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ABSTRACT. In 1994, Sturmfels gave a polyhedral version of the Cayley Trick ofelimi-
nation theory: he established an order-preserving bijection between the posets ofcoher-
entmixed subdivisions of a Minkowski sumA1+ � � �+Ar of point configurations and
of coherentpolyhedral subdivisions of the associated Cayley embeddingC (A1; : : : ;Ar).

In this paper we extend this correspondence in a natural way to cover alsonon-
coherentsubdivisions. As an application, we show that the Cayley Trick combined
with results of Santos on subdivisions of Lawrence polytopes provides a new indepen-
dent proof of the Bohne-Dress Theorem on zonotopal tilings. This application uses a
combinatorial characterization of lifting subdivisions, also originally proved by Santos.

1. INTRODUCTION

The investigations in this paper are motivated from several directions. Our point of
departure is the polyhedral version of theCayley Trickof elimination theory given by
STURMFELS in [21, Section 5]. The Cayley Trick is originally a method to rewrite a
certain resultant of a polynomial system as a discriminant of one single polynomial with
additional variables [9, pp. 103ff. and Chapter 9, Proposition 1.7]. Its applications are
in the area of sparse elimination theory and computation of mixed volumes [7, 10,11,
13, 14, 23].

Mixed subdivisions of the Minkowski sum of a familyA1; : : : ;Ar � R

d of polytopes
were introduced in [11, 14, 21]. The polyhedral Cayley Trick of Sturmfels says that
coherentmixed polyhedral subdivisions of the Minkowski sum ofA1; : : : ;Ar � R

d are in
one-to-one refinement-preserving correspondence tocoherentpolyhedral subdivisions
of their Cayley embeddingC(A1; : : : ;Ar)� R

r�1
�R

d . (For definitions of this and the
following see Section 2.) More precisely, it establishes a strong isomorphism between
certain fiber polytopes. In Theorem 3.1, we extend this isomorphism to an isomorphism
between the refinement posets ofall induced subdivisions, no matter whether coherent
or not. This extension needs a more combinatorial approach than the one used in [21].
We carry it out in Section 3 after introducing the relevant concepts in Section 2.
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Our second motivation is that there are applications of the Cayley trick in specific
cases which are of intrinsic interest. The most striking one is theBohne-Dress Theo-
rem [5] (see also [6, 18, 24]) about zonotopal tilings, to which we devote Section 4.
Other applications of the Cayley trick to triangulations of hypercubes and of products of
simplices will appear in [20].

A zonotopeis the affine projection of a hypercube, or equivalently, a Minkowski sum
of segments. Azonotopal tilingis a subdivision induced by this projection (i.e., a subdi-
vision into smaller zonotopes in certain conditions, see for example [24]). The Bohne-
Dress Theorem states that there is a one-to-one correspondence between the zonotopal
tilings of a zonotopeZ and the single-element liftsof the oriented matroidM (Z) as-
sociated toZ. Our version of the Cayley trick, in turn, tells us that zonotopal tilings
of Z are in one-to-one correspondence with polyhedral subdivisions of its Cayley em-
bedding, which in this case is aLawrence polytope. (Lawrence polytopes have been
studied mostly in connection to oriented matroid theory, see [1, 6, 24], but theirproperty
of being Cayley embeddings of segments has never been pointed out before.) To close
the loop, polyhedral subdivisions of a Lawrence polytope were shown to correspond
to single-element lifts of the oriented matroid by SANTOS [19], via the concept oflift-
ing subdivisionsintroduced in [6, Section 9.6]. We include a new and shorter proof of
this last equivalence in the realizable case (Proposition 4.4). It is based ona geometric
characterization of lifting subdivisions, also contained in [19]. In this way, this paper
contains a complete (modulo Santos’ characterization of lifting subdivisions) newproof
of the Bohne-Dress Theorem (Theorem 4.3). It turns out that of the three equivalences
in Theorem 4.3, the most transparent is the one given by the Cayley trick, which is
exhibited in this paper for the first time.

Our final motivation concerns functorial properties of subdivision posets. Given an
affine map between polytopes, can one draw conclusions about the induced map between
the corresponding posets of polyhedral subdivisions? For example, the intersection of a
subdivision with an affine subspace yields again a subdivision of the intersection poly-
tope. In fact, it turns out that the isomorphism given by the Cayley Trick is exactly a
map of this type. We think it would be of interest to investigate such maps in a more gen-
eral framework (even if they do not produce isomorphisms), in relation to the so-called
generalized Baues problemfor polyhedral subdivisions (see [16, 17] for information on
this problem).

2. PRELIMINARIES

2.1. Subdivisions of point configurations. By a point configurationA in Rd we mean
a finite labeled subset ofRd . We allowA to have repeated points which are distinguished
by their labels. The convex hull conv(A) of A is a polytope.

A face of a subconfigurationB� A is a subconfigurationFω
� B consisting ofall the

points on which some linear functionalω2 (R

d
)

� takes its minimum overA. Given two
subconfigurationsB1 andB2 of A we say that theyintersect properlyif the following
two conditions are satisfied:

� B1\B2 is a face of bothB1 andB2;
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� conv(B1)\conv(B2) = conv(B1\B2).

A subconfiguration ofA is said to be full-dimensional if it affinely spansRd . In that
case we call it acell. It is simplicial if it is an affinely independent configuration. Fol-
lowing [3] and [9, Section 7.2] we say that a collectionSof cells ofA is a(polyhedral)
subdivisionof A if the elements ofS intersect pairwise properly and cover conv(A) in
the sense that

[B2Sconv(B) = conv(A):

Cells that share a common facet areadjacent. The set of subdivisions ofA is partially
ordered by therefinementrelation

S1 � S2 :() 8B1 2 S1; 9B2 2 S2 : B1� B2:

The poset of subdivisions ofA has a unique maximal element which is the trivial subdi-
visionfAg. The minimal elements are the subdivisions all of whose cells are simplicial,
which are calledtriangulationsof A.

The following characterization has already been proved for triangulations byde Loera
et al. in [8]. (It is a consequence of parts (i) and (ii) of their Theorem 1.1.) Herewe
include a proof for subdivisions, whose final part follows the proof of their Theorem
3.2.

Lemma 2.1. LetA be a point configuration. Let S be a collection of cells ofA. Then, S
is a subdivision if and only if the following conditions are satisfied:

(i) There is a point inconv(A) that is contained in the convex hull of exactly one cell
of S.

(ii) For every B2 S and for every facet F of B, either F lies in a facet ofconv(A) or
there is another B0 2 S of which F is a facet. We say in this case that B and B0 are
adjacent.

(iii) Any two adjacent cells in S lie in opposite halfspaces with respect to their common
facet.

Proof. If S is a subdivision, it is easy to verify that it satisfies (i), (ii), and (iii). Con-
versely, ifSsatisfies (i), (ii) and (iii) then refining each cell inS with its placing trian-
gulation (with respect to any ordering ofA fixed in advance) we get a collectionT of
simplices which still satisfies (i), (ii) and (iii). By the resultsin [8] T is a triangulation.
Using this it is easy to prove thatS is a subdivision.

2.2. Induced subdivisions. Now let P� R

p be a polytope, and letπ : Rp
! R

d be
a linear projection map. We can consider the point configurationA arising from the
projection of the vertex set ofP. An element inA is labeled by the vertex ofP of which
it is considered to be the image. In other words,π induces a bijection from the vertex
set ofP into A, even if different vertices ofP have the same projection.

A subdivisionSof A is said to beπ-inducedif every cell ofS is the projection of the
vertex set of a face ofP. With these conditions,Scontains the same information as the
collection of faces ofP whose vertex sets are inS. In this sense one can say that aπ-
induced subdivision ofA is a polyhedral subdivision whose cells are projections of faces
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of P. (This statement is not very accurate; see [15, 16, 24] for an accurate definition of
π-induced subdivisions in terms of faces ofP.)

Every non-zero linear functionalφ 2 (R

p
)

� defines aπ-induced subdivisionSφ as
follows: φ gives a factorization ofπ into a map(π;φ) : Rp

! R

d
� R and the map

ρ : Rd
�R ! R

d which forgets the last coordinate. For any elementa2 A let aP denote
the unique vertex ofP of which it is considered to be the image byπ. For any faceF
of the(d+1)-dimensional polytope(π;φ)(P) we denote byAF the collection of points
AF := fa 2 A : (π;φ)(aP) 2 Fg. A face F of (π;φ)(P) is called lower if its exterior
normal cone contains a vector whose last coordinate is negative. With this notation,
Sφ := fAF � A : F is a lower face of(π;φ)(P)g is a π-induced subdivision ofA. The
subdivisionSφ is called theπ-coherentsubdivision ofA induced byφ, and aπ-induced
subdivision is calledπ-coherentif it equalsSφ for someφ.

Said in a more compact form, a subsetB� A is a cell ofSφ if and only if there is a
linear functionalφ0 : Rd

! R such thatB is the subset ofA whereφ0 � π+ φ takes its
minimum value. (For example,Sφ is the trivial subdivision if and only ifφ factors byπ.)

Definition 2.2 (Fiber Polytope). The poset ofπ-induced subdivisions excluding the triv-
ial one is denoted byω(P;π). Its minimal elements are the subdivisions for which every
cell comes from a dim(A)-dimensional face of P. They are calledtight π-induced subdi-
visions. The subposet ofπ-coherent subdivisions is denoted byωcoh(P;π). It is isomor-
phic to the face lattice of a certain polytope of dimension dim(P)�dim(A), called the
fiber polytopeΣ(P;π).

See [2, 24] for more information onπ-induced subdivisions and fiber polytopes.

2.3. Weighted Minkowski sums. Mixed subdivisions.Let Ai := fa(1)i ; : : : ;a(mi)

i g be
point configurations inRd , with i = 1; : : : ; r.

Their Minkowski sum∑r
i=1Ai is defined to be the set of all points which can be ex-

pressed as a sum of a point from eachAi , i.e.,
r

∑
i=1

Ai := fa1+ � � �+ar : ai 2 Ai g :

A vectorλ = (λ1; : : : ;λr) in Rr�1 with ∑r
i=1λi = 1 and 0< λ1; : : : ;λr < 1 is aweight

vector. For a weight vectorλ theweightedMinkowski sum is defined by
r

∑
i=1

λiAi := fλ1a1+ � � �+λrar : ai 2 Ai g :

The configuration∑r
i=1λiAi has∏r

i=1mi points, some perhaps repeated.
A cell (i.e., full-dimensional subset)B� ∑r

i=1λiAi will be called aMinkowski cellif
B= λ1B1+ � � �+λrBr for some non-empty subsetsBi � Ai , i = 1; : : : ; r. A mixed subdi-
visionof the weighted Minkowski sum ofA1; : : : ;Ar is a subdivision of the configuration
∑r

i=1λiAi whose faces are all Minkowski cells. (There is not complete agreement in the
literature concerning this definition. See Remark 2.5.) A Minkowski cell is calledfineif
it does not properly contain any other Minkowski cell. A mixed subdivision isfine if all
its faces are fine.
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We can consider thecartesian productof point configurations as a Minkowski sum
where all the point configurations lie in complementary affine subspaces. This leadsto
the following natural projection.

Definition 2.3 (Weighted Minkowski Projection). LetA1; : : : ;Ar be point configurations
in R

d , and let P1; : : : ;Pr be polytopes inRp1
; : : : ;R

pr , resp., the vertex sets of which
affinely project toA1; : : : ;Ar via

Pi := vert(Pi)
πi
! Ai; 1� i � r:

Moreover, letλ = (λ1; : : : ;λr) be a weight vector. We define

λΠM := λ1π1+ � � �+λrπr :

�

P1��� ��Pr ! λ1A1+ � � �+λrAr ;

(p1; : : : ; pr) 7! λ1π1(p1)+ � � �+λrπr(pr);

The projectionλΠM is specially interesting if the polytopesPi involved are simplices.
The proof of the following fact is just a check of definitions.

Lemma 2.4. Let λΠM : P1� �� ��Pr ! λ1A1 + � � �+ λrAr be a weighted Minkowski
projection, as in Definition 2.3, and suppose that the the polytopes Pi are all simplices.
Then, a subdivision ofλ1A1+ � � �+λrAr is (fine) mixed if and only if it is (tight)λΠM-
induced.

Remark 2.5. There is some confusion in the literature concerning the definition of
mixed subdivisions of the Minkowski sum∑r

i=1Ai of the family of point configura-
tionsfA1; : : : ;Arg. First of all, in most of the literature it is assumed that the number
of configurations equals the dimension of the ambient space (i.e.,d = r) because this
is the case in the applications to zero-dimensional polynomial systems. However, the
geometric proofs involved work the same without this assumption.

Pedersen and Sturmfels [14, page 380] defined mixed subdivisions to be the sub-
divisions ΠM-induced by the projectionΠM : P1� �� � � Pr ! A1 + � � �+ Ar of our
Lemma 2.4. Sturmfels [21, page 213] defined coherent mixed subdivisions as the ones
which areΠM-coherent. This is the same as we do. However, for the applications it is
interesting to pose the following additional property: that in every cellB= B1+ � � �+Br
of the subdivision the differentBi ’s lie in complementary subspaces. (This assumption
allows to compute themixed volumeof A1+ � � �+Ar by summing up the volumes of
some cells of the subdivision.) It seems that Pedersen and Sturmfels [14] implicitly as-
sume that all mixed subdivisions have this property, since they say (p. 380) “the mixed
volume : : : is the sum of volumes of the parallelotopes in∆”. In [21] the additional
property is explicitly mentioned and said to hold for allfinemixed subdivisions (which
are calledtight there). In other literature the property is taken as part of the definition
of mixed subdivision [11, 13];ΠM-induced subdivisions without this property are just
calledsubdivisionsof ther-tuple(A1; : : : ;Ar).

Finally, there seems to be agreement to calltight subdivisions the minimal elements
in the poset of subdivisions induced by a projection in general [2, 16, 17, 24] andfine
mixedthose for the particular case of mixed subdivisions [11, 13], with the exception of
[21] mentioned above. We have chosen to follow this convention.
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2.4. The Cayley embedding.We call theCayley embeddingof A1; : : : ;Ar the follow-
ing point configuration inRr�1

�R

d . Let e1; : : : ;er be a fixed affine basis inRr�1 and
µi : Rd

! R

r�1
�R

d be the affine inclusion given byµi(x) = (ei;x). Then we define

C(A1; : : : ;Ar) := [

r
i=1µi(Ai)

The Cayley embedding of point configurations from complementary affine subspaces
equals thejoin productof the point configurations. (For the purpose of this paper we
can define the join productP1� � � � �Pr of several point configurations withPi � R

pi to
be their Cayley embeddingC(P1; : : : ;Pr) � R

r�1
�R

p1
� �� ��R

pr .) Hence, we have
the following natural projection.

Definition 2.6 (Cayley Projection). Let A1; : : : ;Ar be point configurations inRd , and
let P1; : : : ;Pr be polytopes inRp1

; : : : ;R

pr , resp., the vertex sets of which affinely project
to A1; : : : ;Ar via

Pi := vert(Pi)
πi
! Ai ; 1� i � r:

Define

ΠC := C(π1; : : : ;πr) :

�

P1� � � ��Pr ! C(A1; : : : ;Ar);

(ei; pi) 7! (ei;πi(pi)):

Again, the following lemma is obvious since a join of simplices is a simplex.

Lemma 2.7. If Pi is a simplex for all1� i � r then every subdivision ofC(A1; : : : ;Ar)

is ΠC induced.

3. THE CAYLEY TRICK

In this section we state and prove the Cayley Trick for induced subdivisions.

Theorem 3.1(The Cayley Trick for Induced Subdivisions). LetA1; : : : ;Ar be point con-
figurations inRd . Moreover, let P1; : : : ;Pr be polytopes inRp1

; : : : ;R

pr , resp., the vertex
sets of which affinely project toA1; : : : ;Ar via

Pi := vert(Pi)
πi
! Ai ; 1� i � r:

Then for all weight vectorsλ = λ1; : : : ;λr there are the following isomorphisms of
posets:

ω(P1��� ��Pr ;λ1π1+ � � �+λrπr)
�

=

ω(P1� � � ��Pr ;C(π1; : : : ;πr));

ωcoh(P1��� ��Pr ;λ1π1+ � � �+λrπr)
�

=

ωcoh(P1� � � ��Pr ;C(π1; : : : ;πr)):

The second of the two equivalences above follows from [21, Theorem 5.1] and is
stated only for completeness. The structure of the proof of the first one is as follows:
first, we represent the Minkowski sum as a section of the Cayley embedding, then we
define an explicit order-preserving map that carries the isomorphism. Finally, we show
that the canonical inverse construction is well-defined and order-preserving. A“guide
line” of the proof is indicated in Figure 1.
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A1

A2

λ1A1+λ2A2

FIGURE 1. “One-picture-proof of the Cayley Trick”: The picture depicts
the geometric interpretation of the correspondence in the Cayley Trick:
intersecting the Cayley embedding with the affine subspaceW(λ) yields
the Minkowski sum weighted byλ. Since all cells in a subdivision of
the Cayley embedding are also Cayley embeddings this correspondence
carries over to cells in subdivisions.

Lemma 3.2. LetA1; : : : ;Ar �R

d be point configurations. Moreover, letλ= (λ1; : : : ;λr)

be a weight vector. (Recall this implies thatλi > 0 8i and ∑r
i=1λi = 1.) Moreover, let

W(λ) := fλ1e1+ � � �+λrerg�R
d
� R

r�1
�R

d .
Then the scaled Minkowski sumλ1A1+ � � �+λrAr � R

d has the following represen-
tation as a section of the Cayley embeddingC(A1; : : : ;Ar) in Rr�1

�R

d :

λ1A1+ � � �+λrAr
�

=

C(A1; : : : ;Ar)^W(λ)
:=
�

conv
�

(e1;a1); : : : ;(er ;ar)
	

\W(λ) : (e1;a1); : : : ;(er ;ar) 2 C(A1; : : : ;Ar)
	

;

Moreover, F is a facet ofλ1A1+ � � �+λrAr if and only if it is of the form F=F 0

^W(λ)
for a facet F0 of C(A1; : : : ;Ar) containing at least one point(ei;ai) for all 1� i � r.

Remark 3.3. On the level of convex hulls the above representation for the Minkowski
sum polytope is nothing else but the ordinary intersection of the Cayley embedding poly-
tope with the affine subspace W(λ). We need the slightly more complicated version for
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point configurations stated above because in convex hulls—as subsetsof a Euclidean
space—we cannot keep track of multiple points.

Proof of Lemma 3.2.Defineqe(λ) := λ1e1+ � � �+λrer 2 R
r�1, so that

W(λ) = fqe(λ)g�Rd
:

Analogously, for any sequencea = (a1; : : : ;ar) of points withai 2 Ai we setqa(λ) :=
λ1a1+ � � �+λrar 2 R

d . Then the intersection point conv
�

(e1;a1); : : : ;(er ;ar)
�

\W(λ)
equals(qe(λ);qa(λ)) 2 R

r�1
� R

d . But this is, by definition, a point in the scaled
Minkowski sum—via the natural identificationW(λ)�

=

fqe(λ)g�Rd
=W(λ)—and ev-

ery point in the Minkowski sum has this description.
The remark about the facets follows from the fact that a facetF 0 of C(A1; : : : ;Ar) in

R

r�1
�R

d intersectsW(λ) if and only if it contains at least one point(ei;ai) for each
1� i � r and that a linear functional is minimized onF 0 overC(A1; : : : ;Ar) if and only
if its projection toW(λ) is minimized onF ^W(λ).

In order to keep the notation lean, we identify the embedding of the weighted Minkowski
sum intoRr�1

�R

d in the previous proof with the ordinary weighted Minkowski sum.
The Cayley embeddingC(A1; : : : ;Ar) corresponding to the weighted Minkowski sum
λ1A1+ � � �+λrAr will be denoted by(λ1A1+ � � �+λrAr)_W(λ). That is, we have

(λ1A1+ � � �+λrAr)_W(λ) = C(A1; : : : ;Ar);

C(A1; : : : ;Ar)^W(λ) = λ1A1+ � � �+λrAr :

Of course, this notation extends to subconfigurations as well.
The following proposition states that the “intersection” withW(λ) induces an order-

preserving map fromω(P1� � � � �Pr ;ΠC) to ω(P1��� ��Pr ;λΠM).

Proposition 3.4. Let S be aΠC-induced subdivision ofC(A1; : : : ;Ar) and

S^W(λ) := fB^W(λ) : B2 Sg :

Then

(i) S^W(λ) is aλΠM-induced subdivision ofλ1A1+ � � �+λrAr ;
(ii) S< S0 implies(S^W(λ))< (S0^W(λ));

(iii) S^W(λ) is tight if S is tight;
(iv) S^W(λ) is ΠC-coherent if S isλΠM-coherent.

Proof. Every cellB in a subdivision of a Cayley embedding is again a Cayley embed-
ding. Therefore, by Lemma 3.2,B^W(λ) is a mixed subconfiguration in the Minkowski
sum. Since for a cell in aΠC-induced subdivisionSof C(A1; : : : ;Ar) to be full-dimen-
sional it must contain a point(ei;ai) with ai 2 Ai for every 1� i � r, every cell inS
intersectsW(λ) in a full-dimensional subconfiguration ofλ1A1+ � � �+λrAr , thus defin-
ing a cell. This cell is clearly a projection of a face of the productP1� �� ��Pr under
λΠM.

The incidence structure and proper intersections are not affected by intersection with
W(λ) by Lemma 3.2. Hence, by Lemma 2.1 we get (i).

Property (ii) is obvious, (iv) is part of [21, Theorem 5.1] and (iii) follows from (ii).
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The following proposition provides the inverse order-preserving map. Its proof is not
difficult but nevertheless non-trivial; the extension of the polyhedral Cayley Trick from
coherent to general induced subdivisions requires ingredients that are not necessary for
the coherent case.

Proposition 3.5. Let S be aλΠM-induced subdivision ofλ1A1+ � � �+λrAr and

S_W(λ) := fB_W(λ) : B2 Sg :

Then

(i) S_W(λ) is a ΠC-induced subdivision ofC(A1; : : : ;Ar);
(ii) S< S0 implies(S^W(λ))< (S0^W(λ));

(iii) S_W(λ) is tight if S is tight;
(iv) S_W(λ) is coherent if S is coherent.

Proof. Again, properties (ii) and (iii) are obvious, and (iv) follows from [21].
In order to prove (i), letS be aλΠM-induced subdivision ofλ1A1+ � � �+λrAr . For

every cellB in Sthere is a unique cellB_W(λ) in C(A1; : : : ;Ar) with B_W(λ)^W(λ)=
B. Let W0

(λ) = fqe(λ)g� R

p1
� �� � � R

pr be the fiber ofW(λ) underΠC : Rr�1
�

R

p1
� �� ��R

pr
! R

r�1
�R

d . The cellB is a projection of a faceF of P1� �� ��Pr ,
and therefore the faceF _W0

(λ) of P1� � � � �Pr—recall that this equalsP1��� ��Pr _

W0

(λ)—projects toB_W(λ).
For the collection of cellsS_W(λ) we need to show—by Lemma 2.1—that

(i) there is a point in convC(A1; : : : ;Ar) that is contained in exactly one cell ofS_
W(λ)

(ii) adjacent cells lie on different sides of the hyperplane that supports their common
facet;

(iii) for every facetF of a cell B 2 S_W(λ) eitherF is contained in a facet of the
configurationC(A1; : : : ;Ar) or there is another cellB0

2 ScontainingF as a facet.

First, we prove (i). Since the Minkowski sum is contained in the Cayley embedding
as a section andS is a subdivision of the Minkowski sum, i.e.,S satisfies conditions
(i), (ii), and (iii), we find a pointp 2 conv(λ1A1+ � � �+λrAr) that is contained in the
convex hull convB of exactly one cellB of S. Therefore,p is uniquely contained in
conv(B_W(λ)) � convB whereB_W(λ) 2 S_W(λ), which completes (i). LetB1_

W(λ) andB2_W(λ) be two adjacent cells inS_W(λ) with common facetF . Let H be
the hyperplane supportingF. We show thatB1_W(λ) andB2_W(λ) lie on different
sides ofH, which proves (ii). To this end, assumeB1_W(λ) andB2_W(λ) lie on the
same side ofH. ThenB1 = B1_W(λ)^W(λ) andB2 = B2_W(λ)^W(λ) lie on the
same side ofH^W(λ) while F ^W(λ) is the common facet ofB1 andB2, supported by
H\W(λ): contradiction to (ii) forS.

In order to prove (iii) we only need to observe that incidences are preservedby_W(λ).

See Figure 2 for an illustration of the situation.
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C(A1;A2)� R

2
�R

d

1
2A1

1
2P1�

1
2P2 � R

(p1+p2) P1�P2 � R

2
�R

(p1+p2)

P2

W

A2

A1

1
2A2

1
2A1+

1
2A2 � R

d

ΠM ΠC

W0

P1

P2

P1

FIGURE 2. Affine picture forr = 2 andP1 = P2 = [0;1]: product and
Minkowski sum are intersections of join resp. Cayley embedding with
the affine subspaceW = fx1 = x2;x1+x2 = 1g.

Remark 3.6. It is not true in general that a proper intersection of non-adjacent cells in
the Minkowski sum implies a proper intersection of the corresponding cells in the Cayley
embedding. See Figure 3 for an easy example.

A1

A2

1
2A1+

1
2A2

FIGURE 3. Two properly intersecting cells in the Minkowski sum whose
counterparts in the Cayley embedding intersect improperly.

Propositions 3.4 and 3.5 imply Theorem 3.1. This one, in turn, has the following
corollaries. The first one is straightforward.

10



Corollary 3.7. Weighted Minkowski sums∑r
i=1λiAi of a point configurationA1; : : : ;Ar

have isomorphic posets of subdivisions for all weightsλ.

In the following result we callgeometric (polyhedral) subdivisionof a convex poly-
topeP a family of polytopes contained inP which coverP and intersect properly. If
P = conv(A) for a point configurationA then any subdivisionSof A has an associated
geometric subdivisionfconv(B) : B2 Sg of P . Reciprocally, a geometric subdivisionK
of P equalsfconv(B) : B2 Sg for some subdivisionSof A if and only if every element
of K has vertex set contained inA (but the subdivisionSof A is not unique, in general).

Given a familyA1; : : : ;Ar of point configurations and a geometric subdivisionK of
the polytope conv(∑r

i=1λiAi) we say thatK is mixed if there is a mixed subdivision
S of ∑r

i=1λiAi with K = fconv(B) : B 2 Sg. A necessary condition for this to happen
is that each polytopeQ in K can be written asQ= conv(∑r

i=1λiBig) for certain subsets
Bi �Ai , i = 1; : : : ; r. But this condition is not sufficient, as the following example shows:
Consider the Minkowski sum of two squares of side 1 divided into four squares of side
1. There are 24 ways of introducing two diagonals in the four squares, and all of them
provide geometric subdivisions satisfying the extra condition. But only the 8 ones with
the diagonals drawn in non-adjacent squares are mixed.

Corollary 3.8. Let A1; : : : ;Ar be a family of point configurations, and let K;K0 be geo-
metric subdivisions ofconv(∑r

i=1λiAi). Suppose that K is a refinement of K0 (i.e., every
cell of K0 is a union of cells of K) and that K is mixed. Then K0 is mixed too.

Proof. An easy consequence of Theorem 3.1 is that a geometric subdivision of the geo-
metric Minkowski sum conv(∑r

i=1λiAi) is mixed if and only if it is the intersection
of the geometric subdivision of conv(C(A1; : : : ;Ar)) associated to some subdivision of
C(A1; : : : ;Ar) with the affine subspaceW(λ).

We suppose thatK is the intersection withW(λ) of a geometric subdivisionK of
conv(C(A1; : : : ;Ar)) and thatK equalsfconv(B) : B 2 Sg for some subdivisionS of
C(A1; : : : ;Ar). Let K = fQ1; : : : ;Qkg, K0

= fQ0

1; : : : ;Q
0

lg andK = fQ1; : : : ;Qkg with
Qi = Qi \W(λ) for eachi = 1; : : : ;k.

SinceK refinesK0, for each j = 1; : : : ; l we can writeQ0

j as a union of some of the

Qi ’s. We defineQ0

j to be the union of the correspondingQi ’s, and letK0 := fQ0

1; : : : ;Q
0

lg.

We claim thatK0 is a geometric subdivision of conv(C(A1; : : : ;Ar)). If this is true then
it is obvious thatK0 is the geometric subdivision associated to some subdivisionS0 of
C(A1; : : : ;Ar) and thatK0 is the intersection ofK0 with W(λ), which finishes the proof.

The only non-obvious parts in the claim are that the unionsQ0

j are convex and that
they intersect pairwise properly. We prove these two facts in the following lemma.

Lemma 3.9. Let K be a geometric subdivision of the geometric Cayley embedding
conv(C(A1; : : : ;Ar)). Let Q and R denote unions of cells in K.

1. If there is a weight vectorλ for which Q\W(λ) is convex, then Q is convex.
2. Suppose Q and R are convex. If there is a weight vectorλ0 for which Q\W(λ0)

and R\W(λ0) intersect properly then Q and R intersect properly.
11



Proof. 1. LetQ= fQ1; : : : ;Qlg where theQi ’s are cells in the subdivisionK. Since the
Qi ’s intersect properly, for every weight vectorλ the intersectionsQ1\W(λ); : : : ;Ql \

W(λ) intersect properly. Also, the polytopesQi \W(λ) for different values ofλ are
normally equivalent. Thus, ifQi \W(λ0) andQ j \W(λ0) share a face thenQi \W(λ)
andQ j \W(λ) must share “the same” face for everyλ (or otherwiseQi andQ j intersect
improperly). This implies thatQ\W(λ0) andQ\W(λ) are combinatorially equivalent
polyhedral complexes and their boundaries are combinatorially and normally equivalent
convex polytopes. Even more, their faces are labeled in the same (unique) wayas inter-
sections of faces ofQ with W(λ0) andW(λ) respectively. In particular,Q\W(λ) is a
convex polytope for everyλ.

Suppose now thatQ is not convex. Letp andq be points inQ such that the segment
[p;q] is not contained inQ and sufficiently generic so that[p;q] intersects the boundary
of Q in the relative interior of a facetF of Q. Let F+ be the exterior open halfspace to
that facet. One ofp andq is in F+, suppose that it isp and letλ be the weight for which
p2W(λ). Then,F+

\W(λ) is the halfspace exterior to the facetF \W(λ) of Q\W(λ)
andp2 F+

\W(λ). This meansp 62Q\W(λ), a contradiction.
2. Let F0 = Q\R\W(λ0) be the common face in whichQ\W(λ0) andR\W(λ0)

intersect. F0 can be expressed as a union(F1[ �� � [ Fk)\W(λ0) where eachFi is a
face of one of theQ j ’s in K whose union equalsQ. This expression is unique (up to
reordering) if it is not redundant (i.e., ifFi \W(λ0) has the same dimension asF0 for
everyi). In the same way,F0 = (G1[�� �[Gk0

)\W(λ0), where theGi ’s are now faces of
the cells ofK whose union isR. The fact that theFi ’s andG j ’s intersect properly (since
they are all faces of cells of the subdivisionK) together with(F1[ �� � [Fk)\W(λ0) =

(G1[ �� � [Gk0

)\W(λ0) for the weightλ0 implies that eachFi equals aG j and vice
versa. Thus,Q andR intersect properly, in the faceF1[�� �[Fk = G1[�� �[Gk0 .

4. LIFTING SUBDIVISIONS OFLAWRENCE POLYTOPES AND THEBOHNE-DRESS

THEOREM

Throughout this section letA = fa1; : : : ;ang � R

d be a fixed point configuration of
dimensiond, and letMA denote the oriented matroid of affine dependences ofA, which
has rankd+1 and ground setf1; : : : ;ng.

4.1. Lifting subdivisions. A lift of MA is an oriented matroiddMA of rankd+2 with

ground setf1; : : : ;n+1g which satisfiesdMA=(n+1) = MA . Geometrically, a lift can be
thought of as an embedding ofA intoRd+1 which projects “vertically” (i.e. by forgetting
the last coordinate) toA and with the new pointn+1 being the “point at infinity” of the
vertical lines (but this picture does not take into account non-realizable lifts, or realizable
lifts which do not geometrically project toA).

For anyB� A, every lift of MA restricts to a lift ofMB. Moreover, a lift ofMA is
fully characterized by its restrictions tocircuits (minimal affinely dependent subsets) of
A. The former is trivial to check and the latter is a dualization of Proposition7.1.4 in
[6]. If B is a circuit, thenMB has exactly three lifts: the “zero” lift in whichB lifts to a
dependent set and the two lifts in whichB lifts to an independent setbB, distinguished by
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the orientation they induce in the affine span ofbB. Hence, a lift ofA is characterized by
its circuit signature functionwhich gives a sign 0,+ or� to each circuit.

This allows to define a natural partial order on the lifts ofMA , which coincides with
theweak map orderingon oriented matroids with the same rank and number of elements:
a lift is lower in this poset if it is “more generic” or “more uniform” see [6,Chapter 7].
More precisely, the circuit signature function of the lower lift is obtained from that of
the higher by setting some zeroes to+ or�.

Every lift dMA of MA induces a subdivisionS
dMA

of A as follows: a subsetσ �

f1; : : : ;ng is (the set of indices of the elements of) a cell inS if and only if σ is a

facet ofdMA not containingn+1 (a facetin an oriented matroid is the complement of a
positive cocircuit [6, Chapter 9]). The subdivisions ofA which can be obtained in this
way are calledlifting subdivisions. They were formally introduced in [6, Section 9.6],
with some of the ideas coming from [4]. In the geometric picture described abovethe
lifting subdivision is just the projection toRd of the lower facets of the lifted point con-
figuration. Hence, the process is a combinatorial abstraction (as well as a generalization)
of the definition ofregular subdivisionsof A.

The following definition and theorem, taken from [19, Section 5.3], provide a char-
acterization of lifting subdivisions ofA which does not explicitly involve the oriented
matroidM .

Definition 4.1. Let A be a point configuration. For each subset B� A, let SB be a
subdivision ofA. We say that the family of subdivisionsS = fSBgB2A is consistentif for
every subset B� A the following happens:

(i) For every cellτ 2 SB and for every B0 � B, τ\B0 is a face of a cell of SB0.
(ii) For every affine basisσ of Rd contained in B ifσ is contained in a cell of Sσ[fbg

for every b2 Bnσ, thenσ is contained in a cell of SB as well.

We say that the familyis consistent witha certain subdivision S ofA if, moreover, S=SA .

Theorem 4.2(Santos). Let S be a subdivision of a point configurationA. Then, the
following conditions are equivalent:

(i) S is a lifting subdivision.
(ii) There is a familyS of subdivisions of the subsets ofM which is consistent with S.

4.2. Lawrence polytopes, zonotopes and the Cayley trick.A point configurationA �

R

d of dimensiond with n elements can be represented by ann�d+1 matrix of rank
d+1, whose columns are the elements ofA with an extra coordinate equal to 1 in the
last place.MA is the oriented matroid represented by the columns of this matrix, which
we still denoteA. The Lawrence lifting ofA is defined (see [1, 22]) to be the point
configuration corresponding to the matrix

Λ(A) :=

�

A 0
I I

�

;

whereI is the identity matrix of sizen� n and0 the zero matrix of sizen� (d+ 1).
The 2n column vectors of the matrixΛ(A) affinely span a non-linear affine hyperplane

13



of Rn+d+1, soΛ(A) represents a point configuration with 2n points in dimensionn+d
which we still denoteΛ(A). The convex hull of this configuration is called the Lawrence
polytope associated withA. It turns out that all the points inΛ(A) are vertices of this
polytope.

By reordering the columns ofΛ(A) we see that the Lawrence polytope ofA equals
the Cayley embedding of then segmentsOai � R

d+1. I.e:

Λ(a1; : : : ;an) = C(Oa1; : : : ;Oan):

On the other hand, the Minkowski sum of a collection of segments is azonotopeand
its mixed subdivisions are usually calledzonotopal tilings[24, Section 7.5]. We will call
zonotope associatedwith the point configurationA (and denoteZ(A)) the Minkowski
sum∑n

i=1Oai . Thus, the Cayley trick gives a correspondence between zonotopal tilings
of the zonotopeZ(A) and polyhedral subdivisions of the Lawrence polytopeΛ(A).

4.3. The Bohne-Dress theorem.The rest of this section is devoted to prove the fol-
lowing Theorem:

Theorem 4.3(Bohne-Dress, Santos). Let A be a point configuration. The following
posets are isomorphic:

(i) The poset of zonotopal tilings ofZ(A).
(ii) The poset of lifts of the oriented matroidMA .

(iii) The poset of subdivisions of the Lawrence polytopeΛ(A).

The equivalence of the first two posets is the Bohne-Dress theorem on zonotopes (see
[6, Theorem 2.2.13], [24, Theorem 7.32], [18]). We provide a new proof of the Bohne-
Dress theorem as follows: Our Theorem 3.1 directly implies the isomorphism between
the first and last posets. The equivalence of the last two was proved in [19, Section 4.2]
in the general case of perhaps non-realizable oriented matroids but we include herea
shorter proof. The essential new feature of our proof is that we use Santos’ characteri-
zation of lifting subdivisions (Theorem 4.2) to prove part (ii) of the following statement,
while in [19] the same thing is proved directly.

Proposition 4.4. Let A be a point configuration with oriented matroidMA , and let
Λ(A) be the associated Lawrence polytope, with oriented matroidMΛ(A). Then:

(i) Two different lifts ofMΛ(A) produce different associated lifting subdivisions.
(ii) Every subdivision ofΛ(M ) is a lifting subdivision.

(iii) The poset of lifts ofMΛ(M )

and the poset of lifts ofMA are isomorphic.

Thus, the poset of lifts ofMA and the poset of subdivisions ofΛ(A) are isomorphic.

Proof. Throughout the proof we will denote byb1; : : : ;bn;e1; : : : ;en the vertices of the
Lawrence polytope, that is to say the columns of the matrix

Λ(A) :=

�

A 0
I I

�

:

The following are some other very special properties ofΛ(A). Let C = (C+

;C�

)

be a circuit ofΛ(A). This means thatC
�

[C
+

is a minimal dependent set and that
14



C
�

andC
+

are, respectively, the sets of points with positive and negative coefficient in
the unique (modulo a scalar) dependence equation involving them. The structure of the
matrix Λ(A) clearly implies that whenever an elementbi or ei is in C+ the companion
ei or bi is inC� and vice versa. In other words, the support of every circuit has the form
fbi : i 2 Jg[fei : i 2 Jg, for someJ � f1; : : : ;ng. On the other hand, any subset of
that form is a face ofΛ(A).

If B is now an arbitrary subset of the vertices ofΛ(A), let B0 = fbi 2 B : ei 2 Bg[
fei 2 B : bi 2 Bg. Every elementp2 BnB0 is a coloop inB. In other words, for every
subsetB of the vertices ofΛ(A), conv(B) is an iterated cone over the face conv(B0) of
Λ(A). These facts will be crucial in the proof of the three statements:

(i) The circuit signature functions of two different lifts will necessarily give different
sign to a certain circuitC of Λ(A). But this implies that the associated lifting subdivi-
sions are different, since they are different in the face ofΛ(A) spanned by the support of
that circuit. (The three lifts of a circuit induce, respectively, the trivial subdivision and
the two unique triangulations of the circuit).

(ii) Since every subsetB of the vertices ofΛ(A) is an iterated cone over a face
conv(B0), a subdivisionS of Λ(M ) is consistent with only one subdivision ofB: the
cone over the subdivision of the face conv(B0) induced byS. LetfSBgB�Λ(A) denote the
family of subdivisions so obtained. The first condition of consistency is trivially satis-
fied by this family. For proving the second one we will use induction on the dimension
of the subsetB involved.

Let σ be a basis contained inB such that for everyb2 Bnσ we have thatσ is in a
cell of the subdivisionSσ[fbg. Sinceσ is full-dimensional, it must contain at least one
of each pair of verticesbi andei of Λ(A), for everyi 2 f1; : : : ;ng. On the other hand,
since the caseσ = Λ(A) is trivial, σ contains an elementei or bi whose companionei or
bi is not inσ. Let a be such an element, and let us denote its companion bya.

Sincefa;ag is the complement of the set of vertices of a facet ofΛ(A), by induction
on the dimension we assume thatσnfag lies in a cell ofSBnfa;ag. If a 62 B this implies
thatσ lies in a cell ofSB. If a2 B we still can conclude that eitherσ or σna[fag lie
in a cell ofSB. So suppose that the second happens, and letτ be that cell. We will proof
thata2 τ as well.

Consider the corank 1 subconfigurationB0

= σ[fag of B. By the first condition of
consistency,τ\B0 is a face of a cell inSB0. On the other hand, sinceB0 is of the form
σ[fbg, σ lies in a cell ofSB0 by hypothesis. Thus, bothB0

nfag=σ andB0

nfag� τ\B0

lie in cells of SB0. SinceB0

n fa;ag is a face ofB0, this implies thatSB0 is the trivial
subdivision. Finally, sinceτ\B0 is full dimensional because it containsσ n fag[fag,
τ\B0 is a cell ofS0B and, thus,a2 τ, as we wanted to prove.

(iii) Let A� be a Gale transform ofA, represented as a matrix of sizen� (n�d�1)
whose row spacerow(A�

) is an orthogonal complement ofrow(A). Then, the matrix
(A�

;�A�

) of size 2n�(n�d�1) represents a Gale transform ofΛ(A). In other words,
the oriented matroid dual toMΛ(A) is obtained from the dual ofMA by adjoining an
antiparallel element to every element. Then, it is trivial that the twoduals have the same
posets of extensions (for example, via the topological representation theorem of oriented
matroids; also via Las Vergnas’ characterization of extensions by cocircuitsignature
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functions. See [6]). Since lifts of an oriented matroid are duals to extensionsof its dual,
part (iii) is proved.

Once we have proved parts (i), (ii), and (iii) we have a bijection between the two
posets we are interested in. That this bijection is a poset isomorphism is trivial.

REFERENCES

[1] M. BAYER AND B. STURMFELS, Lawrence polytopes,Can. J. Math.42 (1990), 62–79.
[2] L. J. BILLERA AND B. STURMFELS, Fiber polytopes,Annals of Math.13 (1992), 527–549.
[3] L. J. BILLERA , P. FILLIMAN AND B. STURMFELS, Constructions and complexity of secondary

polytopes,Adv. in Math.83 (1990), 155–179.
[4] L. J. BILLERA , B. S. MUNSON, Triangulations of oriented matroids and convex polytopes,SIAM

J. Algebraic Discrete Methods5 (1984), 515–525.
[5] J. BOHNE, Eine kombinatorische Analyse zonotopaler RaumaufteilungenDissertation, Fachbereich

Mathematik, Universität Bielefeld, 100 pp.
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