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AbstractGiven a real homogeneous polynomial F , strictly positive in the non-negativeorthant, P�olya's theorem says that for a su�ciently large exponent p the coe�cientsof F (x1; . . . ; xn)�(x1+� � �+xn)p are strictly positive. The smallest such p will be calledthe P�olya exponent of F . We present a new proof for P�olya's result, which allowsus to obtain an explicit upper bound on the P�olya exponent when F has rationalcoe�cients. An algorithm to obtain reasonably good bounds for speci�c instances isalso derived.P�olya's theorem has appeared before in constructive solutions of Hilbert's 17thproblem for positive de�nite forms [4]. We also present a di�erent procedure to dothis kind of construction.

1 Introduction
In 1928 G. P�olya [7] proved the following theorem (see also [5]):
Theorem 1.1 (P�olya) Let F (x1; . . . ; xn) be a real homogeneous polynomial whichis positive in xi � 0, Pxi > 0. Then, for a su�ciently large integer p, the product

F (x1; . . . ; xn) � (x1 + � � � + xn)p
has all its coe�cients strictly positive.

The smallest exponent p that satis�es the properties of the theorem will becalled the P�olya exponent of F . Our purpose is to show an elementary derivationfor an upper bound of the P�olya exponent. Using an e�ective  Lojasiewicz inequalityfor the case of rational coe�cients [10], this upper bound can be written in termsof the degree, the number of variables and the size of the coe�cients of F . This isdone in the following theorem.
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Theorem 1.2 Let F (x1; . . . ; xn) be a real homogeneous polynomial of degree dwhose coe�cients are bounded in absolute value by l � 2. Suppose that F is strictlypositive in the non-negative orthant (minus the origin). Denote by � the minimumof F in the unit simplex � = fPni=1 xi = 1; xi � 0 8ig. Call D the maximumof d + 1 and n + 1. Under these assumptions:
1. If F has integer coe�cients, then 1=� is bounded above by lDO(n).
2. For any integer p greater than lnd2+dn� , the product

F (x1; . . . ; xn) � (x1 + � � � + xn)p
has all its coe�cients strictly positive.

We remark that recent work by Reznick (see [8]) contains results similar to parttwo of our theorem. Observe that Theorem 1.1. implies that F can be writtenin the form F = G=H, where G and H are homogeneous polynomials with onlypositive coe�cients. This is a necessary and su�cient condition for F to be strictlypositive in the non-negative orthant. In a similar way, Artin decomposition ofa polynomial as a quotient of two sums of squares is necessary and su�cient toguarantee positive semide�niteness in IRn. W. Habicht found a way to constructan Artin decomposition of a positive de�nite form using P�olya's theorem [4]. Insection 3 we present a new method to do this.Let us �nally indicate that a slightly more general version of P�olya's theoremappears in the theory of Geometric Design (see Theorem 1.3 in [3]) in connectionwith the approximation of polynomial functions in a simplicial region. The general-ization comes from the fact that the convergence result in the proof of Lemma 2.1 isstill true for F not necessarily positive. This implies that, for large p, the coe�cientsof the polynomials (x1+ � � �+xn)pF (x1; . . . ; xn) approximate F (x1; . . . ; xn) (up to anormalization) at some test points in the simplex � = fPni=1 xi = 1; xi � 0 8ig
2 Proof of the main result
We will �rst present some notation. We will abbreviate F (x1; . . . ; xn) by F (X).The polynomial F (X) can be written as a di�erence F+(X) � F�(X) where thepolynomials F+(X) and F�(X) have only positive coe�cients. We use PX todenote x1 + x2 + . . . + xn, and X + d to abbreviate (x1 + d; . . . ; xn + d). FinallyX > 0 will indicate that xi > 0 for i = 1; . . . ; n.
Lemma 2.1 Let F (X) be a real homogeneous polynomial of degree d, strictly pos-itive in the non-negative orthant (minus the origin).

1. The semialgebraic region G := fX : F+(X) � F�(X + d) � 0; X � 0g isbounded.
2. For any p greater or equal than dn plus the maximum of PX on the regionG, the product F (X) � (PX)p has all its coe�cients strictly positive.

Proof:Observe that the part of largest degree of F�(X) = F+(X) � F�(X + d) is thepolynomial F (X) and the remaining terms have negative coe�cients. Hence for
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each point Q in the simplex � = fPX = 1; X � 0g the univariate polynomialHQ(�) = F�(�Q) has positive leading term and the rest of its terms negative. Callr(Q) the only positive real root of HQ(�). The function r(Q) is continuous in �which is compact and thus attains a maximum. This �nishes the proof of part (1).For the proof of part (2), let F (X) = P cVXV , and F (X)(PX)p = PCUXU ,where V = (v1; . . . ; vn); P vi = d and U = (u1; . . . ; un), Pui = p + d. Then thecoe�cient CU equals
X
P vi=d

cV p!
(u1 � v1)! . . . (un � vn)! =X cV PU;V :

If ui > d for i = 1; . . . ; n then it is easy to see that the following two inequalitiesare satis�ed (note that 0 � vi � d for all i).
p!

u1! � � �un!uv11 . . .uvnn � PU;V � p!
u1! � � �un! (u1 � d)v1 . . . (un � d)vn :

Using one of these inequalities for each PU;V depending on the sign of cV we get
u1! � � �un!CUp! � F+(u1 � d; . . . ; un � d) � F�(u1; . . . ; un):

Otherwise, one of the ui is smaller or equal to d. Without loss of generalityassume u1; . . . ; uk > d � uk+1; . . . ; un. In this case we have another pair of inequal-ities:
p!

u1! � � �un! (u1)v1 � � � (uk)vkdvk+1 � � � dvn � PU;V
PU;V � p!

u1! � � �un! (u1 � d)v1 � � � (uk � d)vk0vk+1 . . . 0vn
where 00 is taken to be 1 if vi = 0 for some i > k. In the same way as before weconclude that

u1! � � �un!CUp! � F+(u1 � d; . . . ; uk � d; 0; . . . ; 0) � F�(u1; . . . ; uk; d; . . . ; d)
In both cases we obtain u1!���un!CUp! � F+(x1; . . . ; xn) � F�(x1 + d; . . . ; xn + d)for certain x1; . . . ; xn with Pxi > p � dn. Using the assumption on p, we haveF+(x1; . . . ; xn)�F�(x1 +d; . . . ; xn +d) > 0 and thus the coe�cient CU is positive.
For the proof of Theorem 1.2 we want to give a procedure to �nd the maximumof the linear form PX inside the region G = fX 2 IRnjF+(X) � F�(X + d) �0; X � 0g. We will also derive a theoretical bound for this maximum using ane�ective  Lojasiewicz inequality. The following statement is the quanti�er free caseof Lemma 5 in [10] (see chapter 2 of [1] for general information on  Lojasiewiczinequalities).

Lemma 2.2 (Solern�o) Let V � Rn be a nonempty and closed semialgebraic setand let f : V ! R be a continuous semialgebraic function. Assume that both V
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and the graph of f are de�ned by quanti�er free formulas �V and �f involvingpolynomials with integer coe�cients. Denote by DV and Df the sum of the degreesof the polynomials in the respective formula. Let D = maxfDV ; Dfg and let l bethe maximum absolute value of the coe�cients involved in the formulas.There exists a universal constant c 2 N such that, under the above conditions,we have:
jf(x)j � lDc(n+1)(1 + jxj)Dc(n+1)

for all x belonging to V

Proof of Theorem 1.2: In part one we use Lemma 2.2 with the simplex � as Vand f = 1=F . In our case D = maxfd + 1; n + 1g and in the simplex � we have(1+ jxj) � 2. Taking into account that l and D are bigger than 2 we obtain a boundfor 1=F in �:
1=F � lDc(n+1)2Dc(n+1) = lDO(n) :

This completes the proof of part one. For part two we �rst note that the in-equality F�(X + d) � F�(X) + dP @F�@xi (X) is valid in the non-negative orthant.This follows from Taylor's multivariate theorem taking into account that F� hasonly positive coe�cients. As a consequence, the semialgebraic region G de�ned inLemma 2.1 is contained in
G0 = fX : F (X) � dX @F�@xi (X) � 0; X � 0g:

Notice that F (X) � dP @F�@xi (X) � 0 if and only if PX � d(PX)(P @F�@xi (X))F (X) .The right hand side of the last inequality is a quotient of two homogeneous poly-nomials of the same degree and we can bound it by the quotient of the maximumof d(PX)(P @F�@xi (X)) and the minimum of F (X) in the simplex. The minimum ofF (X) equals � and the maximum of the numerator can be seen to be bounded bylnd2, because of the following chain of inequalities:
d(XX)(X @F�@xi (X)) � d2nF�(X) � d2nl:

We have used that PX = 1 because we are in the unit simplex and @F�@xi (X) �
dF�(X) because F� has only positive coe�cients. Thus PX is bounded by lnd2� inG0 as desired. This completes the proof.Lemma 2.1 provides us with an algorithm to �nd a reasonably good bound forthe P�olya exponent which is a priori smaller than those given in Theorem 1.2. Weneed to �nd the maximum for the linear functional PX in the region G which wasde�ned using F�(X) = F+(X) � F�(X + d). The maximum will be attained at aboundary point Q = (q1; . . . ; qn) such that F�(Q) = 0 and the partial derivativesof F� with respect to nonzero entries are all equal. This allows us to use symbolicmethods (such as Gr�obner bases). Nevertheless, since we are only interested inan upper bound for the P�olya exponent, it is enough for our purposes to applynumerical optimization techniques (such as numerical Lagrange multipliers). In the
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following table we show the value of the maximumPX in G for several polynomialsand compare it with the P�olya exponent. The values in the last column have beenfound by means of Gr�obner bases and real root isolation.

P�olya exponent dmaxX2G(PX)e
1000x2 � 1999xy + 1000y2 3997 1599450x2 � 99xy + 50y2 197 794(50x2 � 99xy + 50y2)(x2 + y2) 193 3180(50x2 � 99xy + 50y2)(x4 + x2y2 + y4) 187 7158(x� y)2(x + 6y)2 + y4 197 19485x4 + (x� y)2(x + 6y)2 + y4 44 36710x4 + (x� y)2(x + 6y)2 + y4 30 228(x� z)2 + (y � z)2 + (x + y)2 3 19(412x4 � 18x3y + 556x2y2 + 40xy3 +533 y4�24x3�344x2y+184xy2�200 y3+540x2+134xy+678 y2�182x�92 y+444)

2 30

The last example in the table is a sum of the squares of 50 randomly gener-ated quadratic forms, and will be used in Section 3 as an example of the processdescribed in Theorem 3.2. The coe�cients of the quadratic forms were generatedusing MAPLE's random numbers subroutine with [�5; . . . ; 5] as the range of varia-tion. Our computational experience indicates that such `random' polynomials tendto have a low P�olya exponent.Let us analyze in detail an example that contains as particular cases the �rsttwo polynomials in the table. Consider F (X) = xn1 + � � � + xnn � (n � �)x1 � � �xnfor a positive and small � and large n. As pointed out in [5] its P�olya exponent
is approximately n3(n�1)2� . The maximum of PX in G is attained at a point with
x0 = � � � = xn and it is approximately n4� . So, the bound given by Lemma 2.1 equalsthe P�olya exponent asymptotically up to a factor of 2.We can deduce some important consequences of this example: P�olya's theoremis not true if F is only non-negative [5] or if it is strictly positive only in the openorthant (e.g. F (x; y; z) = (x � y)2 + z2). The theorem is again not true over non-Archimedian �elds (taking � to be an in�nitesimal). Finally, the P�olya exponent pcannot be bounded only by the degree d and the number of variables n of F ( forthese last two comments see [9]). Any bound will necessarily include the size l ofits coe�cients.
3 Decomposition of strictly positive polynomials
In this section we will connect P�olya's theorem to Hilbert's 17th problem. Thisproblem asked whether every nonnegative real polynomial can be expressed as aquotient of sums of squares of real polynomials. It was non-constructively solved byArtin in 1928 and other solutions have been proposed later, which are constructiveor give conditions and bounds on the output polynomials. We recommend [1] and [2]
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for a brief history of the problem ([2] puts special emphasis on constructive aspectsof the solution).P�olya's theorem was used by Habicht [4] to give explicit solutions to Hilbert's17th problem in the case of positive de�nite homogeneous polynomials. Here, wepresent a di�erent way to do this. If we have a positive de�nite homogeneous poly-nomial F in n variables, P�olya's theorem can be applied to F (�1x1; �2x2; . . . ; �nxn),where �i 2 f+;�g. In this way we have 2n P�olya-like expressions, each of themcertifying the positiveness of F inside a di�erent orthant. We proceed to glue theselocal certi�cates with techniques similar to those in [6]. The decomposition of Fobtained in this way is a quotient of two sums of even powers of monomials inthe \variables" x1; x2; . . . ; xn; F . Let us remark that B. Reznick [8] has also given,using less elementary techniques, concrete decompositions for the same family ofpolynomials. His decomposition has a sum of even powers of linear forms in thenumerator and a power of Px2i in the denominator.For convenience we will state all results in this section for an inhomogeneouspolynomial F . This is possible provided that its homogenization is positive de�niteor, equivalently, if F is strictly positive and its largest degree part is positive de�nite.Reciprocally any positive de�nite homogeneous polynomial can be dehomogenizedyielding an inhomogeneous polynomials with the above conditions. Hence Theorem3.2 applies to homogeneous polynomials as well. In the following discussion K willdenote any ordered �eld and K+ denotes the set of strictly positive elements in K.Only in the last part of Theorem 3.2 we need K to be the rationals in order to applythe bound in part one of Theorem 1.2.
Lemma 3.1 Let F 2 K[x1; . . . ; xn]. Suppose that for a given xi we have two identi-ties F �A1 = B1 and F �A2 = B2 where A1; B1 are polynomials in K+[xi; T; F 2] andA2; B2 are polynomials in K+[�xi; T; F 2], for some arbitrary set of indeterminatesT . Assume that both B1 and B2 have a nonzero constant term. Then we can �ndan expression of the form F �R = S where R and S are polynomials in K+[x2i ; T; F 2]and S has a nonzero constant term. Moreover deg(S) � deg(B1) + deg(B2).
Proof: We can decompose A1 = A1;1 + xiA1;2, B1 = B1;1 + xiB1;2, A2 = A2;1 �xiA2;2, and B2 = B2;1 � xiB2;2 with A1;1; A1;2; B1;1; B1;2; A2;1; A2;2; B2;1 and B2;2 2K+[x2i ; T; F 2]. Separate the two identities in the form:

FA1;1 �B1;1 = �xiFA1;2 + xiB1;2; FA2;1 �B2;1 = xiFA2;2 � xiB2;2
Multiplying side by side the above equations and grouping together terms withF we obtain:

F � (A1;1B2;1 + B1;1A2;1 + x2iA1;2B2;2 + x2iB1;2A2;2) =
F 2(A1;1A2;1 + x2iA1;2A2;2) + B1;1B2;1 + x2iB1;2B2;2

By hypothesis both B1;1 and B2;1 have a nonzero constant term and thusB1;1B2;1 has a nonzero constant term. The constant term of F 2A1;1A2;1 is either zeroor positive, and thus the constant term of the right hand side of the equation aboveis positive. From the above expression it is clear that deg(S) � deg(B1)+deg(B2).
6



As an immediate application of the above lemma and as a preparation for themultivariate case we present a method to decompose a real univariate strictly pos-itive polynomial F as a quotient of two sums of squares. We remark that in theunivariate case, the additional condition of F having a strictly positive largest de-gree part is redundant. Applying Theorem 1.2 to the homogenization of F we havethe following expression where B1(x) has only positive coe�cients
F (x)(x + 1)p = B1(x):

With the same process applied to the polynomial F (�x) we obtain:
F (x)(1 � x)q = B2(�x)

Taking A1 = (x + 1)p; A2 = (1 � x)q and T = ; we are in the situationof Lemma 3.1. This will give an expression F � R = S with R;S polynomials inIR+[x2; F 2] and thus sums of squares.
Theorem 3.2 Let F (x1; x2; . . . ; xn) be a real strictly positive polynomial of degreed, whose homogenization is positive de�nite. For each � = (�1; . . . ; �n) in En =f+;�gn, let p� be the P�olya exponent of the homogenization of F in the orthantwhere the sign of the ith coordinate equals �i. Let P = P�2En p� and D be themaximum of d + 1 and n + 1. Then we can write:

F �R = S
where R;S 2 IR+[x21; x22; . . . ; x2n; F 2] and deg(S) � P + 2nd (where S is consideredas a polynomial in the original variables x1; x2; . . . ; xn to compute deg(S)).If F 2 0Q[x1; x2; . . . ; xn], then we can �nd R and S in 0Q+[x21; x22; . . . ; x2n; F 2].
We can also choose R and S with lDO(n) monomials, where l is an upper bound forthe absolute values of the coe�cients of F .
Proof: Let En = f+;�gn. For each � = (�1; . . . ; �n) 2 En we have a P�olya expressionin the corresponding orthant

F (x1; x2; . . . ; xn) �A� = B�
where A�; B� 2 R+[�1x1; . . . ; �nxn]. Moreover A� = (1 + �1x1 + . . . + �nxn)p� andthus B� has degree p� + d and non-zero constant term. Our goal is to glue the 2nexpressions in pairs using Lemma 3.1. More explicitly, for each � 2 En�1 considerthe two expressions FA� = B� and FA�0 = B�0 where � = (�;+) and �0 = (�;�).We can apply Lemma 3.1 with T = f�1x1; �2x2; . . . ; �n�1xn�1g. This will give2(n�1) expressions (one for each � = (�1; . . . ; �n�1) in En�1) where the variable xnalways appears squared. Inductively, for each � 2 En�2, we take the two expressionsFA� = B� and FA�0 = B�0 with � = (�;+) and �0 = (�;�) and apply Lemma3.1 with T = f�1x1; �2x2; . . . ; �n�2xn�2; x2ng. This process can be continued untilall the variables appear squared.For the degrees we note that in each gluing the degrees of the expressions gluedare added. The degree of the �nal expression will be the sum of the degrees of the2n equations derived from Theorem 1.2. This gives the bound P + d2n.
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We want to illustrate our method with a simple example. Consider the lastpolynomial given as an example in section 2: F := 134xy � 92 y � 182x� 24x3 +412x4 + 540x2 + 678 y2 + 533 y4 � 200 y3 � 18x3y + 556x2y2 � 344x2y + 40xy3 +184xy2 + 444:We will apply the process described in the proof of Theorem 3.2. P�olya's theoremapplied to F in each one of the four orthants gives the following four identities (weshow the intermediate distributions of the terms with respect to parity of the powersof y):
(i) F (1+x+y)2 = F (1+2x+x2+y2+y(2+2x)) = 1722x2y2+1442xy2+874x3+904x4+706x+620x2+938 y2+811 y4+444+548x3y2+932x4y2+930 y4x+1169 y4x2+800x5+412x6+533 y6+y(474x + 460x3 + 548x2 + 1498xy2 + 796 + 1064 y2 + 396x4 + 806x5 + 1106 y4x + 1016x2y2 +1134x3y2 + 866 y4):
(ii) F (1 + x� y)2 = F (1 + 2x+ x2 + y2 � y(2 + 2x)) = 2562x2y2 + 1274xy2 + 874x3 + 904x4 +706x+620x2 +1306 y2 +1611 y4 +444+ 1996x3y2 +1004x4y2 +1570 y4x+1009 y4x2 +800x5 +412x6+533 y6�y(574x+1604x3+884x2+1950xy2+980+1648 y2+1156x4+842x5+1026 y4x+1944x2y2 + 1090x3y2 + 1266 y4):
(iii) F (1� x+ y)2 = F (1� 2x+ x2 + y2 + y(2� 2x)) = 450x2y2 � 902xy2 � 1286x3 + 1000x4 �1070x+ 1348x2 + 938 y2 + 811 y4 + 444� 300x3y2 + 1004x4y2 � 402 y4x+ 1009 y4x2 � 848x5 +412x6 +533 y6 + y(�934x� 324x3 +740x2 � 414xy2 +796+ 1064 y2 +564x4 � 842x5 +866 y4 �1026 y4x+ 120x2y2 � 1090x3y2):
(iv) F (1� x� y) = 716x2y2� 628xy2� 564x3+436x4� 626x+722x2+770 y2+733 y4+444�538x3y2�573 y4x�412x5�y(�408x�350x3+1018x2�56xy2+536+878 y2+394x4+533 y4+596x2y2):

Applying Lemma 3.1, with y as the distinguished variable to the pairs (i)-(ii)and (iii)-(iv) and grouping terms as in Lemma 3.1 we get (notice the expressionsare presented now arranged by parity of powers of the variable x):
(i)-(ii) F (7508x2y6+18160x2y2+6544x4+4952x2+6684 y2+10090 y4+20348x4y2+26700 y4x2+5832x6 +7752 y6 +8562x4y4 +6056x6y2 +824x8 +1066 y8 +888+ x(14264 y2 +5640x2 +3188+22568x2y2 + 22380 y4 + 6964x4 + 14416x4y2 + 19768 y4x2 + 13160 y6 + 3248x6)) =20679124x2y6+6723652x2y2+2421240x4+1048996x2+1776416 y2+4654924 y4+12531112x4y2+16893804 y4x2+3380292x6+6653476 y6+24185356x4y4+12976984x6y2+3666432x8y4+5547524x6y6+1476284x10y2+4580433x4y8+2295630 y10x2+169744x12+284089 y12+6F 2x2y2+F 2+6F 2x2+6F 2y2+F 2x4+F 2y4+17274928x6y4+20296116x4y6+7688272x8y2+13108438x2y8+2726496x8+5276765 y8+1384896x10+2387282 y10+197136+x(3711592 y2+1651552x2+626928+10260368x2y2+10310324 y4+3070608x4+14459768x4y2+22021832 y4x2+14337360 y6+3621212 y10+9347744x6y4+12882352x4y6+3862096x8y2+9701716x2y8+659200x10+12F 2y2+2166576x8+4F 2+4F 2x2+22429140x4y4 + 22897032x2y6 + 10878896x6y2 + 10718648 y8 + 3153936x6):
(iii)-(iv) F (8408x2y2 +4572x4 +4836x2 +4020 y2 +5134 y4 +5584x4y2 +5430 y4x2 +2520x6 +3198 y6+888�x(7456 y2+5268x2+3028+6972x2y2+6162 y4+3696x4+3584x4y2+4402 y4x2+3198 y6 + 824x6) =5298888x2y6+5057552x2y2+3019356x4+1588900x2+1185008 y2+2676988 y4+6822948x4y2+6963772 y4x2 + 3189648x6 + 3371312 y6 + 6633028x4y4 + 5042212x6y2 + F 2 + 3F 2x2 + 3F 2y2 +3085788x6y4+3212416x4y6+1829476x8y2+1989123x2y8+1741568x8+2332333 y8+529008x10+852267 y10+197136�x(2915800 y2+2437788x2+753024+6141928x2y2+4529144 y4+3340724x4+6443844x4y2+7068028 y4x2+4175308 y6+852267 y10+2123228x6y4+2840400x4y6+967052x8y2+2057377x2y8 + 169744x10 + 3F 2y2 + 1014096x8 + 3F 2 + F 2x2 + 5639176x4y4 + 4866908x2y6 +3468572x6y2 + 2264079 y8 + 2550240x6):
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Finally, applying again Lemma 3.1 with x as the distinguished variable, we getthe following expression from which F is decomposed as a quotient of two sums ofsquares.
F (716381628672x2y6 + 80945077792x2y2 + 1309788013600x10y440286070144x4 +8570997312x2 + 4739888256 y2 + 24573722112 y4 + 318423130400x4y2 + 317633301040 y4x2 +99294039872x6 + 68743283680 y6 + 1060688074256x4y4 + 672316077216x6y2 +143469890432x14y2 + 1982702974736x8y4 + 2814822717360x6y6 + 768832371904x10y2 +2303389497104x4y8 + 990053073384 y10x2 + 125406307008x12 + 116435744860 y12 +1863486418736x6y4 + 1983138377456x4y6 + 886558335136x8y2 + 1032502294416x2y8 +505612381472x12y4 + 157752051648x8 + 122024198048 y8 + 169540742272x10 +144755788904 y10 + 40199723460x2y16 + 2507919676288x6y8 + 1687333237608x4y10 +2293828274592x8y6 + 621063650084x2y12 + 1282298534376x6y10 + 1423499576064x8y8 +379456896112x8y10 + 292967217500x6y12 + 338955778976x10y8 + 145245087972x4y14 +1051819997200x10y6 + 235854251632x2y14 + 208393538448x12y6 + 60652193280x14 +735231433668x4y12 +1817033244 y18 +20512201152x16y2 +60546876076 y14 +17483777024x16 +18186081524 y16 + 1958166784x18 + 350113536 + (39456x2 + 109168x4 + 60284 y4 +128196x2y8 + 89728x8y2 + 76044 y6 + 227652x4y6 + 395200x2y6 + 48644 y8 + 11536x10 +6396 y10 + 208940x6y4 + 551252x4y4 + 342344x6y2 + 451140 y4x2 + 430776x4y2 + 238456x2y2 +1776 + 72800x8 + 18696 y2 + 122640x6)F 2 + 85194907968x14y4 + 430307879168x12y2) =
(153448078017504x2y6 + 11011029982720x2y2 + 851952864568912x10y4 + 5511262925968x4 +992116096128x2 + 583803281664 y2 + 3550450975360 y4 + 53477285280880x4y2 +53285071815840 y4x2 + 16742340875856x6 + 12247813101568 y6 + 228076657290496x4y4 +144275999563072x6y2+177419113096224x14y2+818449513424880x8y4+1160297022426176x6y6+316404880090816x10y2 + 943080312658456x4y8 + 400790099977488 y10x2 + 51946321935360x12 +51812546094456 y12 + 537983815619840x6y4 + 571695232269920x4y6 + 255064333134736x8y2 +295172928849576x2y8 + 613138233076304x12y4 + 33884952842288x8 + 27834477697840 y8 +48891319043696x10 + 44539310679888 y10 + 132667868133349x2y16 + 1609709073374408x6y8 +1074117047816472x4y10 + 1484929624125296x8y6 + 391920773628424x2y12 +1494743643985512x6y10 + 1679981404535176x8y8 + 1210562461740080x8y10 +922584991406952x6y12 + 1101811041447776x10y8 + 463071536349080x4y14 +1257591653271104x10y6+274626206521816x2y14+697775379415696x12y6+40598074878080x14+854507981216656x4y12 + 11022901919929 y18 + 76241258273152x16y2 + 44002353922224 y14 +22913533222784x16 + 26786486470753 y16 + 8809248338688x18 + 296435588380336x14y4 +40113876079218 y18x2 + 5607817144761 y20x2 + 25101305044221x4y18 + 20172563339904x18y2 +2384556922240x20y2+63315154652095x6y16+128071716208936x10y12+11885395021040x18y4+106193345637816x8y14 + 75244284164400x14y8 + 113979811644760x12y10 +36042080253584x16y6+156928941649179 y16x4+87953191492976x16y4+351913378400864x6y14+234657785839200x14y6 + 525673478728032x8y12 + 427778646436656x12y8 +557728278696952x10y10 + 38862602496 + 281083319515232x12y2 + 2697191817931 y20 +242119679763 y22+2064497141504x20+201691178752x22+(3 y6+45x4y2+19 y4+21x2+9 y2+1+ 90x2y2 + 57 y4x2 + 35x4 + 7x6)F 4 + (1011238152x2y6 + 214583120x2y2 + 213172104x10y4 +104354136x4 + 27650008x2 + 14240800 y2 + 60356936 y4 + 628009464x4y2 + 633987416 y4x2 +191801384x6 + 125837552 y6 + 1474515760x4y4 + 929987432x6y2 + 932892160x8y4 +1345813968x6y6 + 355155544x10y2 + 1110516186x4y8 + 486373732 y10x2 + 54326496x12 +45155610 y12 + 1635596488x6y4 + 1755400200x4y6 + 771165424x8y2 + 932373358x2y8 +214189576x8+155761526 y8+142279872x10+112787062 y10+436152642x6y8+292702206x4y10+386752696x8y6 + 107817366x2y12 + 7129248x14 + 5113602 y14 + 1182816 + 65068392x12y2)F 2)
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