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Abstract

Given a real homogeneous polynomial F strictly positive in the non-negative
orthant, Pdlya’s theorem says that for a sufficiently large exponent p the coefficients
of F(z1,...,¢n) (z14+ - +z,)? are strictly positive. The smallest such p will be called
the Pdlya exponent of F'. We present a new proof for Pélya’s result, which allows
us to obtain an explicit upper bound on the Pdlya exponent when F' has rational
coefficients. An algorithm to obtain reasonably good bounds for specific instances is
also derived.

Pélya’s theorem has appeared before in constructive solutions of Hilbert’s 17th
problem for positive definite forms [4]. We also present a different procedure to do

this kind of construction.

1 Introduction

In 1928 G. Pdlya [7] proved the following theorem (see also [5]):

Theorem 1.1 (Pélya) Let F(z1,...,2,) be a real homogeneous polynomial which
s positive in x; > 0, > x; > 0. Then, for a sufficiently large integer p, the product

F($1,...,$n)'($1 + —I'xn)p
has all its coefficients strictly positive. g

The smallest exponent p that satisfies the properties of the theorem will be
called the Polya exponent of F. Qur purpose is to show an elementary derivation
for an upper bound of the Pélya exponent. Using an effective Lojasiewicz inequality
for the case of rational coefficients [10], this upper bound can be written in terms
of the degree, the number of variables and the size of the coeflicients of F. This is
done in the following theorem.
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Theorem 1.2 Let F(xq,...,2,) be a real homogeneous polynomial of degree d
whose coefficients are bounded in absolute value by | > 2. Suppose that F' is strictly
positive in the non-negative orthant (minus the origin). Denote by A the minimum
of I in the unit simplex A = {3_7—yx; =1, ;>0 Vi}. Call D the mazimum
of d+ 1 and n+ 1. Under these assumptions:

1. If F has integer coefficients, then 1]\ is bounded above by e

Ind?+dn
A

2. For any inleger p greater than , the product

F($1,...,$n)'($1 + —I'xn)p
has all its coefficients strictly positive.

We remark that recent work by Reznick (see [8]) contains results similar to part
two of our theorem. Observe that Theorem 1.1. implies that I’ can be written
in the form F' = G/H, where G and H are homogeneous polynomials with only
positive coefficients. This is a necessary and sufficient condition for F’ to be strictly
positive in the non-negative orthant. In a similar way, Artin decomposition of
a polynomial as a quotient of two sums of squares is necessary and sufficient to
guarantee positive semidefiniteness in IR™. W. Habicht found a way to construct
an Artin decomposition of a positive definite form using Pélya’s theorem [4]. In
section 3 we present a new method to do this.

Let us finally indicate that a slightly more general version of Pdlya’s theorem
appears in the theory of Geometric Design (see Theorem 1.3 in [3]) in connection
with the approximation of polynomial functions in a simplicial region. The general-
ization comes from the fact that the convergence result in the proof of Lemma 2.1 is
still true for F' not necessarily positive. This implies that, for large p, the coeflicients
of the polynomials (214 - -4z, )P F(z1,...,2,) approximate F(z1,...,2,) (up to a
normalization) at some test points in the simplex A = {>"" 2, =1, ;>0 Vi}

2 Proof of the main result

We will first present some notation. We will abbreviate F(zq,...,2,) by F(X).
The polynomial F(X) can be written as a difference F{(X)— F_(X) where the
polynomials Fy(X) and F_(X) have only positive coefficients. We use X to
denote 1 + z2 + ... + x,, and X 4 d to abbreviate (21 + d,..., 2, + d). Finally
X > 0 will indicate that z; > 0 for i = 1,...,n.

Lemma 2.1 Let F(X) be a real homogeneous polynomial of degree d, strictly pos-
itive in the non-negative orthant (minus the origin).

1. The semialgebraic region G = {X : F(X)—- F_(X +d) < 0,X > 0} is
bounded.

2. For any p greater or equal than dn plus the mazimum of Y X on the region
G, the product F(X)- (3 X )P has all its coefficients strictly positive.

Proof:
Observe that the part of largest degree of Fi(X) = Fy(X)— F_(X 4 d) is the
polynomial F'(X) and the remaining terms have negative coefficients. Hence for



each point @ in the simplex A = {37 X = 1,X > 0} the univariate polynomial
Hg(X) = F.(AQ) has positive leading term and the rest of its terms negative. Call
7(@) the only positive real root of Hg(A). The function (@) is continuous in A
which is compact and thus attains a maximum. This finishes the proof of part (1).

For the proof of part (2), let F(X) = cy XV, and F(X)(Z X)P =S Cp XY,
where V. = (v1,...,v,), > vi=dand U = (u1,...,uy), »_u; = p+ d. Then the
coeflicient (i equals

!
Z cv( P ;= ZCVPUy.

o up — o) (U, — v)!

If u; > dfore=1,...,n then it is easy to see that the following two inequalities
are satisfied (note that 0 < v; < d for all ).

! !
p: n p: n
ﬁu? .. U;fb Z PU7V Z ﬁ(ul - d)Ul .. (Un - d)v .
ULe " Unp. ULe " Unp.

Using one of these inequalities for each Py depending on the sign of ¢y we get

Voo, 1O
wZF_|_(u1—d,...,un—d)—F_(ul,...,un).

p!

Otherwise, one of the wu; is smaller or equal to d. Without loss of generality
assume Uy, ..., U > d > Ug41,...,Uy. In this case we have another pair of inequal-
ities:

p! (wy)" -+ - (g )5 d+1 - d" > Py
up! e ug,! -
p!
PUy > 7'(?“ — d)vl o (uk — d)kaUH’l ...0vm

ug!l -y,

where 0° is taken to be 1 if v; = 0 for some ¢ > k. In the same way as before we
conclude that

url - u, 1Cy

| > F(uy—d, ... up —d,0,...,0) = F_(uq,...,ug,d,...,d)

In both cases we obtain “1';7,"'01] > Fy(xy,...,x,) — F_(z1 4+ d,...,2, + d)
for certain zq,...,2, with >"2; > p — dn. Using the assumption on p, we have
Fy(zy,...,2n) = F_(z14d,...,2,+d) > 0 and thus the coefficient Cy is positiveg

For the proof of Theorem 1.2 we want to give a procedure to find the maximum
of the linear form )~ X inside the region G = {X € R"|FL(X)—- F_(X +d) <
0, X > 0}. We will also derive a theoretical bound for this maximum using an
effective Lojasiewicz inequality. The following statement is the quantifier free case
of Lemma 5 in [10] (see chapter 2 of [1] for general information on Lojasiewicz
inequalities).

Lemma 2.2 (Solerné) Let V. C R"™ be a nonempty and closed semialgebraic set
and let f:V — R be a continuous semialgebraic function. Assume that both V



and the graph of f are defined by quantifier free formulas ®y and ®; involving
polynomials with integer coefficients. Denote by Dy and Dy the sum of the degrees
of the polynomials in the respective formula. Let D = max{Dv,Ds} and let | be
the maximum absolute value of the coefficients involved in the formulas.

There exists a uniwersal constant ¢ € N such that, under the above conditions,
we have:

()] < 1P (1 4 )P

Jor all x belonging to V'

Proof of Theorem 1.2: In part one we use Lemma 2.2 with the simplex A as V
and f = 1/F. In our case D = max{d 4+ 1,n 4+ 1} and in the simplex A we have
(14 ]z|) < 2. Taking into account that [ and D are bigger than 2 we obtain a bound
for 1/F in A:

1/F < ch(n+1)2Dc(n+1) _ lDO(n)

This completes the proof of part one. For part two we first note that the in-
equality F_(X +d) < F_(X)+dY %(X) is valid in the non-negative orthant.
This follows from Taylor’s multivariate theorem taking into account that F_ has
only positive coeflicients. As a consequence, the semialgebraic region G defined in
Lemma 2.1 is contained in

oF_

G'={X:F(X)-d) oo

(X) <0, X >0}

aF_
Notice that F(X) — dz %(X) < 0if and Only if ZX < d(ZX);%()ami (X))

The right hand side of the last inequality is a quotient of two homogeneous poly-
nomials of the same degree and we can bound it by the quotient of the maximum
of d(3° X)(2 %(X)) and the minimum of F(X) in the simplex. The minimum of
F(X) equals A and the maximum of the numerator can be seen to be bounded by
Ind?, because of the following chain of inequalities:

LIS 8;; (X)) < @nF_(X) < d*nl.

We have used that >~ X = 1 because we are in the unit simplex and %(X) <

dF_(X) because F_ has only positive coefficients. Thus 3~ X is bounded by % in
G' as desired. This completes the proof. g

Lemma 2.1 provides us with an algorithm to find a reasonably good bound for
the Pélya exponent which is a priori smaller than those given in Theorem 1.2. We
need to find the maximum for the linear functional >~ X in the region G which was
defined using Fi.(X) = Fi(X)— F_(X 4+ d). The maximum will be attained at a
boundary point @ = (¢1,...,q,) such that F.(Q) = 0 and the partial derivatives
of F, with respect to nonzero entries are all equal. This allows us to use symbolic
methods (such as Grobner bases). Nevertheless, since we are only interested in
an upper bound for the Pdlya exponent, it is enough for our purposes to apply

numerical optimization techniques (such as numerical Lagrange multipliers). In the



following table we show the value of the maximum > X in G for several polynomials
and compare it with the Pélya exponent. The values in the last column have been
found by means of Grébner bases and real root isolation.

Pélya exponent [maxyeq(d. X)|

100022 — 19992y 4 1000y 3997 15994
5022 — 992y + 50y 197 794
(502% — 99zy + 50y?)(z? + y?) 193 3180
(502% — 99zxy + 50y?)(a* + 2%y® + y*) 187 7158
(x —y)*(z +6y)? + y* 197 1948
Sat + (v — y)* (2 + 6y)* + y* 44 367
102t + (z — y)*(z + 6y)* + y* 30 228
(z =22+ -2+ (x+y) 3 19
(4122* — 1823y + 556 22y? + 40xy> + 2 30

533yt —24 23— 344 22y 4+ 184 2 y* — 200 y> +
540 22 +134 2y +678 y* — 1822 — 92 y+444)

The last example in the table is a sum of the squares of 50 randomly gener-
ated quadratic forms, and will be used in Section 3 as an example of the process
described in Theorem 3.2. The coefficients of the quadratic forms were generated
using MAPLE’s random numbers subroutine with [—5,...,5] as the range of varia-
tion. Our computational experience indicates that such ‘random’ polynomials tend
to have a low Pdlya exponent.

Let us analyze in detail an example that contains as particular cases the first
two polynomials in the table. Consider F(X) = 2} +---+ 2] — (n — €)zy--- 2,

for a positive and small ¢ and large n. As pointed out in [5] its Pdlya exponent
n?(n—1)

2e .
To = -+ = ¥, and it is approximately “-. So, the bound given by Lemma 2.1 equals

the Pdlya exponent asymptotically up to a factor of 2.

We can deduce some important consequences of this example: Pélya’s theorem
is not true if F'is only non-negative [5] or if it is strictly positive only in the open
orthant (e.g. F(z,y,2) = (z — y)? + 2%). The theorem is again not true over non-
Archimedian fields (taking € to be an infinitesimal). Finally, the Pélya exponent p
cannot be bounded only by the degree d and the number of variables n of F' ( for
these last two comments see [9]). Any bound will necessarily include the size [ of
its coefficients.

is approximately . The maximum of }_ X in & is attained at a point with

3 Decomposition of strictly positive polynomials

In this section we will connect Pélya’s theorem to Hilbert’s 17th problem. This
problem asked whether every nonnegative real polynomial can be expressed as a
quotient of sums of squares of real polynomials. It was non-constructively solved by
Artin in 1928 and other solutions have been proposed later, which are constructive
or give conditions and bounds on the output polynomials. We recommend [1] and [2]



for a brief history of the problem ([2] puts special emphasis on constructive aspects
of the solution).

Pélya’s theorem was used by Habicht [4] to give explicit solutions to Hilbert’s
17th problem in the case of positive definite homogeneous polynomials. Here, we
present a different way to do this. If we have a positive definite homogeneous poly-
nomial /' in n variables, Pélya’s theorem can be applied to F(e1z1, €222,...,€6,2,),
where ¢; € {+,—}. In this way we have 2" Pdlya-like expressions, each of them
certifying the positiveness of F inside a different orthant. We proceed to glue these
local certificates with techniques similar to those in [6]. The decomposition of F
obtained in this way is a quotient of two sums of even powers of monomials in
the “variables” xy,x9,...,2,, F. Let us remark that B. Reznick [8] has also given,
using less elementary techniques, concrete decompositions for the same family of
polynomials. His decomposition has a sum of even powers of linear forms in the
numerator and a power of " z? in the denominator.

For convenience we will state all results in this section for an inhomogeneous
polynomial F. This is possible provided that its homogenization is positive definite
or, equivalently, if Fis strictly positive and its largest degree part is positive definite.
Reciprocally any positive definite homogeneous polynomial can be dehomogenized
yielding an inhomogeneous polynomials with the above conditions. Hence Theorem
3.2 applies to homogeneous polynomials as well. In the following discussion K will
denote any ordered field and K denotes the set of strictly positive elements in K.
Only in the last part of Theorem 3.2 we need K to be the rationals in order to apply
the bound in part one of Theorem 1.2.

Lemma 3.1 Let F € K[xy,...,2,]. Suppose that for a given x; we have two identi-
ties F'- Ay = By and F- Ay = By where Ay, By are polynomials in Ky [z;, T, F?] and
Ay, By are polynomials in Ky [—z;, T, F?], for some arbitrary set of indeterminates
T. Assume that both By and By have a nonzero constant term. Then we can find
an expression of the form F-R = S where R and S are polynomials in K y[22, T, F?]
and S has a nonzero constant term. Moreover deg(S) < deg(B1) + deg(B2).

Proof: We can decompose Ay = Ay 1 +2;412, B1 = Bi1+2iB12, Ay = Ay —
ﬂciAz,z, and By = Bz,l - QCiBz,z with Al,lvA1,27B1,17B1,27A2,17A2,27B2,1 and Bz,z €
K. [22,T, F?]. Separate the two identities in the form:

FA G —Big=—a; Ao+ 2B, FAy1— Bog=aiFAyg —2;Boy

Multiplying side by side the above equations and grouping together terms with
F we obtain:

F-(A11By1+ BiiAsy + 22 A12Bss + 27 B12As2) =

F2(A11A21 + 27 A12A29) + B11Bay + 27 B1aBas

By hypothesis both Bi; and Bj; have a nonzero constant term and thus
B1,1B3, has anonzero constant term. The constant term of F2A171A271 is either zero
or positive, and thus the constant term of the right hand side of the equation above
is positive. From the above expression it is clear that deg(.9) < deg(B1) +deg(B2).g



As an immediate application of the above lemma and as a preparation for the
multivariate case we present a method to decompose a real univariate strictly pos-
itive polynomial F as a quotient of two sums of squares. We remark that in the
univariate case, the additional condition of F having a strictly positive largest de-
gree part is redundant. Applying Theorem 1.2 to the homogenization of F we have
the following expression where Bi(x) has only positive coefficients

F(z)(xz + 1)P = Bi(2).
With the same process applied to the polynomial F'(—z) we obtain:

Fa)(1 —2)? = By(-)

Taking Ay = (z +1)?, Ay = (1 —2)? and T = () we are in the situation
of Lemma 3.1. This will give an expression I - R = 5 with R,S5 polynomials in
R[22, F?] and thus sums of squares.

Theorem 3.2 Let F(z1,22,...,2,) be a real strictly positive polynomial of degree
d, whose homogenization is positive definite. For each € = (€1,...,€,) in E" =
{+,—1}", let p. be the Pdolya exponent of the homogenization of F in the orthant
where the sign of the ith coordinate equals ¢;. Let P = ) cpnpe and D be the
mazimum of d + 1 and n + 1. Then we can write:

F-R=S5
where R, S € Ry[z?,23, ... 22 F?] and deg(S) < P +2"d (where S is considered
as a polynomial in the original variables x1,%4,...,z, to compute deg(5)).

If F € Q[a1,29,...,2,), then we can find R and S in Q[27,23,...,22, F?).
We can also choose R and S with 1P°'" monomials, where [ is an upper bound for
the absolute values of the coefficients of F.

Proof: Let E™ = {+,—}". For each € = (¢1,...,¢,) € E™ we have a Pélya expression
in the corresponding orthant

F(zy,22,...,2,) - Ac = B,

where A, B, € Rile121,...,€,2,]). Moreover A, = (1 4+ 21 + ... 4 €,2,)P and
thus B, has degree p. + d and non-zero constant term. Our goal is to glue the 2"
expressions in pairs using Lemma 3.1. More explicitly, for each ¢ € E"~! consider
the two expressions FF'A, = B. and FAs = B where € = (0,+) and ¢ = (0,—).

We can apply Lemma 3.1 with T' = {oy21,0929,...,0,_12,-1}. This will give
2(n=1) expressions (one for each ¢ = (0y,...,0,_1) in E"') where the variable z,
always appears squared. Inductively, for each 7 € E"~%, we take the two expressions
FA, = B, and FA,» = By with ¢ = (7,4) and ¢’ = (7,—) and apply Lemma
3.1 with T = {m21,722,...,Tn_2%n_2,22}. This process can be continued until
all the variables appear squared.

For the degrees we note that in each gluing the degrees of the expressions glued
are added. The degree of the final expression will be the sum of the degrees of the
2™ equations derived from Theorem 1.2. This gives the bound P + d2”.l



We want to illustrate our method with a simple example. Consider the last
polynomial given as an example in section 2: F := 1342y — 92y — 1822 — 242> +
412 21 + 540 22 + 678y + 533y — 200 ¢y> — 18 23y + 556 22y? — 344 22y + 40 2y> +
184 zy? + 444.

We will apply the process described in the proof of Theorem 3.2. Pdlya’s theorem
applied to F'in each one of the four orthants gives the following four identities (we
show the intermediate distributions of the terms with respect to parity of the powers

of y):

(i) F+e+y)P? = FI+2c+a® 9 +y(2422)) = 1722 2% y° + 1442 0y® +- 874 2% +904 2* 4706 2 +
620 2% 4938 y? + 811 y* + 444+ 548 2 y° + 932 s 4> + 930 y s + 1169 y* =2 + 800 > +412 2%+ 533 y° +
y(4742 + 460 2° + 548 2% + 1498 2y® + 796 4 1064 y* 4 396 2* + 8062° 4+ 1106 y*x + 1016 2%y +
1134 2%y + 866 y*).

(i) FQ+e -9 =FQ+2s+2° +¢°> —y(2+22)) = 25622y + 12740y + 8742 + 904 2* +
706 z + 620 2% 4+ 1306 ¢*> + 1611 y* + 444 + 1996 &°y> + 1004 ¢* 4> + 1570 y*z + 1009 y* 2 + 800 2° +
412° 4533 y® —y(574 v+ 1604 2° +884 12 + 1950 zy* + 980+ 1648 y* + 1156 o* +842 ° + 1026 y*x +
1944 2%y® + 1090 z°y* 4 1266 ¢*).

(iii) FQ—e+y)P = F(1 -2z 42>+ ¢* + (2 — 22)) = 450 2%¢y* — 902 2y® — 1286 «® + 1000 2* —
10702 + 1348 22 4+ 938 % + 811 y* + 444 — 3002°y> + 1004 ¢*y® — 402 y* 2 + 1009 y*x? — 848 2° +
412 2% 4533 9% + y(—934 ¢ — 324 2° + 740 2% — 414 2¢® 4+ 796 + 1064y 4+ 564 2% — 8422° 4 866 y* —
1026 yta + 120 2%¢* — 1090 2°y?).

(iv) F(1 —¢ —y) = T16 2%¢y® — 628 xy® — 564 2® + 436 2* — 6260 + 7222 + 770 y° + 733 y* 4 444 —
538 2%y? — 573 y*r —412¢° — y(—408 « — 350 2% + 1018 2% — 56 2y + 536 + 878 ¢° + 394 «* 4533 y* +
596 z2y?).

Applying Lemma 3.1, with y as the distinguished variable to the pairs (i)-(ii)
and (iii)-(iv) and grouping terms as in Lemma 3.1 we get (notice the expressions
are presented now arranged by parity of powers of the variable z):

(i)-(ii) F(7508 2°y°® +18160 2y + 6544 «* 44952 > + 6684 y> +10090 y* 420348 &*y* 426700 y*® +
5832 % 4+ 7752 9% 4 8562 z*y* + 6056 2%y* + 8242® 4 1066 y® 4 888 4 (14264 y® 4 5640 «* 4 3188 +
22568 x2y? + 22380 y* + 6964 2* + 14416 2*y® + 19768 y* =2 + 13160 y® + 3248 2°)) =

20679124 ¢2y® +6723652 22 y* +2421240 z* + 1048996 2+ 1776416 y> +4654924 y* +12531112 z* ¢y +
16893804 y* 22 43380292 246653476 y®+24185356 z*y*+12976984 2°y* +3666432 2°y* +5547524 2°y°® +
1476284 21°9% + 4580433 z*y® 4+ 2295630 1022 + 169744 212 + 284089 y'2 +6 F22%y? + F2 46 F222 +
6 F2y? + F2 o+ F2y* 117274928 2% y* +20296116 2* y®+7688272 £®¢® +13108438 2% y® +2726496 +® +
5276765 y° 41384896 21042387282 ¢1° 4197136 +2 (3711592 y* +1651552 &> +626928+10260368 2% y* +
10310324 y*+3070608 £*+14459768 24> 422021832 y*£2+14337360 y®+3621212 y1° 49347744 2 y* +
12882352 £*y® 43862096 #2y> + 9701716 22 y® + 659200 210 +12 F?¢* + 2166576 2® +4 F2 +4 F?2°> +
22429140 z*y* 4 22897032 2%y 4+ 10878896 2%y 4+ 10718648 y° 4 3153936 «°).

(iii)-(iv) F(8408 2%y 44572 2* 44836 ©° + 4020 ¢° 4 5134 y* + 5584 2*y® + 5430 y*e® + 2520 2° +
3198 y® + 888 — (7456 y* 45268 & + 3028 + 6972 2%y + 6162 y* + 3696 «* 43584 2*y® 44402 y*a® +
3198 y® + 824 2%) =

5298888 12¢® + 5057552 22y? + 3019356 2* + 1588900 &2 + 1185008 y> + 2676988 y* + 6822948 2*y? +
6963772 y* 22 + 3189648 2° + 3371312 ¢° + 6633028 2*y* 4 5042212 4%y + F2 + 3 F?3? + 3 F2y° +
3085788 %y* +3212416 2*y® +1829476 «®y® +1989123 2 ¢y® +1741568 2° +2332333 y® + 529008 £1° +
852267 y'* +197136 —2 (2915800 y* 42437788 2 + 7530244+ 6141928 2%y +4529144 y* +3340724 «* +
6443844 £ty +7068028 y* 2% +4175308 y® +852267 y'°+2123228 #%¢y* +2840400 2*y®+967052 ¥y +
2057377 2¢y® + 169744 2% + 3 F2¢y® + 1014096 2° + 3 F? 4+ F?3? + 5639176 o*y* + 4866908 2%y® +
3468572 2%y® + 2264079 y® + 2550240 x°).



Finally, applying again Lemma 3.1 with z as the distinguished variable, we get
the following expression from which F is decomposed as a quotient of two sums of
squares.

F(716381628672 2%y + 80945077792 2%y* 4 1309788013600 z'°y*40286070144 «* +

8570997312 2% + 4739888256 y? + 24573722112 y* + 318423130400 z*y? + 317633301040 y* =2 +
99294039872 2% + 68743283680 ¢® + 1060688074256 #* y* + 672316077216 +%¢> +

143469890432 z1*y® + 1982702974736 &% y* + 2814822717360 2%¢® + 768832371904 £1°¢% +
2303389497104 z*y® + 990053073384 y'%22 + 125406307008 z'? 4+ 116435744860 y'? +
1863486418736 °y* + 1983138377456 * y° + 886558335136 °y* + 1032502294416 2%¢® +
505612381472 2% y* + 157752051648 z® + 122024198048 y® + 169540742272 ¢1° +

144755788904 y'° + 40199723460 %y + 2507919676288 °¢y® + 1687333237608 x*y'° +
2293828274592 z®y% + 621063650084 2% y'? + 1282298534376 °¢y*° + 1423499576064 ¢°y® +
379456896112 2840 + 292967217500 2%y + 338955778976 z'%4® + 145245087972 z*y* +
1051819997200 +1%¢% + 235854251632 2 y* + 208393538448 £12¢® + 60652193280 &1* +
735231433668 z*y'? + 1817033244 ¢'® 4+ 20512201152 '%¢y* 4+ 60546876076 y'* + 17483777024 ¢ +
18186081524 ¢'® 4- 1958166784 «'® 4- 350113536 + (39456 2° + 109168 «* 4 60284 y* +

128196 22 y® + 89728 28y + 76044 ¢ + 227652 £*4® + 395200 22 ¢ + 48644 ¢® + 11536 «*° +

6396 y1° + 208940 2%y* + 551252 2t y* + 342344 459> + 451140 y*&? + 430776 x*y® + 238456 22y +
1776 + 72800 &® 4 18696 y* + 122640 2°) F? 4 85194907968 z'*y* 4- 430307879168 2'?y?) =

(153448078017504 «%y® 4 11011029982720 2%y + 851952864568912 ¢%y* + 5511262925968 «* +
992116096128 22 + 583803281664 y> + 3550450975360 y* + 53477285280880 z*y? +
53285071815840 y* ¢® + 16742340875856 #° + 12247813101568 4° + 228076657290496 ¢*y* +
144275999563072 154> +177419113096224 & 1* > +818449513424880 2®y* +1160297022426176 z°®y° +
316404880090816 1%¢* + 943080312658456 z*y® + 400790099977488 y'° %2 + 51946321935360 '2 +
51812546094456 y'2 + 537983815619840 «%y* + 571695232269920 z*y® + 255064333134736 254> +
295172928849576 2¢y® + 613138233076304 &2 y* + 33884952842288 2® 4 27834477697840 y® +
48891319043696 2'° + 44539310679888 !0 4 132667868133349 2%y + 1609709073374408 2%¢® +
1074117047816472 x* 40 + 1484929624125296 z8¢° + 391920773628424 £2¢*2 +

1494743643985512 2% ¢'° 4+ 1679981404535176 2®y® + 1210562461740080 £3¢4'° +

922584991406952 %y + 1101811041447776 ¢'°y® + 463071536349080 z*y'* +

1257591653271104 21%9°® +274626206521816 2°y'* +697775379415696 £12¢°® +40598074878080 '+ +
854507981216656 ¢ty + 11022901919929 y® + 76241258273152 2%y + 44002353922224 y'* +
22913533222784 z1® 4 26786486470753 y'° + 8809248338688 1% 4 296435588380336 = *y* +
40113876079218 y'®%2? 4+ 5607817144761 y*° 2 + 25101305044221 x*¢'® + 20172563339904 %y +
2384556922240 2%%y® 4+ 63315154652095 2°4'® + 128071716208936 '%¢'% +11885395021040 = ¥y* +
106193345637816 ¢y '* + 75244284164400 2 *y® 4+ 113979811644760 z'2¢*° +

36042080253584 1% y® +156928941649179 ¢ ®2* +87953191492976 «'°y* +351913378400864 z°®y* +
234657785839200 1% y® + 525673478728032 1% y'? 4+ 427778646436656 z1%¢y® +

557728278696952 110410 + 38862602496 + 281083319515232 1%y 4 2697191817931 y° +
242119679763 y*2 4 2064497141504 «*° + 201691178752 2% + (3¢ + 452y +19¢* + 2127 +9¢° +
14+90a%y® +57y*e® + 352 +72%)F* 4 (1011238152 «%¢® + 214583120 2% y® + 213172104 ' %¢* +
104354136 z* + 27650008 z> + 14240800 y* + 60356936 y* + 628009464 x> + 633987416 y* 22 +
191801384 2° + 125837552 4 + 1474515760 z*y* + 929987432 £%¢% + 932892160 z3y* +
1345813968 z°y® + 355155544 ¢1%y% + 1110516186 &*y® + 486373732 %22 + 54326496 2% +
45155610 2 + 1635596488 z%y* + 1755400200 z*y® + 771165424 ¢°y> + 932373358 2% ¢® +
214189576 &® +155761526 y® + 142279872 £'° 4112787062 ¢'° + 436152642 2° y® +292702206 #*¢'° +
386752696 ¢®y® + 107817366 2%¢y'? 4 7129248 &'* 4 5113602 y'* 4 1182816 + 65068392 «'2¢*) F'?)
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