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ABSTRACT. In 1994, Sturmfels gave a polyhedral version of the Cayley TricKiofi-
nation theory: he established an order-preserving bijection betweengbtspdcoher-
entmixed subdivisions of a Minkowski surf; + - -- + 4, of point configurations and
of coherenpolyhedral subdivisions of the associated Cayley embeddirdy, ..., ).

In this paper we extend this correspondence in a natural way to covenaiso
coherentsubdivisions. As an application, we show that the Cayley Trick coetbin
with results of Santos on subdivisions of Lawrence polytopesigesva new indepen-
dent proof of the Bohne-Dress Theorem on zonotopal tilings. Thiscgtigh uses a
combinatorial characterization of lifting subdivisions, also oridinptoved by Santos.

1. INTRODUCTION

The investigations in this paper are motivated from several directions.p@int of
departure is the polyhedral version of tGayley Trickof elimination theory given by
STURMFELS in [21, Section 5]. The Cayley Trick is originally a method to rewrite a
certain resultant of a polynomial system as a discriminant of one single polynorthal wi
additional variables [9, pp. 103ff. and Chapter 9, Proposition 1.7]. Its applications are
in the area of sparse elimination theory and computation of mixed volumes [I110,

13, 14, 23].

Mixed subdivisions of the Minkowski sum of a famil§ti, ..., 4, ¢ RY of polytopes
were introduced in [11, 14, 21]. The polyhedral Cayley Trick of Sturmfels says that
coherenmixed polyhedral subdivisions of the Minkowski sumaf, ..., 4. ¢ RY arein
one-to-one refinement-preserving correspondenahberentpolyhedral subdivisions
of their Cayley embedding (41, ..., 4) ¢ R—1 x RY. (For definitions of this and the
following see Section 2.) More precisely, it establishes a strong isomangdiesween
certain fiber polytopes. In Theorem 3.1, we extend this isomorphism to an isomorphism
between the refinement posetsatifinduced subdivisions, no matter whether coherent
or not. This extension needs a more combinatorial approach than the one used in [21].
We carry it out in Section 3 after introducing the relevant concepts in@e2ti
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Our second motivation is that there are applications of the Cayley trick icifgpe
cases which are of intrinsic interest. The most striking one iBiblene-Dress Theo-
rem [5] (see also [6, 18, 24]) about zonotopal tilings, to which we devote Section 4.
Other applications of the Cayley trick to triangulations of hypercubes and of products of
simplices will appear in [20].

A zonotopas the affine projection of a hypercube, or equivalently, a Minkowski sum
of segments. AZonotopal tiling's a subdivision induced by this projection (i.e., a subdi-
vision into smaller zonotopes in certain conditions, see for example [24]). The Bohne
Dress Theorem states that there is a one-to-one correspondence between the zonotopal
tilings of a zonotop&Z andthe single-element liftef the oriented matroidV (Z) as-
sociated taZ. Our version of the Cayley trick, in turn, tells us that zonotopal tilings
of Z are in one-to-one correspondence with polyhedral subdivisions of its Cayley em-
bedding, which in this case islaawrence polytope (Lawrence polytopes have been
studied mostly in connection to oriented matroid theory, see [1, 6, 24], buipttogierty
of being Cayley embeddings of segments has never been pointed out before.) To close
the loop, polyhedral subdivisions of a Lawrence polytope were shown to correspond
to single-element lifts of the oriented matroid byrN&ros [19], via the concept ofift-
ing subdivisionsntroduced in [6, Section 9.6]. We include a new and shorter proof of
this last equivalence in the realizable case (Proposition 4.4). It is basegeometric
characterization of lifting subdivisions, also contained in [19]. In this,wils paper
contains a complete (modulo Santos’ characterization of lifting subdivisionsprof
of the Bohne-Dress Theorem (Theorem 4.3). It turns out that of the three equivalences
in Theorem 4.3, the most transparent is the one given by the Cayley trick, which is
exhibited in this paper for the first time.

Our final motivation concerns functorial properties of subdivision posets. Given an
affine map between polytopes, can one draw conclusions about the induced map between
the corresponding posets of polyhedral subdivisions? For example, the intersection of a
subdivision with an affine subspace yields again a subdivision of the intersection poly-
tope. In fact, it turns out that the isomorphism given by the Cayley Trick is gxact
map of this type. We think it would be of interest to investigate such maps ore gen-
eral framework (even if they do not produce isomorphisms), in relation toctoaked
generalized Baues problefor polyhedral subdivisions (see [16, 17] for information on
this problem).

2. PRELIMINARIES

2.1. Subdivisions of point configurations. By a point configuration? in RY we mean
afinite labeled subset &¢. We allow A4 to have repeated points which are distinguished
by their labels. The convex hull cod) of 4 is a polytope.

A face of a subconfiguratioB C 4 is a subconfiguratioR® C B consisting ofall the
points on which some linear functionale (RY)* takes its minimum ovefl. Given two
subconfiguration®; andB;, of 4 we say that theyntersect properlyif the following
two conditions are satisfied:

e BN B, is aface of bottB; andBjy;
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e conv(B1) Nconv(By) = con(B1 N By).

A subconfiguration o1 is said to be full-dimensional if it affinely spafi®'. In that
case we call it aell. It is simplicial if it is an affinely independent configuration. Fol-
lowing [3] and [9, Section 7.2] we say that a collecti®of cells of 4 is a(polyhedral)
subdivisionof 4 if the elements ofintersect pairwise properly and cover coAy in
the sense that

Ugesconv(B) = conv(43).

Cells that share a common facet adjacent The set of subdivisions ofl is partially
ordered by theefinementelation

5<$ = VB1€ S, dB €S By C Bo.

The poset of subdivisions ¢t has a unique maximal element which is the trivial subdi-
vision{4}. The minimal elements are the subdivisions all of whose cells are simplicial
which are calledriangulationsof 4.

The following characterization has already been proved for triangulatiods hgera
et al. in [8]. (It is a consequence of parts (i) and (ii) of their Theorem 1.1.) Mere
include a proof for subdivisions, whose final part follows the proof of their Theorem
3.2.

Lemma 2.1. Let 4 be a point configuration. Let S be a collection of cellstfThen, S
is a subdivision if and only if the following conditions are satisfied:

(i) There is a point ircony4) that is contained in the convex hull of exactly one cell
of S.

(i) For every Be S and for every facet F of B, either F lies in a facetohv4) or
there is another Be S of which F is a facet. We say in this case that B ahdr8
adjacent.

(i) Any two adjacent cells in S lie in opposite halfspaces with respect to¢chenmon
facet.

Proof. If Sis a subdivision, it is easy to verify that it satisfies (i), (ii), anid).(iCon-
versely, if S satisfies (i), (ii) and (iii) then refining each cell with its placing trian-
gulation (with respect to any ordering df fixed in advance) we get a collectidnof
simplices which still satisfies (i), (ii) and (iii). By the results[8] T is a triangulation.
Using this it is easy to prove th&is a subdivision. O

2.2. Induced subdivisions. Now let P ¢ RP be a polytope, and lat: RP — RY be
a linear projection map. We can consider the point configuraflaarising from the
projection of the vertex set &f. An element in4 is labeled by the vertex d? of which
it is considered to be the image. In other wordshduces a bijection from the vertex
set ofP into 4, even if different vertices dP have the same projection.

A subdivisionSof 4 is said to barinducedif every cell of Sis the projection of the
vertex set of a face d?. With these conditionsS contains the same information as the
collection of faces oP whose vertex sets are B In this sense one can say thatta

induced subdivision ofl is a polyhedral subdivision whose cells are projections of faces
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of P. (This statement is not very accurate; see [15, 16, 24] for an accurateidafufit
T-induced subdivisions in terms of facesRj

Every non-zero linear functionap € (RP)* defines arr-induced subdivisiorg, as
follows: @ gives a factorization oftinto a map(m,@) : RP — RY x R and the map
p:RY x R — RY which forgets the last coordinate. For any elermseat4 let ap denote
the unique vertex oP of which it is considered to be the image t1y For any face~
of the (d + 1)-dimensional polytopért, @) (P) we denote byar the collection of points
Ar :={ac 4: (@)(ap) € F}. AfaceF of (m,¢)(P) is calledlower if its exterior
normal cone contains a vector whose last coordinate is negative. With this notation,
So:={A C A4 :F is alower face o1 ¢)(P)} is atrinduced subdivision ofi. The
subdivisionS, is called ther-coherentsubdivision of4 induced bygp, and arrinduced
subdivision is calledrcoherentf it equalsS, for someg.

Said in a more compact form, a sub&et A4 is a cell ofSy if and only if there is a
linear functionalg : RY — R such thatB is the subset of2 whereq o 1+ @ takes its
minimum value. (For exampl&, is the trivial subdivision if and only i factors byr.)

Definition 2.2 (Fiber Polytope) The poset oft-induced subdivisions excluding the triv-
ial one is denoted byo(P, ). Its minimal elements are the subdivisions for which every
cell comes from a dif)-dimensional face of P. They are callgght T-induced subdi-
visions. The subposet ofcoherent subdivisions is denoted dyyn(P, 17). It is isomor-
phic to the face lattice of a certain polytope of dimension (@m- dim(2), called the
fiber polytopex (P, ).

See [2, 24] for more information atinduced subdivisions and fiber polytopes.

2.3. Weighted Minkowski sums. Mixed subdivisions.Let 4 := {ai(l),...,ai(m)} be
point configurations ifRY, withi=1,...,r.

Their Minkowski suntyi_; 4 is defined to be the set of all points which can be ex-
pressed as a sum of a point from eaghi.e.,

r
Z={a1+-+a :a€a}.
i; {a }

AvectorA = (Ag,...,Ar) in R L with $T_,Aj = 1 and 0< Aq,...,Ar < 1 is aweight
vector. For a weight vectok theweightedMinkowski sum is defined by

;
-Z\)\iﬂi ={Mar+---+A a1 acg}.
1=

The configuratiory|_; Ai.4 has[]{_;m points, some perhaps repeated.

A cell (i.e., full-dimensional subseB C ¥{_; A4 will be called aMinkowski cellif
B =A1B1+ -+ A;B; for some non-empty subsédsC 4, i = 1,...,r. A mixed subdi-
visionof the weighted Minkowski sum ofl, ..., 4, is a subdivision of the configuration
Y1_1Ai4 whose faces are all Minkowski cells. (There is not complete agreememe in t
literature concerning this definition. See Remark 2.5.) A Minkowski cell iedéineif

its faces are fine.
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We can consider theartesian producof point configurations as a Minkowski sum
where all the point configurations lie in complementary affine subspaces. Thigdeads
the following natural projection.

Definition 2.3 (Weighted Minkowski Projection)Let 4, ..., 4, be point configurations
in RY, and let R,...,P. be polytopes irR™,...,RP, resp., the vertex sets of which
affinely project to4,, ..., 4, via

B = vert(R,) iﬂi, 1<i<r.
Moreover, lefA = (A1,...,A;) be a weight vector. We define

?1X"'X5Pr — )\]_ﬂ]_‘*"*—)\r/qr,
(P1,---,Pr) +— ATu(p1) +---+ATR(Pr);

The projectiom\My is specially interesting if the polytop&sinvolved are simplices.
The proof of the following fact is just a check of definitions.

Ay i=ATg + -+ AT {

Lemma2.4.LetAly : Prx--- X B — A A1+ ---+ A A be a weighted Minkowski
projection, as in Definition 2.3, and suppose that the the polytopageRll simplices.
Then, a subdivision df1.4; + - - - + A 4, is (fine) mixed if and only if it is (tight) M-
induced.

Remark 2.5. There is some confusion in the literature concerning the definition of
mixed subdivisions of the Minkowski surfii_; 4 of the family of point configura-
tions{41,...,4,}. First of all, in most of the literature it is assumed that the number
of configurations equals the dimension of the ambient spacedi-e.r) because this

is the case in the applications to zero-dimensional polynomial systems. Howesve
geometric proofs involved work the same without this assumption.

Pedersen and Sturmfels [14, page 380] defined mixed subdivisions to be the sub-
divisions Ny -induced by the projectiofly : Py X - X B — 41+ ---+ A, of our
Lemma 2.4. Sturmfels [21, page 213] defined coherent mixed subdivisions as the ones
which arelly-coherent. This is the same as we do. However, for the applications it is
interesting to pose the following additional property: that in everyBelB; + - - - + By
of the subdivision the differer;’s lie in complementary subspaces. (This assumption
allows to compute thenixed volumef 4; + --- 4+ 4, by summing up the volumes of
some cells of the subdivision.) It seems that Pedersen and Sturmfels [14]iiiyplse
sume that all mixed subdivisions have this property, since they say (p. 380) “tleel mix
volume... is the sum of volumes of the parallelotopesAh In [21] the additional
property is explicitly mentioned and said to hold for falle mixed subdivisions (which
are calledight there). In other literature the property is taken as part of the definition
of mixed subdivision [11, 13]fTy-induced subdivisions without this property are just
calledsubdivision®f ther-tuple (4y,..., 4).

Finally, there seems to be agreement to ttight subdivisions the minimal elements
in the poset of subdivisions induced by a projection in general [2, 16, 17, 24jrand
mixedthose for the particular case of mixed subdivisions [11, 13], with the exception of
[21] mentioned above. We have chosen to follow this convention.
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2.4. The Cayley embedding. We call theCayley embeddingf 43, ..., 4, the follow-
ing point configuration iR"~1 x RY. Letey,...,e be a fixed affine basis iR 1 and
W : RY — R—1 x RY be the affine inclusion given lyy (x) = (&, ). Then we define

C )= U ()

The Cayley embedding of point configurations from complementary affine subspaces
equals thgoin productof the point configurations. (For the purpose of this paper we
can define the join produd®, * - - - =« 7, of several point configurations witg C RP to
be their Cayley embedding(?:,..., %) C R~ xRPt x ... x RP) Hence, we have
the following natural projection.

Definition 2.6 (Cayley Projection) Let 44, ..., 4; be point configurations ifRY, and
let Py, ...,P be polytopes iiRP:,... ,RP, resp., the vertex sets of which affinely project
to 41,..., 4 via

P = vert(R) llei, 1<i<r.
Define

Prx-xB — C(A,..., ),
(&,pi) — (&,75(pi))-

Again, the following lemma is obvious since a join of simplices is a simplex.

MNc:=C(m,...,Ty) : {

Lemma 2.7. If A is a simplex for alll <i <r then every subdivision af(A4,...,4)
is M¢ induced.

3. THE CAYLEY TRICK
In this section we state and prove the Cayley Trick for induced subdivisions.

Theorem 3.1(The Cayley Trick for Induced Subdivisions)et.4,,..., 4, be point con-
figurations inRY. Moreover, let B, ..., P, be polytopes ifRP:, ... R, resp., the vertex
sets of which affinely project td,, ..., 4, via

P ::vert(P.)lﬂ;, 1<i<r.

Then for all weight vectora = Aj,...,A; there are the following isomorphisms of
posets:

WPLX X B AT+ + A Th) Z(Prx - B, C(T, ..., Th));

(*-)COh(fplx XfPra}\lnl""'"")\rT[r) g("JCO}'l(fPl*'''*fprvC‘(T[lv"'a.rl-t’))'

The second of the two equivalences above follows from [21, Theorem 5.1] and is
stated only for completeness. The structure of the proof of the first one is asgollow
first, we represent the Minkowski sum as a section of the Cayley embedding, ¢hen w
define an explicit order-preserving map that carries the isomorphism. Fiwallghow
that the canonical inverse construction is well-defined and order-preservitfguide

line” of the proof is indicated in Figure 1.
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A

FIGURE 1. “One-picture-proof of the Cayley Trick”: The picture depicts
the geometric interpretation of the correspondence in the Cayley Trick:
intersecting the Cayley embedding with the affine subspége yields

the Minkowski sum weighted bx. Since all cells in a subdivision of

the Cayley embedding are also Cayley embeddings this correspondence
carries over to cells in subdivisions.

Lemma 3.2. Let4y,..., 4 c RY be point configurations. Moreover, = (A1, ..., Ar)
be a weight vector. (Recall this implies thgt> 0 Vi and 3{_; Ai = 1.) Moreover, let
W) :={A1e1+ -+ A} xR C R x RY,

Then the scaled Minkowski siq4; + - -- + A4 C RY has the following represen-
tation as a section of the Cayley embeddif(gfy, ..., 4 ) in R'~1 x RY:

MA A+ +NA = C(A,. .., A4) AW(N)
= {con{ (e, a),...,(&,a) } "W(A) : (er,a1),..., (e, &) € C(A1,..., %) },

Moreover, F is afacet of1.91 +- - -+ A, 4 if and only if it is of the form I=F' AW(})
for a facet F of C(41,...,4) containing at least one poirfg, &) forall 1 <i <r.

Remark 3.3. On the level of convex hulls the above representation for the Minkowski
sum polytope is nothing else but the ordinary intersection of the Cayley embedding poly-

tope with the affine subspace(¥J. We need the slightly more complicated version for
7



point configurations stated above because in convex hulls—a®tsalh a Euclidean
space—we cannot keep track of multiple points.

Proof of Lemma 3.2Definege(A) :=Ae1+---+Are € R1, so that
W(A) = {de(A)} x RY.

Analogously, for any sequenee= (ay,...,a;) of points witha; € 4 we setga(A) :=
Mag +---+Arar € RY. Then the intersection point cofter, ai), ..., (&, a)) NW(A)
equals(ge(A),0a(A)) € R'-1 x RY. But this is, by definition, a point in the scaled
Minkowski sum—via the natural identificatiohl(A) =2 {ge(A)} x RY =W(A)—and ev-
ery point in the Minkowski sum has this description.

The remark about the facets follows from the fact that a f&tetf C(41,..., 4 ) in
R -1 x RY intersectdV(A) if and only if it contains at least one poif#,a) for each
1 <i <r and that a linear functional is minimized &1 over C(4,...,4) if and only
if its projection toW(A) is minimized onF AW(A). O

In order to keep the notation lean, we identify the embedding of the weighted Makikow
sum intoR" 1 x RY in the previous proof with the ordinary weighted Minkowski sum.
The Cayley embedding(4,...,4;) corresponding to the weighted Minkowski sum
A1A4; + -+ -+ A A will be denoted byA14; +--- +Ac 4 ) VW(A). That is, we have

(}\1/‘41++)\r/qr)\/w(}\) = C(-qla"'v/qr)v
C(ﬂl,,ﬂr)/\W()\) :)\1/{41++)\I’/q|’

Of course, this notation extends to subconfigurations as well.
The following proposition states that the “intersection” with{A ) induces an order-
preserving map fromy(Py - --x B, MNc) to (P X --- X B, AMy).

Proposition 3.4. Let S be d1¢-induced subdivision of' (4, ..., 4;) and
SAWA) :={BAW(A) : Be S}.
Then
(i) SAW(A) is aAMy-induced subdivision 0f1.4; + - - - + A 4r;
(i) S< S implies(SAW(A)) < (SAW(A));
(iii) SAW(A) is tight if S is tight;
(iv) SAW(A) is MNc-coherent if S is\My-coherent.

Proof. Every cellB in a subdivision of a Cayley embedding is again a Cayley embed-
ding. Therefore, by Lemma 3.BAW(A) is a mixed subconfiguration in the Minkowski
sum. Since for a cell in 8lc-induced subdivisio® of C(A4, ..., 4) to be full-dimen-
sional it must contain a poir(, &) with & € 4 for every 1<i <r, every cell inS
intersect®V(A) in a full-dimensional subconfiguration &§4; + - - - + A; 4;, thus defin-
ing a cell. This cell is clearly a projection of a face of the prodick --- x 7 under
ATy

The incidence structure and proper intersections are not affected by intamseith
W(A) by Lemma 3.2. Hence, by Lemma 2.1 we get (i).

Property (i) is obvious, (iv) is part of [21, Theorem 5.1] and (iii) follows fraim ([
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The following proposition provides the inverse order-preserving map. Its proof is not
difficult but nevertheless non-trivial; the extension of the polyhedral Caylek Tirgen
coherent to general induced subdivisions requires ingredients that are not neamssary f
the coherent case.

Proposition 3.5. Let S be a\lMy-induced subdivision of1.4; + - - - + A, 4, and
SVW(A) :={BVW(A) : Be S}.

Then

(i) SVW(A) is alc-induced subdivision af (44, ..., 4 );
(i) S< S implies(SAW(A)) < (SAW(A));
(i) SVW(A) is tight if S is tight;
(iv) SVW(A) is coherent if S is coherent.

Proof. Again, properties (ii) and (iii) are obvious, and (iv) follows from [21].

In order to prove (i), leSbe aAMy-induced subdivision ok1.4; + --- + A 4;. For
every celBin Sthere is a unique ceBVW(A) in C(Ay, ..., 4 ) withBVW(A) AW(A) =
B. Let W (A) = {ge(A\)} x Rt x --- x RP be the fiber ofW(A) underl¢ : R x
RP1 % ... x R — R~ x RY. The cellB is a projection of a fac& of P x --- x 7,
and therefore the fade VW'(A) of P x - - - « B—recall that this equal®; x --- x B V
W/ (N)—projects toBVW(A).

For the collection of cellSvVW(A) we need to show—by Lemma 2.1—that

(i) there is a point in con¢ (4, ...,4,) that is contained in exactly one cell 8f/
W(A)
(i) adjacent cells lie on different sides of the hyperplane that supports theimmoom
facet;
(iii) for every facetF of a cellB € SVW(A) eitherF is contained in a facet of the
configurationC (4, ..., 4;) or there is another ceB’ € ScontainingF as a facet.

First, we prove (i). Since the Minkowski sum is contained in the Cayley elglibg
as a section an& is a subdivision of the Minkowski sum, i.eS satisfies conditions
(i), (ii), and (iii), we find a pointp € conMA14; + - -- + Ar 4 ) that is contained in the
convex hull conB of exactly one celB of S. Therefore,p is uniquely contained in
conyBVW(A)) D convB whereBVW(A) € SVW(A), which completes (i). LeB;V
W(A) andB, VW/(A) be two adjacent cells i8VW(A) with common faceF. LetH be
the hyperplane supportirg. We show thaB; VW (A) andB, VW(A) lie on different
sides ofH, which proves (ii). To this end, assurBg VW (A) andBz VW(A) lie on the
same side oH. ThenB; = B; VW(A) AW(A) andBy = B, VW(A) AW(A) lie on the
same side o AW(A) while F AW(A) is the common facet d8; andBy, supported by
HNW/(A): contradiction to (ii) forS.

In order to prove (iii) we only need to observe that incidences are preseywad/ (A).

L

See Figure 2 for an illustration of the situation.
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%pl X %Pz c R(PL1+P2) ) P« P, C R? X_R(pﬁpz)

%ﬂl + %ﬂz C Rd C(A1,A2) C R? x RY

FIGURE 2. Affine picture forr = 2 andP; = P, = [0,1]: product and
Minkowski sum are intersections of join resp. Cayley embedding with
the affine subspad®’ = {x1 = xo, X1+ X2 = 1}.

Remark 3.6. Itis not true in general that a proper intersection of non-adjacent cells in
the Minkowski sum implies a proper intersection of the corresponding cells iretyle\C
embedding. See Figure 3 for an easy example.

A
I +3%
Ay

FIGURE 3. Two properly intersecting cells in the Minkowski sum whose
counterparts in the Cayley embedding intersect improperly.

Propositions 3.4 and 3.5 imply Theorem 3.1. This one, in turn, has the following

corollaries. The first one is straightforward.
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Corollary 3.7. Weighted Minkowski sun})§_; AjA; of a point configuratior, ..., 4
have isomorphic posets of subdivisions for all weights

In the following result we calgeometric (polyhedral) subdivisiarf a convex poly-
tope P a family of polytopes contained i® which cover? and intersect properly. If
P = conv(A4) for a point configuratior then any subdivisioS of 4 has an associated
geometric subdivisiofconB) : B € S} of P. Reciprocally, a geometric subdivisiéh
of P equals{convB) : B € S} for some subdivisios of 4 if and only if every element
of K has vertex set contained i (but the subdivisiors of 4 is not unique, in general).
Given a family 4,,..., 4, of point configurations and a geometric subdiviskorof
the polytope con{5{_;Ai4) we say thatk is mixedif there is a mixed subdivision
Sof 5i_1Ai% with K = {con\B) : B € S}. A necessary condition for this to happen
is that each polytop® in K can be written a® = con(S[_; AiB;}) for certain subsets
Bi C 4,i=1,...,r. Butthis condition is not sufficient, as the following example shows:
Consider the Minkowski sum of two squares of side 1 divided into four squares of side
1. There are 24 ways of introducing two diagonals in the four squares, and all of them
provide geometric subdivisions satisfying the extra condition. But only the 8 ones with
the diagonals drawn in non-adjacent squares are mixed.

Corollary 3.8. Let 4,...,4; be a family of point configurations, and let K’ be geo-
metric subdivisions afonV(S|_; AiA). Suppose that K is a refinement of(Ke., every
cell of K’ is a union of cells of K) and that K is mixed. Thehi&mixed too.

Proof. An easy consequence of Theorem 3.1 is that a geometric subdivision of the geo-
metric Minkowski sum con{{_; AiAi) is mixed if and only if it is the intersection

of the geometric subdivision of co(W (4, ..., 4,)) associated to some subdivision of
C(A1,...,4) with the affine subspad&/(A).

We suppose tha is the intersection wittW(\) of a geometric subdivisioK of
con(C(4, ..., 4)) and thatk equals{convB) : B € S} for some subdivisiors of
C(A,..., ). LetK ={Qq,....,Q}, K' ={Q},....Q} andK = {Qq,...,Q¢} with
Qi = QiNW(A) for eachi = 1,... k.

SinceK refinesK’, for eachj =1,...,| we can WriteQ’j as a union of some of the
Q’s. We defineQ, to be the union of the correspondi@ys, and letk” := {Q}, ..., Qf}.

We claim thatK’ is a geometric subdivision of cot@(4y,...,4)). If this is true then
it is obvious thatk’ is the geometric subdivision associated to some subdivBiof
C(A,...,4) and thak’ is the intersection ok’ with W(A), which finishes the proof.
The only non-obvious parts in the claim are that the un@]sare convex and that
they intersect pairwise properly. We prove these two facts in the folgp¥emma. O

Lemma 3.9. Let K be a geometric subdivision of the geometric Cayley embedding
conv((C(A4y,...,4)). Let Q and R denote unions of cells in K.

1. If there is a weight vectox for which QMW(A) is convex, then Q is convex.
2. Suppose Q and R are convex. If there is a weight véetdor which QNW (o)
and RMW(Ao) intersect properly then Q and R intersect properly.
11



Proof. 1. LetQ= {Qq,...,Q } where theQ;’s are cells in the subdivisiok. Since the
Qi’s intersect properly, for every weight vectdithe intersection®1 "\W(A),...,Q N
W(A) intersect properly. Also, the polytop€} NW(A) for different values ofA are
normally equivalent. Thus, @ NW(Ao) andQ; NW(Ag) share a face the@ NW(A)
andQj NW(A) must share “the same” face for everyor otherwiseQ; andQj intersect
improperly). This implies thaQ@ W (Ap) andQNW (A) are combinatorially equivalent
polyhedral complexes and their boundaries are combinatorially and normally eqtiivale
convex polytopes. Even more, their faces are labeled in the same (uniquaywegr-
sections of faces a with W(Ag) andW (A) respectively. In particulaQ "W(A) is a
convex polytope for every.

Suppose now thap is not convex. Lep andq be points inQ such that the segment
[p,q] is not contained i and sufficiently generic so thgp, q] intersects the boundary
of Q in the relative interior of a facef of Q. Let F* be the exterior open halfspace to
that facet. One op andgis in F ™, suppose that it ip and let\ be the weight for which
peW(A). Then,Ft*NW(A) is the halfspace exterior to the fadet'W(A) of QNW(A)
andp € FTNW(A). This meanp ¢ QNW(A), a contradiction.

2. LetFp = QNRNW(Ag) be the common face in whicQ YW (Ag) andRNW(Ao)
intersect. Fy can be expressed as a uni@ U --- U F) NW(Ag) where eactr is a
face of one of theQj’s in K whose union equal®. This expression is unique (up to
reordering) if it is not redundant (i.e., K N"W(Ag) has the same dimension Bg for
everyi). In the same waysp = (G1U--- UGk ) "W(Ag), where theG;'s are now faces of
the cells ofkK whose union iR The fact that thés’s andG;j’s intersect properly (since
they are all faces of cells of the subdivisili) together with(F U - - - U F) "\W(Ag) =
(G1U---UGr) NW(Ag) for the weightAg implies that each equals aG; and vice
versa. ThusQ) andR intersect properly, inthe fadgq U---UR =G1U---UGy. O

4. LIFTING SUBDIVISIONS OFLAWRENCE POLYTOPES AND THEBOHNE-DRESS
THEOREM

Throughout this section lel = {ay,...,a,} € RY be a fixed point configuration of
dimensiord, and letM4 denote the oriented matroid of affine dependences, efhich
has rankd + 1 and ground sefl1,...,n}.

4.1. Lifting subdivisions. A lift of 44 is an oriented matroicj/\/[,\q of rankd + 2 with

ground sef1,...,n+ 1} which satisfiesMz /(n+ 1) = My. Geometrically, a lift can be
thought of as an embeddingdfinto R4t which projects “vertically” (i.e. by forgetting
the last coordinate) td and with the new point+ 1 being the “point at infinity” of the
vertical lines (but this picture does not take into account non-realizatdgdiftealizable
lifts which do not geometrically project t@).

For anyB C 4, every lift of M4 restricts to a lift ofMg. Moreover, a lift of M4 is
fully characterized by its restrictions tarcuits (minimal affinely dependent subsets) of
A. The former is trivial to check and the latter is a dualization of Propositidm in
[6]. If Bis a circuit, therMp has exactly three lifts: the “zero” lift in whicB lifts to a

dependent set and the two lifts in whiBHifts to an independent s& distinguished by
12



the orientation they induce in the affine sparBoHence, a lift of4 is characterized by
its circuit signature functiorwhich gives a sign 0+ or — to each circuit.

This allows to define a natural partial order on the lifts)f, which coincides with
theweak map orderingn oriented matroids with the same rank and number of elements:
a lift is lower in this poset if it is “more generic” or “more uniform” see [Bhapter 7].
More precisely, the circuit signature function of the lower lift is obtainexaif that of
the higher by setting some zeroesttar —

Every lift :Mﬂ of M5 induces a subd|V|S|0|$A of 4 as follows: a subset C
{1,.. n} is (the set of indices of the elements of) a cellSnf and only if o is a

facet offMﬂ not containingh+ 1 (afacetin an oriented matroid is the complement of a
positive cocircuit [6, Chapter 9]). The subdivisions@fwhich can be obtained in this
way are calledifting subdivisions They were formally introduced in [6, Section 9.6],
with some of the ideas coming from [4]. In the geometric picture described dheve
lifting subdivision is just the projection tRY of the lower facets of the lifted point con-
figuration. Hence, the process is a combinatorial abstraction (as well asralgei®n)
of the definition ofregular subdivisionsf 4.

The following definition and theorem, taken from [19, Section 5.3], provide a char-
acterization of lifting subdivisions aff which does not explicitly involve the oriented
matroid M.

Definition 4.1. Let 4 be a point configuration. For each subsetBA4, let § be a
subdivision of4. We say that the family of subdivisiafis= {Sg}gc 4 iS consistentf for
every subset B 4 the following happens:

(i) For every cellt € Sz and for every Bc B,1NB' is a face of a cell of S.
(i) For every affine basis of RY contained in B ifo is contained in a cell of (b}
for every be B\ o, thena is contained in a cell of Gas well.

We say that the famiig consistent witla certain subdivision S dof if, moreover, S= S;.

Theorem 4.2(Santos) Let S be a subdivision of a point configuratich Then, the
following conditions are equivalent:

() Sis alifting subdivision.

(i) There is a familyS of subdivisions of the subsets®f which is consistent with S.

4.2. Lawrence polytopes, zonotopes and the Cayley trickA point configurationq C

RY of dimensiond with n elements can be represented bynand + 1 matrix of rank

d+ 1, whose columns are the elements®ivith an extra coordinate equal to 1 in the
last place M is the oriented matroid represented by the columns of this matrix, which
we still denote4. The Lawrence lifting of4 is defined (see [1, 22]) to be the point
configuration corresponding to the matrix

AA) = (fl ?)

wherel is the identity matrix of sizer x n and0 the zero matrix of sizen x (d + 1).

The 2 column vectors of the matrig(A4) affinely span a non-linear affine hyperplane
13



of R™d+1 soA(4) represents a point configuration with goints in dimensiom -+ d
which we still denoté\(2). The convex hull of this configuration is called the Lawrence
polytope associated with. It turns out that all the points in(A4) are vertices of this
polytope.

By reordering the columns d&(A4) we see that the Lawrence polytope@fequals
the Cayley embedding of thesegment©a c RA1. L.e:

/\(alv"'aan) = C(O—alvaﬁ)

On the other hand, the Minkowski sum of a collection of segmentzaatopeand
its mixed subdivisions are usually callednotopal tilingg24, Section 7.5]. We will call
zonotope associatadlith the point configuration? (and denotez(4)) the Minkowski
sumy !, Oa. Thus, the Cayley trick gives a correspondence between zonotopal tilings
of the zonotopez(4) and polyhedral subdivisions of the Lawrence polytdygel).

4.3. The Bohne-Dress theorem.The rest of this section is devoted to prove the fol-
lowing Theorem:

Theorem 4.3(Bohne-Dress, Santas)et 4 be a point configuration. The following
posets are isomorphic:

(i) The poset of zonotopal tilings af(41).

(ii) The poset of lifts of the oriented matroid .
(iii) The poset of subdivisions of the Lawrence polytdgel).

The equivalence of the first two posets is the Bohne-Dress theorem on zonotopes (see
[6, Theorem 2.2.13], [24, Theorem 7.32], [18]). We provide a new proof of the Bohne-
Dress theorem as follows: Our Theorem 3.1 directly implies the isomorphismeeet
the first and last posets. The equivalence of the last two was proved in [dihr54.2]
in the general case of perhaps non-realizable oriented matroids but we include here
shorter proof. The essential new feature of our proof is that we use Santos’ characte
zation of lifting subdivisions (Theorem 4.2) to prove part (i) of the followingestaent,
while in [19] the same thing is proved directly.

Proposition 4.4. Let 4 be a point configuration with oriented matroitl{;, and let
A(A) be the associated Lawrence polytope, with oriented matiigy). Then:

(i) Two different lifts ofM), 4, produce different associated lifting subdivisions.
(i) Every subdivision of\(‘1) is a lifting subdivision.

(iif) The poset of lifts OW/\(M) and the poset of lifts a4 are isomorphic.

Thus, the poset of lifts 6z and the poset of subdivisions&f4) are isomorphic.

Proof. Throughout the proof we will denote Wy, ..., by, €e,...,e, the vertices of the
Lawrence polytope, that is to say the columns of the matrix

AA) = (fl ?) .

The following are some other very special properties\¢f1). LetC = (C*,C")

be a circuit ofA(A4). This means tha€_ UC; is a minimal dependent set and that
14



C_ andC; are, respectively, the sets of points with positive and negative coefficie
the unique (modulo a scalar) dependence equation involving them. The structure of the
matrix A(4) clearly implies that whenever an elemdénbor g is in C* the companion
g orb; isinC~ and vice versa. In other words, the support of every circuit has the form
{bi:iedJ}u{g:ied}, forsomed C {1,...,n}. On the other hand, any subset of
that form is a face of\(2).

If B is now an arbitrary subset of the vertices/df2), letBp={bjcB:gcB}U
{ea €B:beB}. Every elemenp € B\ Bg is a coloop inB. In other words, for every
subseB of the vertices of\(4), conVB) is an iterated cone over the face cOBy) of
A(A4). These facts will be crucial in the proof of the three statements:

(i) The circuit signature functions of two different lifts will necessaugive different
sign to a certain circui€ of A(A4). But this implies that the associated lifting subdivi-
sions are different, since they are different in the facA(0f) spanned by the support of
that circuit. (The three lifts of a circuit induce, respectively, theiatisubdivision and
the two unique triangulations of the circuit).

(if) Since every subseB of the vertices ofA(A4) is an iterated cone over a face
convBp), a subdivisionS of A(M) is consistent with only one subdivision Bf the
cone over the subdivision of the face c¢By) induced byS. Let {Sg}p-A(4) denote the
family of subdivisions so obtained. The first condition of consistency is triviatiss
fied by this family. For proving the second one we will use induction on the dimension
of the subseB involved.

Let o be a basis contained B such that for every € B\ 0 we have that is in a
cell of the subdivisior; . Sincea is full-dimensional, it must contain at least one
of each pair of verticeb; andg of A(A4), for everyi € {1,...,n}. On the other hand,
since the case = A(4) is trivial, o contains an elemet or b; whose companios or
b is notino. Leta be such an element, and let us denote its compani@n by

Since{a,a} is the complement of the set of vertices of a facef\0f), by induction
on the dimension we assume tlaeit {a} lies in a cell ofSy\ (a4)- If @ ¢ B this implies
thato lies in a cell ofSz. If @ € B we still can conclude that eitheror o\ au {a} lie
in a cell of 3. So suppose that the second happens, ardbetthat cell. We will proof
thata € T as well.

Consider the corank 1 subconfiguratiBh= o U {a} of B. By the first condition of
consistencyr N B’ is a face of a cell irSy. On the other hand, sind# is of the form
oU{b}, oliesin acell ofSz by hypothesis. Thus, boB{\ {a} =candB'\ {a} c TnB'
lie in cells of Sg. SinceB'\ {a,a} is a face ofB/, this implies thatSy is the trivial
subdivision. Finally, since N B’ is full dimensional because it contaios, {a} U {a},
1N B'is a cell ofS; and, thusa € T, as we wanted to prove.

(iii) Let 4* be a Gale transform ofl, represented as a matrix of si@ex (n—d — 1)
whose row spaceow(4*) is an orthogonal complement adw(4). Then, the matrix
(A*,—Aa%) of size hx (n—d —1) represents a Gale transform/f4). In other words,
the oriented matroid dual t84y ) is obtained from the dual a4 by adjoining an
antiparallel element to every element. Then, it is trivial that thedwals have the same
posets of extensions (for example, via the topological representation theorem adarient

matroids; also via Las Vergnas’ characterization of extensions by cocsiguature
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functions. See [6]). Since lifts of an oriented matroid are duals to extensfatssdual,
part (iii) is proved.

Once we have proved parts (i), (i), and (iii) we have a bijection betwtbe two
posets we are interested in. That this bijection is a poset isomorphiswias.tri ]
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