken with integer

coe�cients.

Proof. If v is a linear combination of acyclic circuit vectors of M then it is

a linear combination of interior cocircuit vectors of M

�

. Thus, (ii) follows from (i)

by Proposition 3.1. Also, (iii) is the restriction of (ii) to the case of T

�

being a

lifting triangulation, and (iv) is a restriction of (iii). Thus, we only need to prove

the implication from (iv) to (i).

Let v be in the conditions of (iv). Let c

�

denote the coe�cient of v in the

coordinate of an r-simplex �. We will use double induction on n = jEj and r =

rank(M). In particular, we assume the statement to be true for the deletionMna

and the contraction M=a, where a is any element of E. We suppose that a is not

a loop, since otherwise the inductive step is trivial. We do the proof in three steps:

Step 1: if c

�

= 0 for every simplex � containing a, then v can be considered a

vector in R

�(Mna)

. We suppose that a is not a coloop inM, since otherwise v = 0.

The vector v satis�es (iv) inMna because every positive lexicographic extension

in general position of Mn a can be extended to a positive lexicographic extension

in general position of M, by Lemma 1.9 (note that E n fag spans M, since a is

not a coloop). By inductive hypothesis, v is a linear combination of acyclic circuit

vectors of Mn a (and an integer combination if v is integer). Every acyclic circuit

vector of Mn a is also an acyclic circuit vector in M, if a is not a coloop, which

means v is in the conditions of (i).

Step 2: if c

�

= 0 for every simplex � not containing a and such that � [ fag

is acyclic, then we can write:

v =

X

�:a62�

�[fag is cyclic

c

�

e

�

+

X

�:a2�

c

�

e

�

:

Let us call v

1

and v

2

the two sums in this expression, respectively.

The r-simplices of M containing a are naturally identi�ed with the (r � 1)-

simplices of M=a. Thus, v

2

can be regarded as a vector in R

�(M=a)

, remov-

ing a from each simplex. We claim that v

2

is in the conditions of (iv), in the

contracted oriented matroid M=a. Indeed, for any lexicographic extension by

p

0

:= [b

+

1

; : : : ; b

+

r�1

] of M=a, we can consider the lexicographic extension by p :=

[a

+

; b

+

1

; : : : ; b

+

r�1

] of M. All the simplices � with non-zero entry in the exten-

sion vector Ext

p

satisfy that � [ fag is acyclic. Thus, hExt

p

; v

1

i = 0. Since also
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hExt

p

; vi = 0 we conclude that hExt

p

; v

2

i = 0. But the simplices of Ext

p

containing

a are the same as the simplices of Ext

p

0

, and thus hExt

p

0

; v

2

i = 0.

By inductive hypothesis, v

2

is a linear combination of the acyclic circuit vectors

of M=a, and an integral combination if v

2

is integral. Given any acyclic spanning

r-set � in M=a, � [ fag is a spanning acyclic (r + 1)-set in M. Moreover, the

acyclic circuit vector Ci

�[fag

in M is obtained from the acyclic circuit vector Ci

�

of M=a by just considering each simplex of M=a as a simplex of M containing a

and adding an entry +1 or �1 to the coordinate of �, in case that � is independent

inM. In other words, the expression of v

2

as a linear combination of acyclic circuit

vectors of M=a translates into an expression of v

2

as a linear combination L of

acyclic circuit vectors of M plus an integer combination of the form

P

�:a62�

c

0

�

e

�

.

Subtracting L from v, we get another vector

v

0

=

X

�:a62�

c

0

�

e

�

in the conditions of (iv). Both v�v

0

(by construction) and v

0

(by step 1) are linear

combinations of acyclic circuit vectors, and integer combinations if v is integral.

Step 3: Suppose now we have an arbitrary v. For each r-simplex � for which

the spanning (r + 1)-set � [ fag is acyclic, we consider the acyclic circuit vector

Ci

�[fag

with sign given so that the coe�cient of � equals 1. All the other nonzero

coe�cients in Ci

�[fag

correspond to simplices containing �. Hence, subtracting

from v the vector c

�

Ci

�[fag

for every such � we get another vector v

0

in which the

coe�cients corresponding to those simplices are zero. The di�erence v�v

0

is a linear

combination of acyclic circuit vectors, and an integer combination if v is integer.

This implies that v

0

is still in the conditions of (iv), by part (iii) of Proposition

3.2, and it is integer if v is integer. By Step 2, v

0

is a linear combination of acyclic

circuit vectors, and an integer combination if v is integer. �

The lifting triangulations obtained with positive lexicographic extensions are

the placing triangulations (see Proposition 2.11). With this, the previous theorem

dualizes to:

Corollary 3.6. Let M be an oriented matroid of rank r on a set E. Let h be

any vector in R

�(M)

. The following properties are equivalent:

(i) h is a linear combination of the interior cocircuit vectors Co

�

of M and

if h is integer the combination has integer coe�cients.

(ii) hh; v

T

i = 0 for every triangulation T of M.

(iii) hh; v

T

i = 0 for every placing triangulation T of M. �

Corollary 3.7. Let M be an oriented matroid. Then,

(i) The characteristic vector of any triangulation is an a�ne combination of

characteristic vectors of placing triangulations.

(ii) The a�ne span of all the characteristic vectors of triangulations of M

is de�ned by the interior cocircuit equations hCo

�

; � i = 0 and any non-

homogeneous a�ne equation satis�ed on every characteristic vector (e.g.,

the equation hExt

p

; � i = 1, for any interior extension M[ p of M in

general position).

(iii) The di�erence v

T

�v

T

0

of the characteristic vectors of two triangulations

of M is an integer combination of acyclic circuit vectors of M.
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Proof. Part (ii) follows from the equivalence of parts (i) and (iii) of Corollary

3.6: an a�ne subspace not containing the origin can be obtained intersecting its

linear span with any a�ne hyperplane containing it and not containing the origin.

The equivalence of parts (i) and (ii) in Corollary 3.6 implies that the a�ne

spans of characteristic vectors of placing triangulations and of all characteristic

vectors of triangulations coincide. This proves part (i).

For part (iii), �rst Proposition 3.1 implies hExt

p

; v

T

�v

T

0

i = 0 for any extension

in general position of M

�

. Then, Theorem 3.5 implies that v

T

� v

T

0

is an integer

combination of acyclic circuit vectors. �

This leads to a stronger version of Proposition 3.1, which in particular gives

characterization (g) of triangulations in Theorem 2.4.

Theorem 3.8. Let T be a collection of r-simplices of an oriented matroid M of

rank r. Let v

T

2 R

�(M)

be its characteristic vector. Then, the following conditions

are equivalent:

(a) T is a triangulation of M.

(b) hCo

�

; v

T

i = 0 for every interior cocircuit vector Co

�

and hv

T

�

; v

T

i = 1

for some triangulation v

T

�

of the dual M

�

.

(c) hCo

�

; v

T

i = 0 for every interior cocircuit vector Co

�

and hv

T

�

; v

T

i = 1

for every triangulation v

T

�

of the dual M

�

.

(d) T satis�es the oriented pseudo-manifold property and for every triangu-

lation T

�

of the dual oriented matroid M

�

there is a unique simplex in

T whose complement is in T

�

.

Proof. Statement (c) implies part (b) of Proposition 3.1, taking any lifting

triangulation T

�

). With the same trick, part (c) of Proposition 3.1 implies state-

ment (b). This proves (c))(a))(b).

Let T

�

be a triangulation ofM

�

. By (the dual of) Proposition 3.1, hv

T

�

; v

T

i = 1

for every lifting triangulation v

T

of M. By part (i) of Corollary 3.7 the same

equation holds for every triangulation of M, lifting or not. This means that the

a�ne equation hv

T

�

; �i = 1 is a non-homogeneous a�ne equation satis�ed on every

triangulation of M. With this, (b))(c) follows from part (ii) of Corollary 3.7.

That (d) implies (c) is trivial. That (c) and (a) imply (d) is trivial too, since

all triangulations have the oriented pseudo-manifold property. �

Part (ii) of Corollary 3.7 implies the relation D = N � R � 1, between the

number N of r-simplices (bases) of M, the rank R of the linear span of its interior

cocircuit vectors and the dimension D of the a�ne span of all the characteristic

vectors of triangulations of M. If the oriented matroid M is uniform we clearly

have N =

�

n

r

�

; we also can give explicit formulas for the other quantities, as is done

in [14].

Lemma 3.9. Let M be a uniform oriented matroid. Then, every interior co-

circuit vector of M is the di�erence of two interior extension vectors and every

non-interior cocircuit vector is (up to sign reversal) an interior extension vector.

Proof. Let C be a cocircuit. Let � = fa

1

; : : : ; a

r�1

g be the unique (r � 1)-

simplex in which the cocircuit vanishes. Let a

r

be an element not in � . Consider

the two lexicographic extensions p

�

:= [a

+

1

; : : : ; a

+

r�1

; a

�

r

], for � 2 f+;�g. Since their

cocircuit signatures only di�er at C and �C, any r-simplex not containing � either
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contains both p

+

and p

�

or none of them in its convex hull. On the other hand, for

any a 62 � and for any of the two values of �, p

�

2 conv

M[p

�

(� [ fag) if and only if

C(a) = �. Hence Ext

p

+
�Ext

p

�
= Co

�

. If � is interior then the two extensions are

interior, while otherwise only one of the two extensions is interior and the extension

vector of the other one is zero. �

Theorem 3.10. Let M be an acyclic uniform oriented matroid of rank r on n

elements. Let a

1

be any element. Let H

M

be the a�ne span of the characteristic

vectors of triangulations of M. Then,

(i) The cocircuit equations hCo

�

; �i = 0 if � is interior and hCo

�

; �i = 1

otherwise, for the (r� 1)-subsets � with a

1

62 � form a basis for the space

of a�ne equations valid on H

M

. Thus, R + 1 =

�

n�1

r�1

�

.

(ii) The (always acyclic) circuit vectors Ci

�

, for the (r + 1)-subsets � with

a

1

2 � form a basis for the linear space parallel to H

M

. Thus, D =

�

n�1

r

�

.

(iii) The linear spans lin(Co(M)) and lin(Ci(M)) of the cocircuit and circuit

vectors ofM are orthogonal complements in R

�(M)

, of dimensions

�

n�1

r�1

�

and

�

n�1

r

�

.

Proof. In the realizable case, parts (i) and (ii) are Theorem 2.4 in [14] and

part (iii) is Theorem 5.1 in that paper. The same proofs work here. �

Part (iii) of Theorem 3.10 holds also if M is uniform but not acyclic: Then M

is totally cyclic andM

�

is uniform and acyclic, so we have part (iii) forM

�

and, by

duality, for M. But in this case parts (i) and (ii) change: one will have R =

�

n�1

r�1

�

(because now all the cocircuit equations are interior, so one extra non-homogeneous

equation is needed to de�ne H

M

) and D + 1 =

�

n�1

r

�

.

Theorem 3.10 implies that the interior cocircuit equations (the �rst ones in

part (c) of Proposition 3.1) follow from the extension equations (the second ones)

in the uniform case. This is Corollary 5.5 in [14] in the realizable case. If M is

not uniform then this is not true and lin(Co(M)) and lin(Ci(M)) are not ortho-

gonal complements. One can only prove that any of them contains the orthogonal

complement of the other [14, Proposition 5.3].

3.3. Mutations versus geometric bistellar ips

Both for extensions of an oriented matroid and for triangulations of a point

con�guration there are notions of a \local" or \elementary" change between two of

them. These are, respectively, the so-called mutations and geometric bistellar ips.

It is not surprising that these two concepts be related to one another under the

duality of triangulations and extensions depicted in the previous sections. Here we

explore this duality. We take the following as a de�nition:

Definition 3.11. Let M be an oriented matroid. Let M[ p

1

and M[ p

2

be

two extensions ofM in general position and let T

1

and T

2

two triangulations ofM.

(i) We say that p

1

and p

2

di�er by a mutation if their cocircuit signatures

di�er only in one pair of opposite cocircuits. We say that the mutation

is supported on those cocircuits.

(ii) We say that T

1

and T

2

di�er by a geometric bistellar ip (or a ip, for

short) if the di�erence of their characteristic vectors is a sum of acyclic

circuit vectors which are supported on the same circuit C. (We say that
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a circuit vector Ci

�

is supported on a circuit C = (C

+

; C

�

) if C is the

circuit contained in �, oriented so that the coe�cient of �na in Ci

�

equals

the sign of C(a) for every a 2 C). We say that the ip is supported on C.

What we call mutation was introduced by Fukuda and Tamura (1988) with the

name of ipping (see [11, Section 7.3]). Only if M is uniform it is usually called

a mutation [11, De�nition 7.3.8]. We prefer not to use the name ipping in order

to not create confusion with the ips in triangulations. Mutations correspond to

moving the general position element p

1

to an \almost-general" position in which

the circuits containing it have at least r elements and then perturbing it back to

general position:

Proposition 3.12. Let M be an oriented matroid. Let C = (C

+

; C

�

) be a

cocircuit of M. Let C

0

denote the complement of the support of C and let M

0

denote the restriction of M to C

0

. LetM[p be an extension of M whose cocircuit

signature is zero only on the cocircuit C (and its opposite). Let a 2 C.

(i) The only extensions of M which are perturbations of M[ p are the two

lexicographic perturbations of M [ p obtained as p

a

+
:= [p

+

; a

+

] and

p

a

�
:= [p

+

; a

�

].

(ii) Let f�

1

; : : : ; �

l

g be the bases of M

0

(i.e., the (r � 1)-simplices contained

in C

0

) satisfying p 2 conv

M[p

(�

i

). Let a 2 C

+

. Consider the cocir-

cuit vectors Co

�

1

; : : : ; Co

�

l

with signs given so that the coe�cient of the

simplex �

i

[ fag is positive. Then,

l

X

i=1

Co

�

i

= Ext

p

a

+

�Ext

p

a

�

:

(iii) M[ p

a

+
and M[ p

a

�
di�er by a mutation supported on C. Moreover,

every pair of extensions which di�er by a mutation can be obtained in

this way.

Proof. The proof of (i) is straightforward: clearly, p

a

+
and p

a

�
are well-

de�ned extensions which are perturbations of p. In the other hand, any perturbation

of p is determined by its value on the cocircuit C.

For proving (ii), let � be an arbitrary r-simplex of M and let us see that its

coe�cient in the right hand side equals the one in the left hand side. Suppose that

the left hand side is non-zero. This implies that � contains one of the simplices �

i

;

because of part (i) we can assume that � = �

i

[ a without loss of generality, and

then it becomes clear that the coe�cient of � in both the right hand side and the

left hand side is 1.

Reciprocally, suppose that the coe�cient of � in the right hand side is non-zero.

This means that exactly one of the two extension elements p

a

+
and p

a

�
is contained

in the convex hull of � and, in particular, that p 2 conv

M[p

(�), because of part

(ii) of Lemma 1.8. Also, part (v) of Lemma 1.1 tells us that the signatures of the

two extensions must di�er in a cocircuit vanishing in a facet of �, that is, that �

contains an (r � 1)-simplex contained in C

0

. This two facts together imply that �

contains one of the simplices �

i

. But then, we can assume without loss of generality

that � = �

i

[ a and, as before, conclude that the coe�cient of � in both sides of

the equation equals one.

For (iii), it is clear that M[ p

a

+
and M[ p

a

�
di�er by a mutation supported

on C. Reciprocally, Lemma 7.3.3 of [11] says that whenever we have two extensions
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M[ p

+

and M[ p

�

in general position whose cocircuit signatures agree in every

cocircuit except C and its opposite, there is a third extensionM[p whose cocircuit

signature coincides with the �rst two except in C and its opposite, where it has

the third possible value (zero in our case). This is the M[ p in our statement and

M[ p

+

and M[ p

�

are perturbations of it. �

We now look at geometric bistellar ips. Our De�nition 3.11 of them is rather

abstract, while for the case of triangulations of a point con�guration a more geomet-

ric de�nition exists. This is for example what Gel'fand et al. [19, pages 231{233]

call a modi�cation of a triangulation, and is a concept which appears quite often in

recent literature on triangulations of polytopes (see [13, 15, 23, 25, 28, 32, 36]).

(c)

(d)

(b)

(a)

(e)

Figure 3.1. Some examples of geometric bistellar ips.

Part (i) of the following statement express the geometric de�nition of a ip

in oriented matroid terms, and part (ii) says that this more geometric de�nition

is equivalent to our abstract one. Examples of ips appear in Figure 3.1. Parts

(a), (b) and (c) of the Figure show the three possible types of ips in dimension 2

(rank 3). The one in part (a) is degenerate in the sense that it is supported in a

non-full-rank circuit. Parts (d) and (e) show the two possible non-degenerate ips

in dimension 3 (rank 4). Remember that we use the notation A � B for the join of

two collections of simplices, de�ned as

A �B := f� [ � : � 2 A; � 2 Bg:

Also, we recall from Proposition 2.13 that the restriction of an oriented matroid

to the support of an acyclic circuit C = (C

+

; C

�

) has only the following two

triangulations:

T

+

C

:= fC n feg : e 2 C

+

g and T

�

C

:= fC n feg : e 2 C

�

g:

Proposition 3.13. Let M be an oriented matroid and let C := (C

+

; C

�

) be

an acyclic circuit (that is, a circuit with non-empty positive and negative parts) of

M. Let T be a triangulation of M. Then:

(i) Suppose that the triangulation T

�

C

of C is a subcomplex of T (that is,

every simplex of T

�

C

is contained in a simplex of T ) and that the links in
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T of all the simplices of T

�

C

coincide. In these conditions, let L be the

link in T of the simplices of T

�

C

. Then, T contains T

�

C

� L and

T

0

:= T n (T

�

C

� L) [ (T

+

C

� L)

is a triangulation of A.

(ii) T and T

0

di�er by a geometric bistellar ip supported on the circuit C.

Moreover, every pair of triangulations which di�er by a geometric bi-

stellar ip arise in this way.

Proof. (i) The fact that T contains T

�

C

�L is clear, since L is the link of every

simplex of T

�

C

. All the maximal simplices in T

�

C

and in T

+

C

span the same at inM,

namely the at spanned by C. Hence, T

+

C

� L and T

0

are collections of r-simplices

of M, since T and T

�

C

� L are.

We have to prove that T

0

is a triangulation. Let v and v

0

be the characteristic

vectors of T and T

0

respectively. Let v

+

and v

�

be those of T

+

C

�L and T

�

C

�L. Let

�

1

; : : : ; �

l

be the maximal simplices in L. Then, we have

v � v

0

= v

�

� v

+

=

l

X

i=1

Ci

�

i

[C

:

By part (iii) of Proposition 3.2, hv; Ext

p

i = hv

0

; Ext

p

i for any interior extension in

general position. We now prove that hCo

�

; vi = hCo

�

; v

0

i for every interior cocircuit

vector Co

�

. These equalities, together with the previous ones, imply that v

0

is in

the conditions of part (c) of Proposition 3.1.

Let � be an interior (r�1)-simplex and let Co

�

be one of the to opposite interior

cocircuit vectors de�ned by � . Since v � v

0

= v

�

� v

+

we only need to prove that

hCo

�

; v

+

i = hCo

�

; v

�

i. If � is not contained in any simplex of T

+

C

� L or T

�

C

� L

then hCo

�

; v

+

i = hCo

�

; v

�

i = 0 trivially. Otherwise our proof will rely only on the

facts that T

+

C

and T

�

C

are triangulations of M(C) and that L is a triangulation of

M=C. In particular, the case of � contained in a simplex of T

+

C

�L or of T

�

C

�L will

be analogous, and we deal only with the �rst one.

By a rank argument, � contains a maximal simplex of either T

+

C

or L. In the

�rst case, let � be such a simplex, so that � = C n a for some a 2 C

+

. Clearly

hCo

�

; v

�

i = 0 because every maximal simplex of T

�

C

�L contains C

�

and � contains

C

+

. On the other hand, hCo

�

; v

+

i = 0 since L is a triangulation of M=�.

In the second case, let � be the maximal simplex of L contained in � . C is

still a circuit in M=�, since � joined to a proper subset of C is independent. By

induction on the rank, in the oriented matroid M=� we have that link

T

(�) and

link

T

0

(�) are triangulations di�ering by a ip on C. In particular, the di�erence of

their characteristic vectors is orthogonal to the interior cocircuit vector associated

to � n �. Hence, hCo

�

; v

+

� v

�

i = 0, as desired.

(ii) For each simplex � 2 L, C [ L is a spanning (r + 1)-subset whose circuit

vector is precisely the di�erence of the incidence vectors of T

+

C

� � and T

�

C

� � . This

proves that v

0

T

� v

T

is a sum of acyclic circuit vectors supported on the circuit C.

For the converse, let T and T

0

be two triangulations which di�er by a ip

supported on the acyclic circuit C = (C

+

; C

�

). Let r and k be the ranks of

M and C. Each circuit vector supported on C is the di�erence of the incidence

vectors of T

+

C

� � and T

�

C

� � , for some (r � k)-simplex � . Thus, the fact that T

and T

0

are triangulations and their incidence vectors di�er by a sum of circuit

vectors supported on C implies that T

+

C

is a subcomplex of one of them and T

�

C
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a subcomplex of the other. Suppose that T

�

C

is a subcomplex of T and T

+

C

of T

0

.

Characterization (f) of Theorem 2.4 implies that T does not contain any simplex of

T

+

C

as a face and T

0

does not contain one of T

�

C

. Thus, the fact that we pass from

T to T

0

by a sum of acyclic vectors supported on C implies that all the simplices

of T

�

C

have the same link L in T , which becomes the link of all the simplices of T

+

C

in T

0

. This �nishes the proof. �

The following statement gives the relation between ips of lifting triangulations

and mutations of the associated extensions of the dual:

Theorem 3.14. Let M be an oriented matroid of rank r in n elements, with

dual M

�

. Let M [ p

1

and M [ p

2

be two interior extensions of M in general

position which di�er by a mutation and let T

1

and T

2

be the corresponding lifting

triangulations of M

�

. Then, either T

1

= T

2

or T

1

and T

2

di�er by a geometric

bistellar ip.

Proof. Consider the extension M[ p of M of which p

1

and p

2

are perturba-

tions (as in Proposition 3.12). Part (ii) of Proposition 3.12 says that the extension

vectors Ext

p

1

and Ext

p

2

di�er by a (perhaps empty) sum of cocircuit vectors of

M supported on the same cocircuit; since p

1

and p

2

are both interior, the (r � 1)-

simplices �

i

are not on facets of M, and thus each Co

�

i

is an interior cocircuit

vector. Duality implies that v

T

1

and v

T

2

di�er by a (perhaps empty) sum of acyclic

circuit vectors supported on the same circuit. Thus, either T

1

= T

2

or they di�er

by a ip. �

Two (related) open questions concerning mutations and ips are whether any

two triangulations (resp. any two extensions in general position) of a uniform real-

izable oriented matroid M are connected by a sequence of ips (resp. mutations).

We will study these questions in more detail in Section 4.3, and see that the answer

is negative if M is not assumed to be realizable or, in the case of triangulations,

uniform.

Here we want to mention a sort of algebraic positive answer which was shown

for the realizable case in [6] and [14]. If M is a uniform oriented matroid, then

the link L appearing in Proposition 3.13 is empty and the di�erence between the

characteristic vectors of the two triangulations T and T

0

which di�er by a ip

supported on a circuit C equals Ci

C

(with the appropriate sign). Then, part (iii)

of Corollary 3.7 says that the di�erence of the characteristic vectors of any two

triangulations of M is a sum of di�erences of pairs of characteristic vectors of

triangulations di�ering by ips.

In the non-uniform case this result is not clear: each di�erence vector between

triangulations di�ering by a ip is a sum of perhaps more than one acyclic circuit

vector (as is suggested by the equation in part (ii) of Proposition 3.12).





CHAPTER 4

Subdivisions of Lawrence Polytopes

4.1. Lifting subdivisions. Subdivisions

We have de�ned lifting triangulations of an oriented matroid M by means of

extensions of the dual oriented matroid M

�

. In [11, pag. 410] lifting triangula-

tions are de�ned in a more geometric (but equivalent) way that explains the name

\lifting". The idea comes from a paper by Billera and Munson [9] although there

only lexicographic lifts are considered. We introduce now that de�nition and show

its equivalence with De�nition 3.4. The following de�nition of a lift of an oriented

matroid is also taken from [9] and the same concept appears in [11] under the name

one-element lifting. It is the dual concept to a one-element extension.

Definition 4.1. Let M be an oriented matroid of rank r on a set E. A lift of

M is an oriented matroid

c

M of rank r + 1 on a set E [ p̂ such that

c

M=p̂ = M.

We say that the lift is non-cyclic if p̂ does not belong to any positive circuit of

c

M.

Equivalently, if p̂ belongs to some positive cocircuit of

c

M, by [11, Corollary 3.4.6].

We say it is acyclic if

c

M is acyclic.

Given a non-cyclic lift

c

M of an oriented matroidM, the lifting polytopal subdi-

vision (or lifting subdivision for short) S ofM associated to the lift is the following

collection of subsets of E, to be called cells of the subdivision:

S := fA � E : A is a facet of

c

Mg

We say that the subdivision is simplicial if all the cells are simplices.

In this de�nition, the condition on the lift being non-cyclic is exactly what

we need to guarantee that S is not empty. The �rst (trivial) example of a lifting

subdivision ofM is given by the lift of M

�

by a coloop, which produces the trivial

subdivision fEg of M.

Proposition 4.2. Simplicial lifting subdivisions and lifting triangulations are

the same thing. More precisely:

(i) Let T be a simplicial lifting subdivision of M associated with the non-

cyclic lift

c

M. The dual (

c

M)

�

is an extension of M

�

that we denote by

M

�

[ p. Let M

�

[ p be the reorientation of the element p in M

�

[ p.

Then, any perturbation of M

�

[ p into general position is an interior

extension with associated lifting triangulation of M equal to T .

(ii) Let T be a lifting triangulation of M associated with an extensionM

�

[p

of the dual oriented matroid M

�

. Denote by M

�

[ p the reorientation at

the element p of M

�

[ p. Then, the dual oriented matroid (M

�

[ p)

�

is

a lift of M whose lifting subdivision is T .

43
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Proof. Let us �rst give a di�erent characterization of the cells of a lifting

subdivision. A subset A � E is a cell in the lifting subdivision of the lift

c

M if and

only if ((E n A) [ bp; ;) is a cocircuit in

c

M. This in particular implies that A [ bp

is a spanning subset of

c

M; thus, A is a spanning subset of M and E n A is an

independent subset of M

�

.

The dual of a non-cyclic lift

c

M of M is an extension M

�

[ p of the dual M

�

with p not lying in any positive cocircuit, i.e. lying in some positive circuit. Thus,

the reorientation M

�

[ p is an interior extension of M

�

. The reciprocal is also

true; that is, there is a 1-to-1 correspondence between non-cyclic lifts of M and

interior extensions ofM

�

, by reorientation of the dual. Under this correspondence,

((E nA) [ bp; ;) is a cocircuit of the lift

c

M if and only if (E nA; fpg) is a circuit of

the extension M

�

[ p. This implies (ii), since the lifting triangulation T contains

by de�nition precisely those independent sets A of M

�

[ p for which (A; fpg) is a

circuit of M

�

[ p.

For proving (i) we have the extra di�culty thatM

�

[p may not be an extension

in general position. However, we have the following property, which follows from

the fact that T is simplicial: any subset A 2 E with p 2 conv

M

�

[
p

(A) is spanning;

in particular we have that p 2 relint

M

�

[p

(A) and thus that p

0

2 relint

M

�

[p

0

(A)

for any perturbation M

�

[ p

0

of M

�

[ p. That is, all the simplices of T are in the

lifting triangulation corresponding to p

0

. The reciprocal follows with the same kind

of arguments. �

Example 4.3. (Lifting triangulations via lifts)

An example of the equivalence between the two de�nitions of lifting triangu-

lations is shown in Figure 4.1. Parts (a) and (b) show an oriented matroid M

and its dual M

�

, both of rank 2 and realized as vector con�gurations. Parts (c)

and (e) show two di�erent acyclic lifts of M, which have rank 3, realized as point

con�gurations in the plane. Recall that if an oriented matroid is realized by a point

con�guration A and p is a point of A (i.e., an element ofM), the contractionM=p

is realized by the vector con�guration fa� p : a 2 A n fpgg.

The segments drawn in parts (c) and (e) of the �gure are the facets of the

lift which do not contain p; that is, the cells of the induced lifting triangulations

of M. Parts (d) and (f) of the �gure show two extensions of M

�

(noted p) and

their opposites (noted p). It is easily checked that the simplices of part (d) (resp.

part(f)) which contain the extension p in their convex hulls are the complements of

the simplices in the lifting subdivision in part (c) (resp. part (e)).

Remark 4.4. (Lexicographic triangulations by \pushings and pullings")

In the realizable acyclic case, lexicographic triangulations were characterized

by Carl Lee [24] as the ones that can be obtained from the trivial subdivision of

a polytope by a sequence of pushings and pullings of points. This description is

generalized to oriented matroid triangulations in [11, p. 410], still in the acyclic

case, but the description works the same in the non-acyclic case. Figure 4.2 shows

an example of the process.

Part (a) of the �gure shows a certain triangulation of a planar point con�-

guration and part (b) shows how to obtain it by a \lexicographic lift" with the

expression [1

�

; 2

�

; 3

+

]. Recall that this corresponds to the triangulation asso-

ciated to the opposite lexicographic extension of the dual, that is, to [1

+

; 2

+

; 3

�

].

The lexicographic lift is constructed by adding a coloop p to M (the apex of the
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Figure 4.1. Lifting triangulations de�ned by lifts and by exten-

sions of the dual.
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Figure 4.2. A lexicographic triangulation and the associated lift.

pyramid in part (b) of the �gure) and then perturbing the elements in the order

they appear in the lexicographic expression, pulling them towards the apex if they

have negative sign and pushing them away from the apex if they have positive sign.

The de�nition of lifting subdivisions suggests the general concept of a subdi-

vision of an oriented matroid. This has to agree with the concept of polytopal

subdivision of a polytope if the oriented matroid is polytopal, and with the concept

of triangulation in the simplicial case. The following de�nition is taken from [11,

page 408], except that there M is assumed to be acyclic.

Definition 4.5. Let M be an oriented matroid of rank r on a set E. A non-

empty collection S of subsets of E (called cells) is a subdivision of M if it satis�es:

(a) For every cell � 2 S the restriction M(�) has rank r.

(b) For every one-element extension M[ p of M and every �

1

; �

2

2 S,

p 2 conv

M[p

(�

1

) \ conv

M[p

(�

2

) =) p 2 conv

M[p

(�

1

\ �

2

)

(c) If �

1

; �

2

2 S, then �

1

\�

2

is a common face of the two restrictionsM(�

1

)

and M(�

2

).
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(d) If � 2 S, then each facet of M(�) is either contained in a facet of M or

contained in precisely two cells of S.

If all the cells are r-simplices, De�nition 4.5 specializes to De�nition 2.2 of an

oriented matroid triangulation. Indeed, conditions (a) and (c) are then redundant

and the other two are respectively our pseudo-manifold and proper intersection

properties. The following results are proved in [11, Section 9.6] for the acyclic case,

and generalize to the general case with exactly the same proofs.

� Lifting subdivisions are a particular case of a subdivision.

� IfM is acyclic and realized by a point con�guration A = fx

1

; : : : ; x

n

g in

R

r�1

, then a collection S of cells in M is a subdivision of M if and only

if fconv(�) : � 2 Sg is a subdivision of the polytope P = conv(A) in the

geometric sense.

� If M is realized by a vector con�guration V = fx

1

; : : : ; x

n

g in R

r

, then

a collection S of cells in M is a subdivision of M if and only if fpos(�) :

� 2 Sg is a polyhedral fan with support P = pos(V). I.e. a subdivision

V in the sense of [7].

It is reasonable to think that suitable translations of the characterizations of

triangulations in Theorem 2.4 yield characterizations of oriented matroid subdivi-

sions. We will not show this. However, the following generalization of Propositions

3.5 and 4.2 in [1], whose proof is similar to that of our Lemma 2.8, will be of use

to us.

Lemma 4.6. Let S be a subdivision of an oriented matroid M. Then,

(i) Any interior extension M[ p in general position is covered by exactly

one cell of S.

(ii) For any two cells � and �

0

of S there is a chain of cells � = �

0

; : : : ;

�

k

= �

0

in S such that every two consecutive cells in the chain share a

facet.

(iii) Any interior extension of M is in the relative interior of a unique face

of (one or several) faces of S.

Proof. Let r be the rank ofM. Part (b) of De�nition 4.5 clearly implies that

every extension M[ p in general position is covered at most once in S (since the

intersection of two di�erent cells has rank strictly less than r and cannot cover p).

Let � = fa

1

; : : : ; a

m

g 2 S be an arbitrary cell and let M[ p

1

be the lexicographic

extension de�ned by p

1

:= [a

+

1

; : : : ; a

+

m

], which is covered by � and in general

position.

We will work in the two-element extension M

0

= M[ fp

1

; p

2

g of M, de�ned

as the extension of M[ p

2

by the lexicographic expression p

1

:= [a

+

1

; : : : ; a

+

m

]. It is

easy to check that S is also a subdivision ofM

0

: properties (a) and (c) of De�nition

4.5 are trivial; property (b) follows from the fact that any extension ofM

0

restricts

to an extension of M and property (d) follows from the fact that p

1

and p

2

are

interior and in general position and thus the proper faces ofM and ofM[fp

1

; p

2

g

are the same.

We recall the following properties of M

0

, used in Lemma 2.8: counting how

many cells of S cover p

1

(resp. p

2

) gives the same result in M

0

and in M[ p

1

(resp M[ p

2

) and any vector of M

0

containing p

1

or p

2

(or both) in its support

is a spanning set. As we did in the proof of Lemma 2.8, we consider the following

directed graph G

[p

1

;p

2

]

whose nodes are some of the cells of S:
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- a cell � 2 S is a node in the graph if and only if (fp

1

; p

2

g; �) is a vector of

M

0

.

- let � be a certain (r � 1)-face of a simplex of S for which (fp

1

; p

2

g; �) is a

vector ofM

0

. In particular, � is not in a facet ofM and there are exactly two cells

�

+

and �

�

in S having � as a facet. Let C = (C

+

; C

�

) be the cocircuit of M

0

vanishing on � , and assume without loss of generality that p

1

[ (�

+

n �) � C

+

and

p

2

[ (�

�

n �) � C

�

. Then, introduce a directed edge going from �

+

to �

�

.

We claim that the connected components of the graph G

[p

1

;p

2

]

obtained in

this way are either isolated points, or linear paths coherently oriented, or oriented

cycles. We also claim that the isolated points correspond to cells containing both

p

1

and p

2

in the convex hull and that the starting and end points of the linear

paths correspond, respectively, to cells of S having p

1

and p

2

(but not both) in

the convex hull. These claims imply that p

2

is covered by the same number (equal

to 1) of cells as M[ p

2

. This implies part (i). Part (ii) follows by taking p

1

and

p

2

to be lexicographic extensions in the relative interior of any two speci�c cells

of S. The existence in part (iii) follows by perturbing p into general and interior

position, for example via a positive lexicographic perturbation. The uniqueness

holds by property (b) in De�nition 4.5.

The claims follow from the following facts:

(1) if a cell � has p

1

2 conv

M

0

(�) and p

2

62 conv

M

0

(�), then it is a node of the

graph and there is a unique edge incident to it, which is out-going.

(2) if a cell � has p

1

62 conv

M

0

(�) and p

2

2 conv

M

0

(�), then it is a node of the

graph and there is a unique edge incident to it, which is in-going.

(3) any other cell � which is a node in the graph G

[p

1

;p

2

]

is either an isolated

node or has two edges incident to it, one in-going and one out-going.

In Lemma 2.8 we proved these facts using realizability of corank 2 oriented

matroids. Here we need to use a di�erent proof. Observe that since the two

extensions are in general position, they being in the convex hull of a cell is the

same as being in the relative interior.

Let us prove (1). Thus, we assume p

1

to be in the relative interior of � and p

2

not to be. We can assume � not to be totally cyclic: otherwise it would be the only

cell of S. If � is not totally cyclic, then the oriented matroid

d

M

0

:=M

0

(� [ fp

1

g)

is a non-cyclic lift of M

0

:= M

0

(� [ fp

1

g)=p

1

. Let S

0

be the lifting subdivision

of M

0

induced. By inductive hypothesis, the interior extension in general position

M

0

[p

2

:=M

0

(�[fp

1

; p

2

g)=p

1

has the extension element p

2

contained in precisely

one cell of S

0

, which means that there is exactly one facet � of � such that (�; fp

2

g)

is a vector of M

0

[ p

2

. The fact that p

1

is in the relative interior of � and p

2

is

outside its convex hull implies that this vector extends to the vector (�; fp

1

; p

2

g),

and that the corresponding edge of G

[p

1

;p

2

]

is the unique edge incident to the node

of � and is oriented as desired. The proof of (2) is completely analogue.

We �nally deal with (3). We assume � to be a cell of S which gives a node

in the graph with at least one edge, but not in the conditions of (1) or (2). Thus,

(�; fp

1

; p

2

g) is a vector. Also, there is a facet � of � such that (�; fp

1

; p

2

g) is a

vector. The latter implies that one of p

1

and p

2

is not in the convex hull of �. In

order not to be in cases (1) or (2), the other one must also not be in the convex

hull of �.

As before, consider the oriented matroid

d

M

0

:= M

0

(� [ p

1

). Observe that

p

1

cannot be in a positive circuit of

d

M

0

. Otherwise, elimination of p

1

in this
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circuit and the vector (�; fp

1

; p

2

g) would imply that p

2

is in the convex hull of �,

in M[ fp

1

; p

2

g. Hence,

d

M

0

is a non-cyclic lift of M

0

:=M

0

(� [ fp

1

g)=p

1

.

Thus, let S

0

be the lifting triangulation of M

0

associated to the lift

c

M

0

.

The inductive argument shows that the extension extension M

0

[ p

2

= M

0

(� [

fp

1

; p

2

g)=p

1

of M

0

is in a unique cell of the lifting subdivision, i.e. there is a

unique facet �

1

of � such that the cocircuit C

1

= (C

+

1

; C

�

1

) vanishing on �

1

has

p

1

2 C

+

1

, p

2

2 C

�

1

and � \ C

�

1

= ;. With the same arguments applied to p

2

, we

obtain a unique facet �

2

such that the cocircuit C

2

= (C

+

2

; C

�

2

) vanishing on it has

p

1

2 C

+

2

, p

2

2 C

�

2

and � \ C

+

2

= ;. These two facets cannot coincide, (otherwise

they would span �) and thus provide the unique two edges incident to the vertex

of G

[p

1

;p

2

]

corresponding to �. The edge corresponding to �

1

is out-going and the

one corresponding to �

2

is in-going. �

Corollary 4.7. (i) Let S be a subdivision of an oriented matroid M

and let M[ p be an interior extension of M. Then, there is at least one

cell � 2 S with p 2 conv

M[p

(�).

(ii) Let S and S

0

be two subdivisions of an oriented matroid M. If one is

contained in the other, then they coincide.

Proof. Part (i) is straightforward from parts (i) and (iii) of Lemma 4.6.

For (ii), suppose that S

0

� S and that there is a cell � 2 S n S

0

. We consider

any extension M[ p of M in general position and in the convex hull of � (such

as a positive lexicographic extension by the elements in �). By Lemma 4.6 there is

a cell �

0

2 S

0

with p in the convex hull of �

0

, but this is a contradiction with the

same lemma, since both � and �

0

are cells in S. �

The question of how to recover the lift/extension associated to a lifting subdi-

vision of an oriented matroid is answered in the following lemma. The answer is

partial, because di�erent lifts can produce the same subdivision.

Lemma 4.8. Let S be a lifting subdivision of an oriented matroid M, de�ned by

the acyclic lift

c

M. Let M

�

[ p be the extension of M

�

obtained by reorientation of

p in the totally cyclic extension M

�

[ p dual to

c

M. Then, the following properties

hold for every cocircuit C = (C

+

; C

�

) of M

�

:

� If some cell of S contains the support C = C

+

[C

�

of C then the cocircuit

signature of the extension M

�

[ p at the cocircuit C of M

�

is C(p) = 0.

� Otherwise, if some cell of S contains C

+

(resp. C

�

), then C(p) = �1

(resp. C(p) = +1).

Proof. Observe that for any circuit C = (C

+

; C

�

) ofM exactly one of (C

+

[

fbpg; C

�

) (C

+

; C

�

[ fbpg) and (C

+

; C

�

) is a circuit of the lift

c

M, where bp denotes

the extra element in the lift. If a cell of S contains C, then C is in a facet of

c

M not

containing bp. This implies that rank(C [fpg) = rank(C)+1 and the only possible

circuit of the three above is (C

+

; C

�

) itself. Thus, C = (C

+

; C

�

) is a cocircuit

of M

�

[ p; that is, C(p) = 0. If no cell contains C

+

[ C

�

, assume that a cell of

S contains C

+

but not C

�

(the other case is analogue). Then there is a positive

cocircuit D of

c

M which has empty intersection with C

+

but not empty with C

�

.

Orthogonality of circuits and cocircuits implies that the only possible extension of

the circuit C to

c

M is (C

+

[ bp; C

�

), which is as required in order that the cocircuit

signature of M

�

[ p at C be C(p) = �1. �
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4.2. Lawrence polytopes only have lifting subdivisions

We recall that an oriented matroidM is called polytopal (or a matroid polytope)

if every one-element subset is a face. In particular, M has to be acyclic. Every

oriented matroid M of rank r on n elements has an associated oriented matroid

�(M) of rank n + r on 2n elements which is (essentially) polytopal and has the

property that the whole oriented matroid structure of M is contained in the Las

Vergnas face lattice of �(M), i.e. in the structure of the boundary of �(M).

This construction was invented by Jim Lawrence (unpublished). References for the

construction are [5], [10], [11, Section 9.3], [38, Chapter 7] and [40, p. 180]; the

latter two deal only with the realizable case.

In this section we will see that every subdivision of the Lawrence polytope

�(M) is a lifting subdivision and that, in fact, there is a 1-to-1 correspondence

between the subdivisions of �(M) and the extensions (interior or not) of the dual

oriented matroidM

�

of M. Under this correspondence ips correspond exactly to

mutations. The correspondence will have the interesting consequence of relating

the extension space conjecture to a conjecture regarding subdivisions of polytopes.

This will be shown in Section 4.3.

Let us �x some notation. Let M be an oriented matroid of rank r on a set E

of n elements and let M

�

be its dual. We construct an oriented matroid �(M)

�

on the set E � f1;�1g, which can be geometrically interpreted (e.g., in a realized

setting) as the union of M

�

and its image by the central inversion. We identify E

with E �f1g and will write A to denote A�f�1g, for every subset A of E. Then,

�(M)

�

is the extension ofM by n elements e 2 E antiparallel to the corresponding

e 2 E. In other words, �(M)

�

is characterized by:

- �(M)

�

is an oriented matroid of rank n� r on E [E whose restriction to E

is M

�

.

- For any e 2 E, the element e 2 E is a loop in �(M)

�

if and only if e 2 E is

a loop and, if it is not a loop, then (fe; eg; ;) is a positive circuit of �(M)

�

.

Let �(M) be the dual of �(M)

�

. From the construction it follows that

(fe; eg; ;) is a covector of �(M) for every e 2 E and, in particular, that fe; eg

is a face (and the complement of a face as well). If fe; eg has rank 2, then both

e and e are vertices. If the rank is 1, then e and e are parallel elements and they

form a \double" vertex of �(M). This happens if and only if e is a loop in M.

Therefore, �(M) is polytopal if M is loop-less, and \almost" polytopal other-

wise. If M is realized by the column vectors of a matrix M , then �(M) is realized

by the column vectors of

�(M) :=

�

M 0

I I

�

;

where I and 0 are the identity and zero matrices of the appropriate sizes ([5], [38,

Chapter 7]). A di�erent description of �(M) in the realizable case is by a sequence

of Lawrence extensions (see [40, Theorem and De�nition 6.26]).

Definition 4.9. In the above conditions we say that �(M) is the Lawrence

matroid polytope (or Lawrence polytope, for short) associated to M.

A basic property relatingM

�

and �(M)

�

is that there is a canonical bijection

between their lattices of covectors (in a pseudo-sphere arrangement representation,

�(M)

�

is obtained fromM

�

by considering each hypersphere twice, one with each

orientation). This implies a canonical bijection between their extensions and that
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every extension of M

�

is interior when regarded in �(M)

�

since �(M)

�

is totally

cyclic. Hence, lifting subdivisions of �(M) are de�ned by extensions ofM

�

, interior

or not.

Let us now characterize the circuits, cocircuits and bases of a Lawrence poly-

tope. We introduce the following notation.

Definition 4.10. Let B be a subset of E, and A � B. We denote by

A

B := (B nA) [ A;

and call it the reorientation of B at A.

Let C = (C

+

; C

�

) be a signed subset of E and let A � C

+

[ C

�

. We denote

by

A

C = ( (C

+

nA) [ (C

�

\ A) ; (C

�

nA) [ (C

+

\ A) );

and call it the reorientation of C at A.

Lemma 4.11. Let �(M) be the Lawrence polytope associated with an oriented

matroid M. Let Ci(M), Co(M) and B(M) denote respectively the sets of circuits,

cocircuits and bases of M. Then,

(i) The set of circuits of �(M) is

Ci

�(M)

:= f(C

+

[ C

�

; C

�

[ C

+

) : (C

+

; C

�

) 2 Ci(M)g:

(ii) The set of cocircuits of �(M) is

Co

�(M)

:= f

A

C : C 2 Co(M); A � C

+

[ C

�

g [

f (fe; eg; ;) ; (;; fe; eg) : e 2 E is not a coloop of Mg:

(iii) The set of bases of �(M) is

B

�(M)

:= f

A

(E nB) [ B [B : B 2 B(M); A � E nBg:

Proof. The proof is easy via the duals M

�

and �(M)

�

of M and �(M).

Parts (i) and (ii) appear in Lemma 9.3.1 and Proposition 9.3.3 of [11]. �

A �rst interesting consequence of this lemma is the fact (known in the realized

case, see [4, pp. 310{311]) that all the triangulations of a Lawrence polytope have

the same number of simplices:

Proposition 4.12. Let T be a triangulation of a Lawrence polytope �(M).

Then, for every basis B of M there is a unique subset A � (E n B) such that

A

(E nB)[B [B 2 T . In particular, all the triangulations of �(M) have the same

number of simplices, equal to the number of bases of M.

Proof. Let B be a basis ofM. Then, EnB is a basis ofM

�

and the collection

of reorientations

A

(E n B) of E nB is a triangulation of �(M)

�

. From part (c) of

Theorem 3.8 we conclude that T has exactly one simplex which is the complement

of a reorientation of E nB. �

Now we prove that Lawrence polytopes only have lifting subdivisions. The

following statement actually gives much more information.

Lemma 4.13. Let �(M) be the Lawrence polytope associated to an oriented

matroid M. Let S be a subdivision of �(M). Then:

(i) The support of every circuit C of �(M) is a face of �(M).
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(ii) Let F be a face of �(M) which is the support of a circuit C. Let k be the

rank of F . Consider the \restriction" of S to F de�ned as:

S

F

:= f� \ F : � 2 S; rank(� \ F ) = kg:

Then, S

F

is either the trivial subdivision fFg of the restricted oriented

matroid �(M)(F ) or one of the triangulations T

+

C

or T

�

C

of a circuit

introduced in Proposition 2.13.

(iii) The cocircuit signature of �(M)

�

de�ned by C(p) = 0 if S

C

= fCg and

C(p) = +1 (resp. C(p) = �1) if S

C

= T

+

C

(resp. S

C

= T

�

C

) is the

cocircuit signature of an extension �(M)

�

[ p of �(M)

�

.

(iv) S is the lifting subdivision corresponding to the acyclic lift

c

M which is

dual to the reorientation at p of the extension de�ned in (iii).

Proof. (i) By part (i) of Lemma 4.11, every circuit of �(M) is of the form

(C

+

[C

�

; C

�

[C

+

), where (C

+

; C

�

) is a circuit ofM. In the other hand, by part

(ii) of the same lemma, every set of the form A [A is a face of �(M).

(ii) Let C = (C

+

[ C

�

; C

�

[ C

+

) be the circuit whose support equals F . Let

a

1

2 C

+

[ C

�

, a

2

2 C

�

[ C

+

. We �rst prove that at most one of F , F n fa

1

g or

F n fa

2

g lies in S

F

. Let F n fa

1

; a

2

g = fb

1

; : : : ; b

k�1

g. Consider the lexicographic

extension �(M) [ p

F

of �(M) de�ned by the expression p

F

:= [b

+

1

; : : : ; b

+

k�1

; a

+

2

].

It lies both in the relative interiors of F nfa

1

g and F nfa

2

g (the �rst thing is trivial,

the second follows from the fact that a

1

and a

2

lie in opposite parts of the circuit).

Then, condition (b) in De�nition 4.5 applied to S implies that only one of F n fa

1

g

or F n fa

2

g can be the intersection with F of a cell of S. If one of them is, then

condition (c) in the same de�nition implies that F cannot be contained in a cell of

S.

Thus, for any pair of elements a

1

2 C

+

[ C

�

and a

2

2 C

�

[ C

+

at most one

of F , F n fa

1

g or F n fa

2

g is in S

F

. Since any spanning subset of F is either F

or of the form F n fag (F is the support of a circuit), S

F

is contained in one of

the three subdivisions fFg, T

+

C

or T

�

C

of F . If S

F

� fFg then clearly fFg = S

F

.

Otherwise, suppose without loss of generality that S

F

is contained in T

�

C

. We have

to prove that then S

F

= T

�

C

. If this is not the case, suppose that F n fa

2

g 2 T

�

C

is one of the missing simplices. This is impossible, because then the lexicographic

extension p

F

de�ned above would not lie in the convex hull of any cell of S

F

and,

thus, would not lie in the convex hull of any cell of S, which contradicts part (i) of

Corollary 4.7.

(iii) To prove that the cocircuit signature de�nes an extension it su�ces to

show that it de�nes an extension on every rank 2 contraction of �(M)

�

, by Lemma

1.3.

If e is a non-loop of such a contraction, then e is also a non-loop, and vice

versa. Thus, we can assume the contraction to be �(M)

�

=(A [ A). The dual of

the contraction is the restriction of �(M) to a corank 2 face (E n A) [ (E n A) of

�(M).

Observe that the cocircuit signature restricted to �(M)

�

=(A [ A) can be ob-

tained from the subdivision S restricted to �(M) n (A [A) in the same way as we

obtained the cocircuit signature for p from S. Since a corank 2 oriented matroid is

always realizable and every subdivision of an acyclic realized oriented matroid of

corank 2 is regular (in particular, lifting) by [24, Theorem 4] (see also Proposition

5.8 in [14]), we conclude that the restriction of the cocircuit signature to every
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rank 2 contraction is the cocircuit signature of a lifting triangulation. Thus, the

cocircuit signature for p in �(M)

�

de�nes an extension �(M)

�

[ p.

(iv) Let S

0

be the subdivision of �(M) de�ned by that lift. We have to prove

that S = S

0

; by part (ii) of Corollary 4.7 it is enough to prove that any cell of S is

a cell of S

0

as well.

Let � be a cell of S and let �

c

denote its complement in the set of elements of

�(M). We check the following two properties, the �rst of which is trivial:

(a) If a cocircuit C of �(M)

�

has support contained in �, then C(p) = 0.

(b) For any element a 2 �

c

, there is a cocircuit C

a

= (C

+

a

; C

�

a

) of �(M)

�

with

C

a

(p) = +1, C

+

a

\ �

c

= fag and C

�

a

\ �

c

= ;. Indeed, since � is spanning in

�(M), there is a circuit C of �(M) with support containing a and contained in

� [ fag, which we assume to be positive at a. Let C be the support of C. Since

�\C = C nfag, part (ii) of the Lemma implies that T

+

C

is a subcomplex of S, that

is, C(p) = +1.

Statement (a) implies that p is in the at spanned by �

c

; that is, that �

c

[

fpg contains the support of a circuit. The only way in which this circuit can be

orthogonal to the cocircuits in (b) is that it equals (fpg; �

c

) (or its opposite). Hence,

(;; �

c

[ fbpg) is a cocircuit of the lift

\

�(M) de�ning S

0

and � is a cell of S

0

. �

Theorem 4.14. Let �(M) be the Lawrence polytope associated to an oriented

matroid M. Then:

(i) There is a natural bijection between the extensions of M

�

and the subdi-

visions of �(M).

(ii) Under this bijection, two triangulations di�er by a geometric bistellar ip

if and only if the corresponding extensions di�er by a mutation.

Proof. (i) De�nition 4.1 provides a natural map from the collection of interior

extensions of �(M)

�

to the subdivisions of �(M). Since �(M)

�

is totally cyclic,

all its extensions are interior and by construction of �(M)

�

they are in bijection

with the extensions (interior or not) of M

�

. Thus, we have a natural map from

the extensions of M

�

to the subdivisions of �(M). Since all the subdivisions of

�(M) are lifting subdivisions, the map is surjective. The fact that the complete

cocircuit signature of an extension can be recovered from the corresponding lifting

subdivision (parts (iii) and (iv) of the previous lemma), implies that the map is

injective.

(ii) If two extensions of M

�

in general position di�er by a mutation, Theorem

3.14 implies that the associated triangulations of �(M) di�er by a ip (since they

cannot be equal).

Reciprocally, suppose that T

1

and T

2

are two triangulations of �(M) di�ering

by a ip. Let C be the circuit of �(M) in which the ip is supported, which is a

cocircuit of �(M)

�

. Let �(M)

�

[ p

1

and �(M)

�

[ p

2

be the extensions of �(M)

�

in general position corresponding to the triangulations T

1

and T

2

. We have that

Ext

p

1

� Ext

p

2

is a sum of cocircuit vectors supported on C, by De�nition 3.11

and Corollary 3.3. We want to derive from this that the two extensions di�er by

a mutation, that is, that the cocircuit signatures of p

1

and p

2

di�er only on the

cocircuit C (and its opposite).

Let C

0

be a cocircuit of �(M)

�

not equal to C or its opposite. In particular, the

hyperplanes H

C

and H

C

0

in which C and C

0

respectively vanish do not coincide.

Let us prove that C

0

(p

1

) = C

0

(p

2

). For this let � be any full rank simplex with a
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facet contained in H

C

0

. Since all the reorientations of � form a triangulation, there

is at least one such reorientation having p

1

in its convex hull. Let this reorientation

be � [ fag, with � � H

C

0

and hence C

0

(a) = C

0

(p

1

) 2 f+1;�1g

If also p

2

2 conv

�(M)

�

[p

2

(� [ a) we conclude that C

0

(p

1

) = C

0

(p

2

), as we

wished. If not, then � [fag appears in the di�erence Ext

p

1

�Ext

p

2

and so it has a

facet in the hyperplane H

C

in which C vanishes. In particular, a 2 H

C

and there

is an element b 2 � with � := � n fbg 2 H

C

\H

C

0

.

Now, T

1

and T

2

di�er by a ip on the circuit (of �(M)) C, which has b and

b on opposite sides. Since the complement of � [ fa; bg is in T

1

and b is the only

element of � [ fa; bg in the support of C, the complement of � [ fa; bg is in T

2

by

Proposition 3.13. I.e., �[fa; bg appears in Ext

p

2

. But �[fbg � H

C

0

again implies

that C

0

(p

2

) = C

0

(a) = C

0

(p

1

). �

4.3. The extension space conjecture and the Baues problem

Theorem 4.14 relates two important questions in geometric combinatorics: the

conjecture that all the extensions of a realizable oriented matroid are connected by

mutations and the question of whether all the triangulations of a point con�guration

are connected by ips. More precisely:

Corollary 4.15. (i) Let M be an oriented matroid. Then, the collec-

tion of all the extensions of M in general position is connected by muta-

tions if and only if the collection of all the triangulations of the Lawrence

polytope �(M

�

) is connected by ips.

(ii) There exist (non-realizable) Lawrence polytopes with triangulations which

do not admit any ip. In particular, whose set of triangulations is not

connected by ips.

Proof. Part (i) is trivial from Theorem 4.14. Part (ii) follows from the fact

that there are (uniform) oriented matroids with extensions in general position which

admit no mutation. The �rst such example was obtained by Richter-Gebert (see

Theorem 2.3 of [33]), with rank 4 and 19 elements. Recently, J. Bokowski and

H. Rohlfs [12] have found a smaller example with the same rank and 17 elements.

This produces a Lawrence polytope with dimension 20 and 34 vertices. �

Even more, it is obvious from our results that the poset of extensions of M

�

ordered by weak maps (or equivalently, by \perturbation") is isomorphic to the

poset of subdivisions of �(M) ordered by re�nement. In the realizable case, these

two posets appear as particular cases of the so-called \generalized Baues problem"

(see [32] for a recent survey on the topic).

Given two polytopes P � R

p

and Q � R

q

and a projection map � : R

p

! R

q

with �(P ) = Q, Billera et al. have de�ned the concept of a subdivision of Q induced

by � from P and asked whether the order poset of these induced subdivisions

ordered by re�nement has always the homotopy type of a sphere of dimension

dim(P )� dim(Q)� 1 [8]. The poset of �-induced subdivision is called the Baues

poset of the projection and the question on its homotopy type is referred to as the

generalized Baues problem since a special case where P is a hypercube and Q has

dimension one appeared in a conjecture of Baues, solved in [8].

The generalized Baues problem has been given a negative answer by Rambau

and Ziegler (see [31]) with a counterexample in which dim(P ) = 5, dim(Q) = 2
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and P has 10 vertices. The counterexample is minimal in dimension of both P

and Q since the Baues poset is known to have the homotopy type of a sphere if

dim(Q) = 1 [8] or dim(P )� dim(Q) � 2 [31].

Specially interesting are the following two cases of the generalized Baues pro-

blem:

(i) If P is a simplex, then the �-induced subdivisions of Q are all the poly-

topal subdivisions of Q which use (perhaps not all of) the image points

by � of the vertices of P . The Baues problem asks whether the order

poset of all proper subdivisions of the point con�guration �(vert(P )) has

the homotopy type of a sphere. This is known to be true if he point

con�guration has dimension at most 2 [16] or if it has at most 4 points

more than its dimension [3]. Very recently, the author has found a tri-

angulation without geometric bistellar ips of a point con�guration in

dimension 6 with 324 points [36]. The cases of dimension between 3 and

5, and the case of general position (meaning uniform oriented matroid)

remain open.

(ii) If P is a hypercube then Q is a zonotope, that is, the Minkowski sum

of several segments (see [40, Section 7.3]). In this case, the �-induced

subdivisions of Q coincide with the so-called zonotopal subdivisions (see

[11, page 60]) or zonotopal tilings (see [40, Section 7.5]) of the zonotope

Q. The Bohne-Dress Theorem on zonotopes (see [11, Theorem 2.2.13]

or [40, Theorem 7.32]) implies that the zonotopal subdivisions of Q are

in poset isomorphism with the lifts of the associated oriented matroid,

i.e. with extensions of the dual, with re�nement of subdivisions corre-

sponding to perturbation of extensions. That is, the zonotopal case of

the Generalized Baues problem is equivalent to the extension space con-

jecture stating that the extension space of a realizable oriented matroid

M of rank r has the homotopy type of a (r � 1)-sphere. The cases of

rank at most 3 or corank at most 2 are answered positively in [39].

Theorem 4.14 implies the equivalence of (i) and (ii) in the following statement.

The equivalence of (i) and (iii) is the afore-mentioned Bohne-Dress Theorem on

zonotopes. Let us mention that [21] contains a direct, geometric proof of the

equivalence between (ii) and (iii).

Corollary 4.16. Let M be an oriented matroid of rank r with n elements.

Then the following three posets are isomorphic:

(i) The poset of all the extensions of M

�

, ordered by weak maps.

(ii) The poset of all the subdivisions of the Lawrence polytope �(M), ordered

by re�nement.

(iii) If M is realized by a vector con�guration V , the poset of all the zonotopal

tilings of the zonotope Z(V ) generated by V .

In particular, the extension space conjecture is equivalent to the following one: for

any realized Lawrence polytope � of dimension d with n vertices, the poset of proper

polytopal subdivisions of � has the homotopy type of a (n� d� 2)-sphere. �

Example 4.17. The above statement can be easily checked in the following

simple example, in which all the triangulations/extensions which appear are lexi-

cographic.
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Let M be an oriented matroid of rank 1 and with n elements, none of them

loops. Up to reorientation, M can be realized by the vector v = (1; 1; : : : ; 1) with

n entries all equal to 1. The zonotope Z associated to M is the Minkowski sum of

n segments in the same direction. The zonotopal tilings of Z can be thought of as

monotone strings of faces of an n-cube, and the poset of all them is the face lattice of

an (n� 1)-permutahedron [40, pages 301{304]. We recall that the permutahedron

is the polytope of dimension n� 1 in R

n

whose vertices are the points obtained by

permuting in all the possible ways the entries of the point (1; 2; : : : ; n) [40, page

17].

The Lawrence polytope �(M) can be realized as the oriented matroid of a�ne

dependencies of the product of a segment and an (n� 1)-simplex. It is well-known

(cf. for example [19, pages 243{246]) that the poset of subdivisions of this polytope

is again isomorphic to the face lattice of the permutahedron.

The dualM

�

ofM is the unique uniform totally cyclic oriented matroid of rank

n� 1 with n elements, which can be realized by the vectors joining the barycenter

of an (n � 1)-simplex to its vertices. All the extensions of M

�

are realizable and

each of them corresponds to a ag of proper faces of the (n�1)-simplex. Thus, the

poset of extensions of M

�

is anti-isomorphic to the face lattice of the barycentric

subdivision of the boundary of an (n � 1)-simplex; that is, isomorphic to the face

lattice of the permutahedron.

4.4. A reoriented Lawrence construction

Here we introduce a reoriented version of the Lawrence construction. The

construction is interesting because, applied to an acyclic non-polytopal oriented

matroidM, it produces a matroid polytope �(M) with exactly the same collection

of triangulations asM. In other words, the \polytopal case" cannot be considered

simpler than the \acyclic case" when dealing with triangulations (unless we are

interested in a �xed rank). The same construction has been used in [15].

Let M be an oriented matroid of rank r on n elements which we identify with

E := f1; : : : ; ng. Assign a positive integer k

i

to each element i of n. Let k be the

sum of these integers. We consider the oriented matroid �(M)

�

constructed from

the dual M

�

of M by substituting k

i

copies of i for each element i. �(M)

�

has k

elements and rank n� r. Thus, its dual �(M) has rank k + r � n and k elements.

If k

i

= 2 for every i, then �(M) is a reorientation of the Lawrence polytope �(M).

It will be good for us to allow the full generality of arbitrary k

i

's in connection to

weighted unimodular con�gurations which will appear in Section 5.2.2.

The elements of �(M) lie in n equivalence classes �(1); : : : ;�(n) with k

1

; : : : ; k

n

elements respectively, each class corresponding to an element of M. Two elements

e and f of �(M) are co-parallel (meaning that (feg; ffg) is a cocircuit) if and only

if they lie in the same class or in classes corresponding to co-parallel elements of

M.

Theorem 4.18. Let M be an oriented matroid of rank r on n elements which

we identify with E := f1; : : : ; ng. Let k

1

; : : : ; k

n

be positive integers. The oriented

matroid �(M) of rank k + r � n on k elements just de�ned has the following

properties.

(i) �(M) is acyclic if and only if M is acyclic. If this is the case, then an

element of �(M) is a vertex (face of rank 1) if and only if the corres-

ponding element i of M was a vertex of M, or if k

i

is greater than 1. In
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particular, �(M) is polytopal if and only if M is acyclic and k

i

> 1 for

every non-vertex element of M.

(ii) There is a natural bijective correspondence between the triangulations of

M and the triangulations of �(M) which preserves the features of being

lifting or lexicographic.

Although we will neither prove nor use this, the correspondence mentioned

above preserves geometric bistellar ips and extends to an isomorphism of the

posets of subdivisions of M and �(M).

Before going into the proof, the following simple example may help to clarify

the construction. Suppose that A is the point con�guration in the plane consisting

of the vertices of a convex polygon P plus an interior point p. We are going to show

the construction �(A) applied to A with all the parameters k

i

equal to 1 except

the one of the interior point p which will be equal to 2. The resulting con�guration

�(A) in R

3

consists of the vertices of a bipyramid, with the equator of the bipyramid

being the polygon P and in such a way that the intersection of the axis with the

equatorial plane of the bipyramid coincides with the point p. The reader should try

to visualize in this example the correspondence between triangulations of A and of

�(A) exhibited in the following proof.

Proof. (i) �(M)

�

is totally cyclic if and only if M

�

is totally cyclic, which

proves the �rst part of (i). For the second part, assume that �(M)

�

and M

�

are

totally cyclic. An element of an acyclic oriented matroid is a vertex if and only if

the contraction at this element is acyclic. Thus, an element of �(M) is a vertex if

and only if its deletion in �(M)

�

is totally cyclic. This happens if and only if its

equivalence class has at least another element or the deletion of the corresponding

element of M

�

is totally cyclic.

(ii) It is obvious how to relate lifting and lexicographic triangulations ofM and

�(M), since the extensions of M

�

and �(M)

�

are \the same" and an extension

is interior (resp. in general position) in M

�

if and only if it is as well in �(M)

�

.

Studying what this correspondence between extensions of M

�

and �(M)

�

looks

like in terms of the extension vectors we conclude the following heuristic rule for

obtaining a triangulation �(T ) of �(M) from a triangulation T of M. Let �(i)

denote the equivalence class in the set of elements of �(M) of the element i 2 E.

For each subset � 2 E de�ne the following collection of subsets of the elements of

�(M):

�(�) = fS : #(S \ �(i)) = k

i

� 1 +#(� \ fig)g:

In other words, the subsets S appearing in �(�) are those which contain the

equivalence classes associated to the elements of � and miss exactly one element

from the other equivalence classes. The complements of the so-de�ned sets S are

independent (resp. spanning) in �(M)

�

if and only if � is independent (resp.

spanning) in M

�

. Thus, if T is a triangulation of M the following is a collection

of maximal simplices of �(M):

�(T ) = [

�2T

�(�):

It follows from the de�nition of �(T ) that a triangulation T ofM is the lifting

triangulation corresponding to an extensionM

�

[p if and only if �(T ) is the lifting

triangulation corresponding to \the same" extension �(M)

�

[ p of �(M)

�

. This
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proves that the correspondence T ! �(T ) restricts to a bijection between lifting

(resp. lexicographic) triangulations of M and �(M).

We will show that the correspondence is bijective on the set of all triangulations

of M and �(M) using the characterization of triangulations which appears in

Theorem 3.8. If e and f are elements of �(M)

�

in the equivalence class of a non-

loop element ofM, then the signed set (ffg; feg) is a circuit of �(M)

�

. A collection

of maximal simplices of �(M) satis�es the circuit equations of Theorem 3.8 for all

the circuits of this type if and only if it is a union of collections of simplices of the

form �(�) for di�erent maximal simplices � of M.

The rest of the circuits of �(M)

�

are obtained from circuits ofM

�

by choosing

a representative in �(M)

�

for each element ofM. Thus, a collection T of simplices

of M satis�es the circuit equations of Theorem 3.8 if and only �(T ) satis�es the

circuit equations as well.

Finally, it is obvious that the triangulations of �(M)

�

are all obtained from

the triangulations of M

�

by choosing a representative of each equivalence class of

elements. This implies that a collection �(T ) of simplices of �(M) obtained as

the union of the �(�) corresponding to a collection T of simplices of M satis�es

the duality equations hv

�(T )

; vi = 1 for all the incidence vectors v of triangulations

of �(M)

�

if and only if T itself satis�es the equations for the incidence vectors of

triangulations of M

�

. �

Remark 4.19. (�(M) and �(M) for graphic oriented matroids).

An oriented matroid M is called graphic (see [27]) if it is isomorphic to the

cycle oriented matroid of a directed graph G. In other words, if the elements of M

correspond to the edges of G and the signed circuits ofM correspond to the cycles

of G, with the signing given by the orientation of the edges (see [11, Section 1.1]).

Graphic oriented matroids form a very restricted class, strictly contained in

the so-called binary or regular oriented matroids; for example, uniform oriented

matroids are graphic only if they have rank or corank at most one. For this reason,

directed graphs are not normally considered a good model for oriented matroids.

(The situation is quite di�erent in matroid theory, in which many results and cons-

tructions can be interpreted in terms of graphs; see, for example, [27]). However,

the Lawrence construction, both in its original and reoriented versions, has the

following very simple interpretation for graphic oriented matroids:

� Let M be a graphic oriented matroid corresponding to the graph G.

Then, the oriented matroid �(M) is the graphic oriented matroid of the

graph �(G) obtained from G by subdividing each edge into two parts

and giving opposite directions to the two parts.

� Let M be as above, let 1; : : : ; n denote the edges of the graph (i.e., the

elements of the oriented matroid) and let k

1

; : : : ; k

n

be positive integers.

Then the oriented matroid �(M) corresponding to this choice of k

i

's

is the graphic oriented matroid of the graph �(G) obtained from G by

subdividing each edge i into k

i

new edges and giving to all of them the

same direction as the old edge had.

Observe that the constructions above are consistent with the fact that �(M)

is acyclic and invariant under reorientation of M, while �(M) is not invariant

under reorientation and is acyclic only if M is acyclic. The graph �(G) is uniquely

de�ned by G (and the parameters k

i

), but in the graph �(G) we have the choice of

which of the two parts of each edge of G gets each of the two directions. However,
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since every cycle of �(G) will contain either both or none of the two sub-edges, the

graphic oriented matroid obtained is the same independently of this choice. We can

choose all orientations of the sub-edges to go from the old vertex of the sub-edge

to the new one. With this choice the graph �(G) is bipartite.

Proposition 4.20. Let M be an oriented matroid of rank r on n elements.

Then, the following properties are equivalent:

(i) M is graphic.

(ii) �(M) is a full-rank restriction of the oriented matroid of a�ne depen-

dences of the product of two simplices of dimensions n� 2 and r � 1.

Proof. We recall the following elementary facts from matroid theory: the

graphic oriented matroid corresponding to a connected graph G = (V;E) has jEj

elements and rank jV j�1. Every graphic (oriented) matroid can be represented by

a connected (directed) graph.

It is known that the cycle oriented matroid of the complete bipartite graph

K

n;r+1

directed from one part to the other equals the oriented matroid of a�ne

dependences between vertices of the product of two simplices of dimensions n� 1

and r � 2. This follows, for example, from the description of the product of two

simplices which appears in [19, pages 246{251].

The remarks before the statement imply that whenever M is graphic, �(M)

is the cycle oriented matroid corresponding to a connected restriction of the graph

K

n;r+1

which uses all the vertices of the graph. That is, �(M) is a full-rank

restriction of the cycle oriented matroid of K

n;r+1

. This proves (i))(ii).

The other implication is trivial, since every minor of a graphic oriented matroid

is graphic and M is a contraction of �(M). �



CHAPTER 5

Lifting Triangulations

5.1. Some properties. Lifting versus regular triangulations.

We start by showing the relation between regular triangulations of a point

con�guration and lifting triangulations of the underlying oriented matroid.

Examples 5.1. (Regular and lifting triangulations)

Let M be an oriented matroid realized as a point (or vector) con�guration A.

We think of A as being represented by a matrix with n columns and r rows, where

n is the number of elements of M and r its rank. A Gale transform A

�

of A is an

n� (n� r) matrix whose row space is the orthogonal complement of the row space

of A. It is well-known that A

�

realizes the dual oriented matroid M

�

. Any point

lying in the convex hull (more generally, in the positive span) of the columns of A

�

de�nes an interior and realizable extension ofM

�

. If the point is not in the convex

hull of any non-full-dimensional geometric simplex with vertices in A

�

, then the

extension de�nes a lifting triangulation of M. The triangulations obtained in this

way are called regular triangulations of A [24, De�nition 1]. Some authors use the

word coherent [19, Chapter 7]. Observe that they can be alternatively de�ned as

those which agree with the projection of the lower envelope of a certain orthogonal

lift of A; the equivalence between the two de�nitions was proved in [24], and it is

the \realized analogue" of Proposition 4.2.

Regular triangulations are a class in-between lifting and lexicographic trian-

gulations. Their main draw-back in the context of this paper is that regularity

depends on the speci�c realization and not only on the oriented matroid.

Two points in the convex hull of A

�

de�ne the same regular triangulation of A

if and only if they are contained in the same collection of convex hulls of geometric

simplices of A

�

; that is, if the two points are in the same full-dimensional cell of

the common re�nement of all the triangulations of A

�

. This common re�nement

is the chamber complex of A

�

. The bijective correspondence between regular tri-

angulations of a con�guration A and maximal chambers of of its Gale transform

A

�

was explored in [6] and generalized in [14] to include a correspondence between

non-regular triangulations of A and \virtual" chambers of A

�

, by means of the

realized version of Theorem 3.8.

The relation between regular and lifting triangulations divides the triangula-

tions of a realizable oriented matroid M in four categories, with di�erent degrees

of \realizability". First, there are the triangulations which are regular for any

realization of M; this includes lexicographic triangulations but also some non-

lexicographic ones, as the one shown in part (c) of Figure 5.1. Second, there are

triangulations which are regular or non-regular depending on the realization of M,

as the ones in parts (a) and (b), in which the oriented matroid is the same but only

59
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(a)

(c)

(b)

(d)

(e) (f)

Figure 5.1. Some lifting triangulations.

the triangulation in part (a) is regular. These triangulations correspond to exten-

sions of the dual oriented matroidM

�

which are realizable but not as an extension

of an arbitrary realization of M

�

.

Finally, the triangulations which are not regular for any realization of M, as

the ones in parts (d), (e) and (f) of Figure 5.1, can still be lifting triangulations

(corresponding to non-realizable lifts/extensions) or not. The three in the �gure

are lifting triangulations, as follows from the following consequence of Corollary

7.3.2 of [11]: if the hyperplanes (ats of corank 1) of an oriented matroidM which

are dependent are all circuits then an arbitrary perturbation of them into bases

is an oriented matroid. Applying the corollary to the lift of (d) into a triangular

prism with an interior point we get lifts for the triangulations (d) and (f). For (e)

we do the same with the lift into a cube. In Examples 5.5 we will construct two

very simple non-lifting triangulations and in Section 5.2 we will show some more

complicated ones.

We address now the following problem: suppose that we are given an oriented

matroid M of rank r, an element a of M and a triangulation of either M=a or

Mn a; we want to extend it to M. More precisely, for a triangulation T

0

of Mn a
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we want to �nd a triangulation T of M with T

0

� T . For a triangulation T

00

of

M=a we want to �nd a triangulation T of M with T

00

= link

T

(a). We also want

to know if good lifting properties of T

0

and T

00

can be inherited by T .

Proposition 2.10 was a �rst result in this direction: a triangulation ofMna can

always be extended toM. However, the property fails in general for triangulations

of M=a as the following example of an oriented matroid of rank 4 in 7 elements

shows: Consider the point con�guration in part (f) of Figure 5.1, and \lift it" to a

point con�guration in R

3

by giving three di�erent heights to the seven points; put

the three vertices of the outer triangle on the bottom, the interior point on top,

and the three vertices of the inner triangle in the middle, very close to the bottom.

Let a be the point on top and consider the seven tetrahedra obtained by coning a

to the seven triangles which appear in the �gure. This collection of tetrahedra is

known not to be completable to a triangulation of the point con�guration. Observe

that the link of the top point in the non-completable collection of simplices is a

lifting (but non-regular) triangulation of the vertex �gure. In fact, it is the same

triangulation of parts (a) and (b) of Figure 5.1, in a di�erent realization of the

oriented matroid.

This same example has appeared in the proof of Lemma 2.1 in [14], and di�erent

versions of it have appeared in other places, going back to Sch�onhardt [37]. The

mentioned Lemma 2.1 of [14] also says that regular triangulations of both a deletion

and a contraction of M can be extended to regular triangulations of M. Since

lifting triangulations are in some sense the oriented matroid analogue of regular

triangulations (see Examples 5.1), one could expect that the same holds for lifting

triangulations. The example above shows that this is not the case and the following

proposition tells us what is true.

Proposition 5.2. Let M be an oriented matroid of rank r on a set E and let

a 2 E be one of its elements.

(i) Let T

0

be a lifting triangulation of the contraction M=a. Suppose that

either T

0

is a lexicographic triangulation or M

�

is a lexicographic exten-

sion of M

�

n a. Then, there is a lifting triangulation T of M such that

for every simplex � in T

0

the simplex fag [ � is in T . Moreover, if T

0

is

lexicographic, then T can also be taken lexicographic.

(ii) Let T

0

be a lifting triangulation of the deletion Mna =M(E na). Then,

there is a lifting triangulation T of M with T

0

� T . Moreover, if T

0

is

lexicographic, then T can also be taken lexicographic.

Proof. (i) The lifting triangulation T

0

of M=a corresponds to an extension

(M

�

n a)[ p of M

�

=a. Thus, we have two extensions of M

�

n a (by the elements p

and a). It su�ces to show that they are \compatible"; that is, that there is a two-

element extension (M

�

na)[fp; ag whose deletions by p and a coincide respectively

with M

�

and (M

�

n a) [ p. This is true if one of the extensions is lexicographic,

which is our hypothesis, by Lemma 1.9.

(ii) Let M

�

be the dual oriented matroid to M. Then M

�

=a is the dual of

the deletion Mn a. Let (M

�

=a) [ p be the interior extension in general position

which de�nes the triangulation T

0

. We need to �nd an interior extensionM

�

[p

0

in

general position ofM

�

such that whenever � is a maximal simplex ofM

�

=a having

p in its convex hull, � [ fag is a maximal simplex of M

�

having p

0

in its convex

hull. Such an extension was constructed in Lemma 1.10. �
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The following statement can be rephrased saying that a lifting subdivision of

M induces a lifting subdivision of every minor of M. It will be convenient to use

the following notations, where S is any collection of subsets of the ground set E of

M, � is a subset of some element of S, and A � E. The last two specialize to the

use of link and P in De�nition 2.3 and Section 2.4, respectively, if S is simplicial:

Sj

A

:= f� \A : � 2 Sg; link

S

(�) := f� n � : � � �; � 2 Sg;

P(S) := f� � E : � is a face of M(�) for some � 2 Sg

Observe that P(S)j

A

� P(Sj

A

). The converse holds if S is simplicial, but not in

general.

Proposition 5.3. Let S be a lifting subdivision of an oriented matroid M on

a ground set E, then:

(i) For every A � E there is a lifting subdivision S

A

of M(A) such that

P(S)j

A

� P(S

A

) (in particular, S

A

contains all the cells of S contained

in A). If S is a triangulation, S

A

can be taken to be a triangulation too.

(ii) link

S

(�) is a lifting subdivision of M=� , for every � contained in some

cell of S.

Proof. Let

c

M be a non-cyclic lift of M on the set E [ fbpg which de�nes the

lifting subdivision S ofM. If S is a triangulation, we can assume

c

M to be generic,

meaning that its dual is an extension in general position, by part (i) of Proposition

4.2. Then, P(S) is the collection of faces of

c

M which do not contain bp.

(i) For every A � E the restriction

c

M(A[fpg) is a non-cyclic lift ofM(A) and

de�nes a subdivision S

A

of M(A). The equation P(S)j

A

� P(S

A

) is just the fact

that every face of

c

M not containing p intersected with A gives a face of

c

M(A[fpg).

If S was a triangulation and the lift is generic, then S

A

is a triangulation.

(ii) Similarly, if � is contained in a face of of

c

M not containing p, then

c

M=�

is a non-cyclic lift of M=� whose faces are the link of � in the complex of faces of

c

M. Hence, it produces the subdivision link

S

(�) of M=� . �

It is easy to construct triangulations failing to ful�l the conclusion of part

(i) of Proposition 5.3, which hence are non-lifting triangulations. This is done in

Examples 5.5. It is an open question whether every non-lifting triangulation can

be proved to be non-lifting in this fashion.

Another use of Proposition 5.3 is to characterize lifting subdivisions of M as

the ones which are links of subdivisions of the Lawrence polytope �(M). It is a bit

surprising that the concept of liftingness, heavily based in oriented matroid theory,

can be characterized in this simple way and (in the realizable case) with no mention

of oriented matroids at all. Another such characterization will be given in Section

5.3.

Proposition 5.4. Let S be a subdivision of an oriented matroid M on a set

E. Let �(M) be the Lawrence polytope associated with M. Recall that �(M) has

element set E [ E. The following conditions are equivalent:

(a) S is a lifting subdivision.

(b) There is a subdivision �(S) of �(M) such that E is contained in some

cell of �(S) and with link

�(S)

(E) = S. If S is a triangulation then �(S)

can be taken to be a triangulation.
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Proof. (b))(a) �(S) is a lifting subdivision (Theorem 4.14) and Proposition

5.3(i) says that every link in a lifting subdivision is a lifting subdivision.

(a))(b) Let

c

M be a non-cyclic lift producing the lifting subdivision S, and

assume that it is generic if S is a triangulation. We call

\

�(M) the lift of �(M)

dual to the extension

c

M

�

ofM

�

(we are using the canonical identi�cation between

extensions of M

�

and of �(M)

�

).

Since

c

M is a non-cyclic lift, there is a positive circuit in

c

M

�

containing the

new element p. This is still a positive circuit of

\

�(M)

�

. Hence,

\

�(M) has a face

containing E and not containing bp. This proves that

\

�(M) is a non-cyclic lift and

that its associated lifting subdivision has a cell containing E. This lift restricts

to

c

M and, with the same arguments as in the proof of Proposition 5.3, the lifting

subdivision �(S) of �(M) produced by it has S = link

�(S)

(E) �

Examples 5.5. (Two non-lifting triangulations)

Let A be the point con�guration in R

3

obtained by giving three di�erent heights

to the seven points of Figure 5.1(d): the inner triangle at the bottom, the outer

triangle in the middle and the middle point on top. Call M the rank 4 oriented

matroid with 7 elements obtained. Let T be the triangulation of A (and of M)

obtained coning each triangle of the planar triangulation in the �gure to the top

point. Proposition 5.3 implies that T is not lifting, since removing the top point we

get a triangulation of a part of the boundary of a triangular prism which cannot

be extended to the whole prism.

Another proof of the fact that T is non-lifting is as follows: in any realization

ofM, the geometric link in T of the top point is precisely the triangulation of part

(b) of Figure 5.1, with the three dashed lines converging in one point thanks to

Desargues theorem. Thus, this link is non-regular. A triangulation with a non-

regular link is itself non-regular, by (the proof of) Lemma 2.1 of [14]. Thus, T is

non-regular in every realization of M. Since M has rank 4 and 7 elements, every

extension of its dual is realizable. Thus, every lifting triangulation of M is regular

for some realization of M, which proves that T is not a lifting triangulation.

The same construction of a non-lifting triangulation applies to part (f) of the

�gure, except that now three additional simplices have to be added in order to

�ll completely the convex hull of the lifted point con�guration. The non-lifting

triangulation obtained in this case has the strong property that it is non-lifting

for any oriented matroid of which it is a triangulation (the other one does not, as

follows from the same construction applied to the regular triangulation (c), which

produces a combinatorially equivalent regular triangulation). The proof of this

fact is as follows: let M be an oriented matroid having this triangulation, and

extend it with a new element p opposite to any relative interior extension of M.

The whole boundary of M is visible from p, with the meaning of Proposition 2.10.

The triangulation obtained by coning p to the boundary of our triangulation is

combinatorially the Barnette 3-dimensional sphere. It is proved in [11, Proposition

9.5.3] that this sphere is not the face lattice of any rank 5 matroid polytope. Hence

the triangulation on M[ p is not lifting. Since it is the only one which extends

our triangulation (Proposition 2.10), our triangulation is not lifting (Proposition

5.3(i)). A triangulation of a matroid polytope with this same property (and with
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almost the same proof) but with one more vertex and seven more maximal simplices

appears in Proposition 9.6.4 of [11].

5.2. Three interesting non-lifting triangulations

5.2.1. The Edmonds-Fukuda-Mandel oriented matroid. We consider

here the oriented matroid EFM(8) which appeared in [17, 18]. A detailed study of

it can be found also in pages 461{468 of [11]. With this oriented matroid we will

show strange behaviour of triangulations in the following two respects:

� Suppose that two full-rank disjoint simplices �

1

and �

2

of an oriented

matroid M are \strongly separated"; by this we mean that there is a

covector which is positive in one and negative in the other. If the dual

oriented matroidM

�

is realizable (more generally, if it has the generalized

Euclidean intersection property IP

2

, see De�nition 1.11) then there must

be a lifting triangulation of M containing the simplices �

1

and �

2

. The

proof of this is as follows: there is no loss of generality in assuming that

E = �

1

[ �

2

, since the procedure described in Proposition 2.10 extends

lifting triangulations to lifting triangulations. Hence, our hypothesis is

that (�

1

; �

2

) is a vector in M

�

. Since M

�

has the property IP

2

, there

is an extension of M

�

which lies in the relative interior of both �

1

and

�

2

(this is a generalization of Lemma 1.12 whose prove we omit). Thus,

there is a lifting triangulation of M containing the simplices �

1

and �

2

.

In EFM(8) there are two strongly separated simplices which do not ap-

pear simultaneously in any lifting triangulation. (part (i) of Proposition

5.6).

� In oriented matroids satisfying IP

2

, saying that two simplices �

1

and

�

2

intersect properly is equivalent to non-existence of a circuit with its

positive part contained in �

1

and its negative part contained in �

2

, again

by Lemma 1.12.

This is not true if one does not have IP

2

: in EFM(8)

�

there are two

simplices �

1

and �

2

which intersect properly (in fact, there is no extension

in the convex hull of both) but (�

1

; �

2

) is a vector (part (ii) of Proposition

5.6).

These two situations are more or less dual to one another: if two full-rank

simplices �

1

and �

2

of a uniform oriented matroid M contain the positive and

negative part of a circuit, their complements are two (weakly) separated simplices

in the dual oriented matroid M

�

. One would expect that �

�

1

and �

�

2

lie in some

triangulation of M

�

, even if it is not a lifting one. If this is the case, Theorem

2.4(g) implies that �

1

and �

2

do not lie in a triangulation of M. This happens in

our example.

EFM(8) is a rank 4 non-realizable oriented matroid on eight elements f1; 2, 3, 4,

5, 6, f; gg. As a way of de�nition, we show in Figure 5.2 the contractions of EFM(8)

at the six �rst elements; these contractions are acyclic oriented matroids of rank 3

on seven elements, realizable as point con�gurations in the plane. The cocircuits of

EFM(8) can be read from the �gure: the contraction EFM(8)=a permits to read the

cocircuits which do not have a on the support, and no cocircuit can have all the six

elements 1, 2, 3, 4, 5, and 6 on its support. The interested reader can check that

the cocircuits read from the �gure coincide with the ones listed in page 464 of [11].
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The �gure shows that EFM(8) has symmetry group isomorphic to S

3

, generated by

the permutations (16)(24)(35)(fg) and (123)(456).
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Figure 5.2. Links of a triangulation of EMF(8).

In the �gure we have drawn a certain triangulation of each contraction. The

six triangulations are the links at the vertices 1; : : : ; 6 of the following collection of

simplices of EFM(8):

T := ff1624g; f2435g; f3516g;

f235fg; f245fg; f356fg; f456fg;

f146gg; f136gg; f124gg; f123gg;

f24fgg; f46fgg; f63fgg; f32fggg:

Claim 1: T is a triangulation of EFM(8).

Proof. Any interior corank 1 simplex � contains at least one element a 2

f1; 2; 3; 4; 5; 6g. The oriented pseudo-manifold property for � n fag in link

T

(a)

implies the property for � in T . Thus, T has the oriented pseudo-manifold property.

Also, since 1 is a vertex of EFM(8), any simplex of T which covers a lexicographic

interior extension in general position starting by [1

+

; : : :] must contain 1. The fact

that link

T

(1) is a triangulation implies that all such extensions are covered exactly

once. �

Claim 2: T is a non-lifting triangulation of EFM(8).
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Proof. We look at the restriction of EFM(8) to the elements f1; 2; 3; 4; 5; 6g.

The restriction of T contains the simplices f1624g, f2435g and f3516g. Suppose

that there is a triangulation T

0

of the restriction containing these three simplices.

For the link of T

0

at 1 to be a triangulation it is necessary that f1346g and f1234g

be in T

0

. But in the contraction at element 3 we see that f1234g intersects f2345g

improperly.

That is, the restriction of T to the six elements cannot be extended to a trian-

gulation. Proposition 5.3 implies that T is not a lifting triangulation. �

Claim 3: T is the only triangulation of EFM(8) containing the simplices f146gg

and f235fg.

Proof. We will show that the only way to complete f146gg and f235fg to a

triangulation of EFM(8) is using precisely the simplices of T .

- the presence of f146gg implies (see the contraction at element 1) the presence

of the simplex f1246g and the absence of any simplex containing f1fg. With similar

arguments at 5 we conclude the presence of f2345g and the absence of f5gg.

- then, the fact that 5 and g do not lie on the same simplex in the contraction

at element 1 implies the presence of the simplices f136gg and f1356g. A similar

argument at 5 shows the presence of f356fg.

- with this, the only way to complete the links at 3 and 6 to subdivisions is the

inclusion of the simplices f36fgg, f23fgg, f123gg, f46fgg and f456fg.

- the simplex f124gg completes the link at 1, the simplex f245fg completes the

link at 5 and then f24fgg completes the links at 2 and 4. �

The three claims together imply that no lifting triangulation of EFM(8) contains

the two simplices f146gg and f235fg. Part (ii) of the following statement has the

following stronger implication: no lifting subdivision of EFM(8) has f146gg and

f235fg contained in two di�erent cells.

Proposition 5.6. (i) No lifting triangulation of EFM(8) contains the

two simplices f146gg and f235fg, although (f146gg; f235fg) is a co-

vector.

(ii) The dual oriented matroid EFM(8)

�

has no extension EFM(8)

�

[ p with p 2

conv

EFM(8)

�

[p

(f146gg) \ conv

EFM(8)

�
(f235fg). In particular, the two sim-

plices f146gg and f235fg intersect properly in EFM(8)

�

, although (f16gg;

f35g) is a circuit. No triangulation of EFM(8)

�

contains both simplices.

Proof. (i) The covector (f16gg; f235fg) can be read from the contraction at

element 4 in Figure 5.2. Its composition with any covector positive at 4 shows that

(f146gg; f235fg) is a covector. The rest of the statement follows from claims 2 and

3.

(ii) That (f16gg; f35g) is a cocircuit of EFM(8) can be read from the contraction

at either 2 or 4. There is no triangulation of EFM(8)

�

containing f146gg and f235fg

because such a triangulation would contain the complements of two simplices of

the triangulation T of EFM(8), which is impossible by part (g) of Theorem 2.4. We

now prove that the two simplices intersect properly; even more, that there is no

extension EFM(8)

�

[ p with p 2 conv(f146gg)\ conv(f235fg).

If there was one such extension EFM(8)

�

[ p, then there would be two circuits

(�

1

; fpg) and (�

2

; fpg) in EFM(8)

�

[p with �

1

� f146gg and �

2

� f235fg. Elimination



5.2. THREE INTERESTING NON-LIFTING TRIANGULATIONS 67

of the element p would imply that (�

1

; �

2

) is a vector of EFM(8)

�

[ p and hence also

of EFM(8)

�

. Since EFM(8)

�

is uniform of rank four, �

1

[ �

2

has at least �ve elements

and one of �

1

or �

2

(say �

1

) has at least three elements.

If �

1

has four elements, then p is in the relative interior of f146gg. The per-

turbation p

0

:= [p

+

; 2

+

; 3

+

; 5

+

; f

+

] will produce an extension of EFM(8)

�

interior,

in general position and in the relative interior of both f146gg and f235fg. This is

impossible since then the associated lifting triangulation of EFM(8) contains both

simplices, in contradiction with claims 1 and 2.

If �

1

has three elements, then �

2

is a positive vector in the rank-1 contraction

EFM(8)

�

=�

1

. In particular, there is an element a 2 �

2

such that the cocircuits

vanishing on �

1

have the same sign on a and in the element f146gg n �

1

. Then,

the perturbation p

0

:= [p

+

; a

+

] is still in the convex hull of �

2

and in the relative

interior of f146gg. This is the previous case. �

Another feature of the example EFM(8) is the following. Its deletion at element

f is realizable by the columns of the following matrix, as shown in page 461 of [11]:

0

B

@

�1 � �� 1 0 0 0

�� �1 � 0 1 0 0

� �� �1 0 0 1 0

1 1 1 0 0 0 1

1

C

A

:

A Gale transform of this con�guration, rescaled at the element g (in particular,

reoriented) is given by:

0

@

1 0 0 1 � �� 1=3

0 1 0 �� � 1 1=3

0 0 1 � 1 �� 1=3

1

A

;

which can be viewed as a point con�guration A in the plane x + y + z = 1 of R

3

.

A consists of the six vertices of a (non-regular) hexagon and an interior point in

it. Using the pushing-pulling characterization of lexicographic triangulations (see

Remark 4.4) it is easy to conclude that all the triangulations of A are lexicographic

(and thus regular). However, the dual oriented matroid has non-realizable exten-

sions (such as the reorientation at g of EFM(8)). The apparent contradiction is not

so, because di�erent extensions of the dual can correspond to the same triangulation

of A.

5.2.2. A non-lifting triangulation of a unimodular polytope. We call

a real matrix unimodular if all its maximal non-zero minors have the same absolute

value (sometimes the de�nition asks this value to be 1). It is a classical result

of matroid theory that a matroid can be represented over the rationals by a uni-

modular matrix if and only if it can be represented over any �eld [27, Theorem

6.6.3]; such matroids are called regular. For orientable matroids this is equivalent

to the matroid being binary, i.e. representable over the �eld with two elements [27,

Corollary 13.4.6], and also equivalent to the absence of any rank 2 uniform minor

on 4 elements [27, Theorem 6.5.4].

A vector con�guration is unimodular if it equals the set of columns of a uni-

modular matrix. A point con�guration of dimension d is unimodular if all its

full-dimensional simplices have the same volume. Equivalently, if adding an extra

constant coordinate to every point one gets a unimodular vector con�guration. Uni-

modular vector or point con�gurations play an important role in di�erent branches
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of discrete mathematics. In connection with triangulations, it was somewhat unex-

pected that unimodular con�gurations can have non-regular triangulations. This

was shown by de Loera [13] who constructed a non-regular triangulation of the

product �

3

��

3

of two 3-dimensional simplices. Later on Sturmfels [38, Theorem

10.15] constructed a non-regular triangulation of �

2

��

5

. Eric Babson (personal

communication) has shown that de Loera's triangulation of �

3

� �

3

is, in fact,

a non-lifting triangulation. Here we will construct a non-lifting triangulation of a

di�erent unimodular polytope.

Before going into detail let us make another consideration. Let v

1

; : : : ; v

n

2 R

r

be the columns of a rank r acyclic unimodular matrix. Let K be the common

absolute value of all its non-zero maximal minors. By acyclic we mean that there

is a linear functional on R

r

positive in all the columns of the matrix. Let f be

such a functional. Dividing each vector v

i

by the value f(v

i

) we get a homogeneous

matrix and thus a point con�guration in R

r�1

, identifying R

r�1

with the a�ne hy-

perplane ff(v) = 1)g in R

r

. We say that this con�guration is weighted unimodular

with weights f(v

1

); : : : ; f(v

n

) because the volume of any maximal simplex of the

con�guration multiplied by the product of weights of its vertices equals K=d!. If

all the weights are rational (which can be achieved by a rational choice of f if A

itself is rational), the lifting procedure exhibited in Section 4.4 allows to construct

a truly unimodular con�guration with \the same" triangulations as A. This follows

from the following result:

Proposition 5.7. Let fP

1

; : : : ; P

n

g be a weighted unimodular point con�gu-

ration in R

r�1

with positive integer weights w

1

; : : : ; w

n

. Let M be the oriented

matroid of a�ne dependences of the point con�guration and consider the oriented

matroid �(M) of Section 4.4 taking each k

i

to be precisely the weight w

i

. Then,

�(M) is the oriented matroid of a�ne dependences of a certain unimodular point

con�guration with

P

w

i

points in dimension

P

w

i

� n+ r � 1.

Proof. We will explicitly construct the matrix of a certain point con�guration

of the stated rank and number of columns, and then show that it is unimodular,

homogeneous and that it realizes �(M).

Let v

1

; : : : ; v

n

be a non-homogeneous unimodular vector con�guration in R

r

which homogenizes to P

1

; : : : ; P

n

. Let fv

�

1

; : : : ; v

�

n

g 2 R

n�r

be a Gale transform of

it. That is, assume that the matrices A and A

0

having as columns the vectors v

i

and v

0

i

respectively have orthogonally complementary row spaces.

For each i = 1; : : : ; n we consider the following three matrices, of sizes (!

i

�

1)� w

i

, r � w

i

and (n� r) � w

i

respectively. I

!

i

�1

represents the identity matrix

of size !

i

� 1 and 1

!

i

�1

the column vector (1; 1; : : : ; 1) of length w

i

� 1:

S

i

:= (�I

!

i

�1

: 1

!

i

�1

) V

i

:= (v

i

=w

i

� � � v

i

=w

i

) V

�

i

:= (v

�

i

� � � v

�

i

):

Consider then the following two matrices:

�(A) :=

0

B

B

B

B

@

S

1

0 � � � 0

0 S

2

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � S

n

V

1

V

2

� � � V

n

1

C

C

C

C

A

�(A)

�

:= (V

�

1

� � � V

�

n

) :

It is obvious that �(A)

�

realizes the oriented matroid �(M)

�

. It is also easy to

check that �(A) and �(A)

�

are Gale transforms of one another: the lower rows of
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�(A) are orthogonal to the rows of �(A)

�

because A and A

�

are Gale transforms

of one another, while the upper rows of �(A) are orthogonal to the rows of �(A)

�

because the sum of the entries in each row of each S

i

is zero while the rows of each

V

�

i

are constant. Thus, �(A) realizes the oriented matroid �(M).

Let f = (f

1

; : : : ; f

r

) be a linear functional on R

r

which gives the weights w

i

=

f(v

i

). Then, the linear functional (0; : : : ; 0; f

1

; : : : ; f

r

) with a string of

P

w

i

� n

zeroes shows that the columns of �(A) are homogeneous.

Unimodularity of �(A) can be checked directly, or deduced from the fact that

a Gale transform of a unimodular matrix is unimodular as well. This implies that

A

�

is unimodular, which clearly shows unimodularity for �(A)

�

and in turn for

�(A). �

We now construct the desired non-lifting triangulation of a homogeneous poly-

tope. As a �rst step we construct a non-lifting triangulation of a weighted unimod-

ular point con�guration A with 9 points in R

3

. The con�guration in question is

given by the columns of the following homogeneous rank 4 matrix:

A :=

0

B

@

1 0 0 0 1=2 0 0 1=2 1=4

0 1 0 0 1=2 1=2 0 0 1=4

0 0 1 0 0 1=2 1=2 0 1=4

0 0 0 1 0 0 1=2 1=2 1=4

1

C

A

:

Geometrically, the con�guration A consists of the four vertices of a tetrahedron

�, four mid-points of edges of � and the barycenter of �. It is weighted unimodular

with weights (1; 1; 1; 1; 2; 2; 2; 2; 4), as can be easily checked. The fact that the

oriented matroid admits a unimodular representation also follows from the fact

that its dual is graphic, and hence binary. Indeed, the dual is the graphic oriented

matroid associated to the complete bipartite graphK

3;3

with the orientation shown

in Figure 5.3. The labels on the edges refer to the order of the columns of A.

49

5 7

3 1

86

2

Figure 5.3. A graph whose cycle matroid is dual to the con�gu-

ration A.

Let us consider the following triangulation @T of the boundary of the tetrahe-

dron:

@T := ff3; 6; 7g; f2; 6; 7g; f2; 4; 7g; f2; 5; 6g; f1; 5; 6g; f1; 3; 6g;

f1; 5; 8g; f4; 5; 8g; f2; 4; 5g; f4; 7; 8g; f3; 7; 8g; f1; 3; 8gg:

This triangulation is displayed in Figure 5.4, where the boundary of the tetra-

hedron appears \unfolded". @T cannot be completed to a triangulation T of A

without using the interior point 9: if it could, the triangle � = f1; 3; 6g 2 @T

should be joined in

b

T to one of the three points 4, 7 or 8 which do not lie on the

plane containing �. It can be joined to neither 4 nor 7 because the edges f1; 4g and



70 5. LIFTING TRIANGULATIONS

81

2 3

4

5

6

7

8

4

4

7

Figure 5.4. A triangulation of the boundary of a tetrahedron.

f1; 7g are not edges of @T . Thus, we conclude that f6; 8g should be an edge of T .

With the same arguments we conclude that f7; 5g should also be an edge, but this

is impossible because these two edges intersect improperly.

By Proposition 5.3, this implies that the triangulation T of A obtained coning

@T to the central point 9 is not a lifting triangulation of A. Thus:

Proposition 5.8. A is a weighted unimodular con�guration with 9 points in

R

3

which has a non-lifting triangulation. There exists a unimodular polytope with

16 vertices in R

10

which has a non-lifting triangulation.

Proof. The �rst part has already been shown. For the second part we apply

Proposition 5.7 to A in order to get a unimodular point con�guration with 16 points

in R

10

. The con�guration is polytopal by Theorem 4.18, since all the non-vertices

of A have weight at least 2. Also by Theorem 4.18, the non-lifting triangulation

described before gives a non-lifting triangulation of the new oriented matroid. �

Incidentally, T is a triangulation with only 4 bistellar ips, supported on the 4

quadrilaterals that appear in the facets of the tetrahedron; that is, the number of

ips is less than the dimension n� d � 1 = 5 of the associated secondary polytope

(see the de�nition in [6] or [19]). A combinatorially equivalent triangulation with

the same property was constructed by de Loera et al. [15].

5.2.3. A non-lifting triangulation of the 4-cube. Jes�us de Loera [13] has

shown that the 4-dimensional cube has non-regular triangulations. We go further

and construct a non-lifting triangulation of the 4-cube.

We consider the 4-cube as realized by the point con�guration C

4

in R

4

whose

16 points are all the 0-1 vectors on 4 coordinates. The contraction of C

4

at any of

its points is realized by the point con�guration in R

3

consisting of the barycenters

of the �fteen faces of a tetrahedron, including the vertices and the tetrahedron itself

as faces but excluding the empty face. We observe that the nine-point con�guration

A of the previous example is a subcon�guration of this. This fact will be used.

We are �rst going to show a triangulation of the contraction of C

4

at the point

(1111). The points (0011), (1001), (1100) and (0110) are mid-points of edges of the
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tetrahedron in the contraction, forming a square. The points (1000), (0100), (0010)

and (0001) are the barycenters of the four facets of the tetrahedron. These eight

points are the vertices of a 3-polytope P with four quadrilaterals and four triangles

as facets, depicted in Figure 5.5. We triangulate the con�guration formed by these

eight points and the central one (which corresponds to (0000)) in the following way:

we choose one of the two diagonals in the quadrilateral facets in such a way that

each of the vertices of P belongs to exactly one diagonal (which can be done in two

equivalent ways; see one of them in Figure 5.5). This triangulates the boundary of

P with 12 triangles. Then we cone each of the triangles to the central point (0000).

(1100)

(0110) (0111)

(0010) (0011)

(1011)

(1001)

(0001)
(1000)

(0100)

(1101)

(1110)

Figure 5.5. A triangulation of a polytope P contained in the tetrahedron.

We will complete the triangulation of P to a triangulation of the whole tetra-

hedron as follows. The mid-point (1010) of the segment [(1011); (1110)] sees two

quadrilateral facets of P , and hence four boundary triangles of the triangulation of

P . We add the four tetrahedra obtained joining (1010) to them. In the same way,

we add the joins of (0101) to the four boundary triangles of the triangulation of P

seen from it. More precisely, we are adding the following eight tetrahedra to the

triangulation of P :

ff(1100); (1000); (0110)g; f(1000); (0110); (0010)g;

f(0011); (0010); (1001)g; f(0010); (1001); (1000)g; g � (1010)

and

ff(0110); (0100); (0011)g; f(0100); (0011); (0001)g;

f(1001); (0001); (1100)g; f(0001); (1100); (0100)g; g � (0101):

This produces a triangulation with 20 tetrahedra of the octahedron whose ver-

tices are the mid-points of the edges of the tetrahedron C

4

=(1111). It is now easy

to complete this to a triangulation of C

4

=(1111) with 24 tetrahedra, by adding four

tetrahedra. Namely, for each of the vertices (1110), (1101), (1011) and (0111) of

the tetrahedron C

4

=(1111) we add its cone to the only boundary triangle visible

from it.

Thus, we have triangulated C

4

=(1111) with 24 tetrahedra. Let us denote

by T (C

4

=(1111)) this triangulation. In C

4

, we consider the collection of 24 full-

dimensional simplices T (C

4

=(1111)) � (1111). It is clear that these 24 simplices
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intersect properly (in the usual geometric sense) since all of them have (1111) as a

vertex and their links at (1111) intersect properly. On the other hand, the volume

of every d-simplex in R

d

with integer vertices is an integer multiple of 1=d!. In

particular, the 24 simplices we are considering must cover the 4-cube (again in a

geometric sense). We conclude that the 24 simplices provide a triangulation of the

4-cube, which we denote T .

We are now going to prove that T is a non-lifting triangulation. We consider

the link of T at (0000), which is a triangulation of the contraction C

4

=(0000). In

the construction above, the only simplices of T using the point (0000) are the joins

to (1111) of the 12 initial tetrahedra used to triangulate the polytope P . Of course,

the contraction C

4

=(0000) is again the point con�guration given by the barycenters

of a tetrahedron, but the points which were barycenters of facets in the contraction

C

4

=(1111) are vertices of the tetrahedron in the contraction C

4

=(0000) and vice-

versa.

Thus, the 12 simplices of the link at C

4

=(0000) are the joins of the central

point (1111) with the 12 triangles on the boundary of a tetrahedron which appear

in Figure 5.6 (where the boundary of the tetrahedron appears unfolded). But this

�gure is the same as Figure 5.4. The same argument used there proves that the link

of T at (0000) is non-lifting. Thus, T is a non-lifting triangulation of the 4-cube,

by Proposition 5.3(ii).

(0001)

(0111)

(0101) (0011)

(0010)

(0011)

(0001)

(0101)

(0001)

(0100)

(1011)
(1010)

(1101)

(1100) (1110)

(0110)

(1001)(1000)(1001)

Figure 5.6. A triangulation of a link of the 4-cube.

5.3. Two characterizations of lifting subdivisions.

In Section 5.1 we have characterized lifting subdivisions of an oriented matroid

M as those which are links in lifting subdivisions of the Lawrence polytope �(M)

(Proposition 5.4). Here, we give another characterization, related to the fact a

lifting subdivision of M has to be \compatible" with some subdivision of M(A)

for every restriction M(A) of M (Proposition 5.3(i)):

Definition 5.9. Let S be a subdivision of an oriented matroid M of rank r

on a ground set E. For each subset B � E, let S

B

be a subdivision of M(B). We

say that the family of subdivisions S = fS

B

g

B2E

is consistent if for every B � E

the following happens:
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(i) For every cell � 2 S

B

and for every B

0

� B, �\B

0

is a face of a cell of S

B

0

(i.e., (S

B

)j

B

0

� P(S

B

0

), with the notation introduced before Proposition

5.3).

(ii) For every rank r simplex � of M(B), if � is contained in a cell of S

�[fbg

for every b 2 B n �, then � is contained in a cell of S

B

as well.

We say that the family is consistent with S if, moreover, S = S

E

.

Condition (i) says that the subcomplex of S

B

induced on the elements of any

B

0

� B is a subcomplex of S

B

0

. Condition (ii) is void unless B spans M and has

at least r + 2 elements.

Theorem 5.10. The following conditions are equivalent for a subdivision S of

an oriented matroid M:

(a) S is a lifting subdivision.

(b) There is a subdivision �(S) of �(M) such that E is contained in some

cell of �(S) and with link

�(S)

(E) = S. If S is a triangulation then �(S)

can be taken to be a triangulation.

(c) There is a family S of subdivisions of the restrictions of M which is

consistent with S.

The equivalence of (a) and (b) was proved in Proposition 5.4. For proving the

equivalence of (a) and (c) we �rst show how a consistent family of subdivisions of

M induces a circuit signature function �. I.e. a function assigning a 0, +1 or -1 to

each circuit ofM (Lemma 5.11). This will be a cocircuit signature function onM

�

,

and we prove that it de�nes an extension ofM

�

producing the lifting triangulation

we desire. This is done by \reduction to rank 2" (Lemma 5.12).

If B has corank 1, then M(B) has exactly one circuit C = (C

+

; C

�

) (up to

sign reversal) and three subdivisions, which we denote as follows (if M(B) is not

acyclic then one of S(B;C

+

) or S(B;C

�

) does not exist, but this does not a�ect

our proof):

S(B;C

+

) := fB n fag : a 2 C

+

g;

S(B;C

�

) := fB n fag : a 2 C

�

g; S(B;C

0

) := fBg:

We will say that the three subdivisions above give positive, negative and zero sign

to the circuit C, respectively.

Lemma 5.11. Let S be a subdivision of an oriented matroid M. Let C denote

the set of circuits of M. Let S = fS

B

g

B�E

be a family of subdivisions of the

restrictions of M which is consistent with S.

De�ne a circuit signature function �

S

: C ! f�1; 0;+1g as follows. For each

circuit C of M, let B be any corank 1 subset of E containing C. Let �

S

(C) be �1,

+1 or 0 if S

B

equals S(B;C

+

), S(B;C

�

), and S(B;C

0

), respectively (observe the

sign change). Then,

(i) The function �

S

is well-de�ned (it does not depend on the choice of the

subset B) and satis�es �

S

(�C) = ��

S

(C).

(ii) If �

S

de�nes a lift

c

M of M (i.e. if it de�nes an extension of M

�

), then

the lift is non-cyclic and S is the lifting subdivision induced by it.

Proof. (i) Let C be a circuit of M. Then, C is already a corank 1 subset of

E containing C . Moreover, C is a face of of B for any other corank 1 subset of

E containing C , because the unique two circuits (C

+

; C

�

) and (C

�

; C

+

) of M(B)
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are orthogonal to (;; B n C). Hence, by condition (i) in De�nition 5.9, S

B

gives

the same sign to the circuit C as S

C

, for every such B. That �(�C) = ��(C) is

trivial.

(ii) Suppose that �

S

de�nes a lift

c

M of M. Let bp denote the new element. If

the lift was cyclic, let (;; B [ fbpg) be a positive circuit of it containing bp. Then,

C = (;; B) would be a positive circuit in M and we would have �

S

(C) = +1. This

is impossible since the subdivision S(B;C

�

) does not exist in these conditions.

Denote S

c

M

the lifting subdivision induced by

c

M.

We �rst deal with the case of

c

M being the lift by a coloop. Then, S

c

M

is the

trivial subdivision. By property (i) in De�nition 5.9 and the de�nition of �

S

, we

know that every subset of E of corank 1 is contained in some cell of S. We will

prove by induction on jEj that S is the trivial subdivision. IfM has corank 0, then

this is obvious: its only subdivision is the trivial one. Otherwise, let a 2 E be an

element such thatMna has the same rank asM. By inductive hypothesis, S

Enfag

is the trivial subdivision. Let � � E n fag be a full-rank simplex. Then, � [ fag

and E n fag are contained in cells of S, the �rst one because it has corank one and

the second by De�nition 5.9. But then the de�nition of subdivision (see part (c)

of De�nition 4.5) implies that E is (contained in) a cell of S, and hence S is the

trivial subdivision.

Now we deal with the general case. Let F be a cell of S

c

M

, i.e. let F be a

face of

c

M not containing bp. Then, �

S

restricted to F is the zero function, and by

the previous case S

F

is the trivial subdivision. By De�nition 5.9, F is contained

in a cell of S, i.e. S

c

M

re�nes S. We only have to prove that the union of any two

di�erent cells of S

c

M

is not contained in S.

Let F

1

and F

2

be two di�erent cells of S

c

M

. Let � be a full rank simplex

contained in F

1

and let a be an element in F

2

n F

1

, so that � [ fag has corank

1. The subdivision S

�[fag

is the only one having � as a cell, which implies by

De�nition 5.9 that the unique cell of S containing F

1

does not contain a. �

Lemma 5.12. In the same conditions of Lemma 5.11, suppose moreover that

M has corank 2. Then, the circuit signature �

S

induced is the circuit signature of

a lift of M.

Proof. Without loss of generality, we assume thatM has no coloops. In other

words, that for every element a 2 E its deletionMna has corank 1. Otherwise the

statement follows easily by induction on the cardinality of M.

In these conditions, for each element a 2 E, M n a has a unique circuit C

a

(up to a sign), which is given a certain sign by �

S

. The dual M

�

of M has rank

2 and can be realized by a vector con�guration of rank 2, whose cocircuits are the

complements of the lines generated by vectors of the con�guration. We can picture

�

S

(C

a

) by putting a + and a � sign on the two sides of the vector a, in the way

indicated by �

S

(C

a

) if this is non-zero and putting zeroes if �

S

(C

a

) = 0.

We will prove that our circuit signature function does not contain any of the

three forbidden subcon�gurations displayed in Figure 1.1 (see part (c) of Lemma

1.3). Taking into account the possible reorientations, each of the three subcon�gu-

rations breaks into several cases, displayed in Figure 5.7. The pictures in each row

are the di�erent reorientations of the same forbidden subcon�guration. We only

need to show that none of them can appear in the dual of M, when we picture �

S

as indicated above. Observe that a zero in a vector v of the picture means that
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b
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c
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00
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Figure 5.7. Forbidden subcon�gurations for a cocircuit signature

in rank 2.

S

Mnfvg

is a trivial subdivision, while a + on one side of v means that, for every w

on the other side of v, Mnfv; wg is a cell in S

Mnfvg

. With this we can discard the

di�erent possibilities as follows:

(1) In the �rst row of pictures we have zero signs for C

a

and C

c

, but not for

C

b

. This implies that S

Enfag

and S

Enfcg

are trivial subdivisions. Taking B = E in

part (ii) of De�nition 5.9 we conclude that E n fa; cg is contained in a cell � of S.

Taking B = E, B

0

= E n fcg and � = � in part (i) of De�nition 5.9, we have that

a 2 � (since S

B

0

is the trivial subdivision). In the same way one proves c 2 �, i.e.

� = E. But then S

Enfbg

is trivial as well, which is not the case.

(2) In the pictures of the second row we still have that S

Enfag

is the trivial

subdivision. We have labelled all the cases so that the vector a of the Gale transform

lies on the positive side of (the cocircuit C with �

S

(C) = +1 and vanishing at)

b and on the negative side of c. In terms of the subdivisions, this implies that

E n fa; cg 2 S

Enfcg

but E n fa; bg 62 S

Enfbg

.

Taking B = E and � = E n fa; cg, De�nition 5.9(ii) says that E n fa; cg lies in

a cell � of S. In the same way as before we can prove that c 2 �, so that either

E n fag � �. But then, De�nition 5.9(i) taking B = E, � = � and B

0

= E n fbg

implies that � n fbg and hence either E n fa; bg of E n fbg is contained in a cell of

S

Enfbg

. The second would imply b to have zero signs in the picture and the �rst

would imply a lying in the negative side of b.

(3) Here we consider the two reorientation cases separately:

(3.a) In the picture of the left, fa; b; cg is the support of a spanning positive

circuit of M

�

, so that its complement is a simplicial facet of M. Thus, there is

a unique cell � in S containing E n fa; b; cg. But the picture would imply that

E n fa; bg 2 S

Enfag

(b is in the negative side of a, and similarly E n fb; cg 2 S

Enfbg
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and E n fa; cg 2 S

Enfcg

. With this we conclude, respectively, c 2 � , a 2 � and

b 2 � , using De�nition 5.9(i). But then S would be the trivial subdivision, which

is not the case.

(3.b) The picture tells us that E nfa; cg is a simplex in both S

Enfcg

and S

Enfag

,

so that it is contained in a cell � of S, by part (ii) of De�nition 5.9 applied with

B

0

= E n fa; cg. Since neither S

Enfcg

nor S

Enfag

is trivial, � contains neither a nor

c. Thus, � = E n fa; cg is a cell in S.

Part (i) of De�nition 5.9 implies then that E n fa; b; cg is a face of a cell in

S

Enfbg

. Since S

Enfbg

is not trivial and since E n fa; b; cg does not span Mn fbg,

either E n fa; bg or E n fb; cg is in S

Enfbg

. This would imply one of a or c to be in

the negative side of b in the picture. �

Proof of (a),(c) in Theorem 5.10:

(c))(a) This follows easily from Lemmas 5.11 and 5.12. If S is a family of

subdivisions consistent with S, part 1 of Lemma 5.11 implies that S de�nes a

circuit signature, which is the circuit signature of a lift by Lemmas 5.12 and 1.3.

Then part 2 of Lemma 5.11 implies that S is the associated lifting subdivision.

(a))(c) Let

c

M be a non-cyclic lift of M inducing S. For every B � E the

restriction

c

M(B) is a non-cyclic lift ofM(B) and de�nes a subdivision S

B

ofM(B).

Let us check that the family S of (lifting) subdivisions of the di�erent restrictions

of M is a consistent family of subdivisions.

If B

0

� B, each face of

c

M(B [ bp) not containing bp intersected with B

0

is a face

of

c

M(B

0

[ bp). This proves the �rst condition of consistency.

Let � � B be a rank r simplex ofM and suppose that for every b 2 Bn� we have

� contained in a cell of S

�[fbg

. This implies that, in the restriction

c

M(� [ fb; bpg),

� lies in a facet not containing bp. In other words, in

c

M(B [ bp), every element

b 2 B n� lies either on the hyperplane spanned by � or in the same side as bp of this

hyperplane. Hence, � lies in a facet of

c

M(B [ bp) not containing bp. This proves the

second condition of consistency. �

In [30], Theorem 5.10 is used to prove that all triangulations of cyclic polytopes

are lifting. For doing this, the following two weaker reformulations of the de�nition

of consistent family of subdivisions are given. Although in that paper only the

acyclic realizable case is considered, the proofs of the two results apply to the

general case without change.

Lemma 5.13 (Rambau-Santos). Conditions (i) and (ii) in the de�nition of a

consistent collection of subdivisions are equivalent to:

(i') For every cell � 2 S

B

and for every b 2 B the set � n fbg is a face of a

cell of S

Bnfbg

.

(ii') For every rank r simplex � of M(B), if � is contained in cells of both

S

Bnfbg

and S

Bnfcg

for some pair of elements b; c 2 B n� with b 6= c, then

� is contained in a cell of S

B

as well. �

Lemma 5.14 (Rambau-Santos). IfM is uniform, then condition (i') of Lemma

5.13 is equivalent to the following one:

(i") For every cell � 2 S

B

and for every b 2 B, if � n fbg is spanning then it

is a cell of S

Bnfbg

. �
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In the case of triangulations, the de�nition of consistency can be simpli�ed

further. In the following statement we use the notation P(T ) and T j

A

introduced

before Proposition 5.3.

Corollary 5.15. Let T be a triangulation of an oriented matroid M on a set

E. Then,

� T is lifting if and only if there is a family S = fT (B) : B � Eg of

triangulations of the restrictions of M consistent with T .

� This is equivalent to saying that T (E) = T and that for every B � E,

T (B) is a triangulation of the restriction M(B) satisfying:

(i) P(T (B))j

Bnfbg

� P(T (B n fbg)) for every b 2 B.

(ii) T (B n fbg) \ T (B n fcg) � T (B) for some b; c 2 B.

Proof. If T is a lifting triangulation, in the proof of Theorem 5.10 we can

assume that the lift

c

M inducing it is generic, meaning by this that the dual exten-

sion is in general position. In these conditions the consistent family of subdivisions

obtained contains only triangulations. This, with Theorem 5.10, proves the �rst

part. The second part is a straightforward rephrasing of Lemma 5.13 for the case

of triangulations. �
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