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Abstract

We prove that any bounded, centrally symmetric object K in the plane can

be inscribed in an ellipse E touching its boundary @K at at least four points.

An application to Minkowski geometry is given.

Keywords : Computational Geometry, Convexity

1 Introduction

There is a wide range of problems related to inscribing di�erent kinds of (usually

convex) bodies into one another. For example, it is well-known that one can

always inscribe or circumscribe a square around a convex body in the plane.

Also, S. Kakutani [8] has shown that one can always circumsbribe a cube around

a bounded closed convex set in any �nite dimension. On the negative side,

Eggleton [6] has constructed convex bodies in the plane in which an n-gon,

n > 4 cannot be inscribed and convex bodies in R

3

in which a cube cannot be

inscribed, or a regular octahedron circumscribed. We �nally mention the result

by F. Behrend [2] (for dimension 2) and Zaguskin [10] (for arbitrary dimension),

that there is an ellipsoid with minimal (resp. maximal) volume circumscribed

(resp. inscribed) on any convex body.

This note is devoted to prove the following result, illustrated in Figure 1.

Theorem 1 Let K be a bounded, centrally symmetric body in the Euclidean

plane R

2

, not contained in a straight line. Then, there exists an ellipse E

containing K and such that the boundaries @K and @E intersect in at least two

pairs of opposite points.

�
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Figure 1.

For convenience, in Theorem 1 and in the rest of the paper the word ellipse

(also the word circle) will be used meaning not only the curve but also its interior

region. We will say boundary of an ellipse/circle (or use the symbol @) when

referring to the curve.

Theorem 1 is not intuitively surprising at all. An easy (but not valid) heur-

istics for �nding the circumscribed ellipse E goes as follows: let O be the center

of symmetry of K and let C be the smallest circle containing K with center at

O. The boundaries of C and K intersect in a pair of opposite points p and q

0

.

Then one normally can shrink C in the direction perpendicular to the segment

[x; x

0

] until a second pair of opposite points of intersection appears.

The mistake in the argument above is that even the slightest shrinking of

the enclosing circle may force a small part of the circle coming into the interior

of K. This will happen whenever the circle and the body K have the same

curvature radius at p and q. For example, let K be de�ned by the equation

(x

2

+ 2y

2

+ 2y)(x

2

+ 2y

2

� 2y) � 0 and C the unit circle, as in Figure 2.
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Figure 2.

Section 2 contains the proof of Theorem 1. Section 3 shows an application of

the result in the context of Minkowskian geometry. The natural generalization

of Theorem 1 to higher dimension would be that an ellipsoid could be circum-

scribed around any convex body in R

n

through 2n points. We do not know a

proof of this.

2 Proof of the theorem

Lemma 2 Let K be a compact, centrally symmetric, convex body in the plane

R

2

, not contained in any straight line. Then, there exists an ellipse E such that

@K and @E intersect in at least three pairs of opposite points.
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Proof: Let P , P

0

, Q and Q

0

be any two pairs of opposite points in @K, not in

a straight line. Then, either there exists a third pair of opposite points R, R

0

in @K such that PQRP

0

Q

0

R

0

is a strictly convex, centrally symmetric hexagon,

or K coincides with the cuadrilateral PQP

0

Q

0

(recall that K is assumed to be

convex). In the �rst case there exists an ellipse passing through the six points.

In the second case, if we slightly reduce any ellipse passing through P , Q, P

0

and Q

0

we will obtain an ellipse passing through four pairs of opposite points of

the boundary of the cuadrilateral. 2

Lemma 3 Let K be a compact, centrally symmetric, convex body in the plane

R

2

, not contained in any straight line. Then, there exists a circle C and a linear

transformation l of the plane such that the image M of K through l is contained

in C and the boundaries @M and @C intersect in at least two pairs of opposite

points.

Proof: Let us apply Lemma 2 to K and then make a linear transformation l

0

in

the plane sending the ellipse E obtained there into a circle C

0

. Let M

0

= l

0

(K).

Let f : [0; 2�] ! R

+

be the map describing @M

0

in polar coordinates, as a

function of the angle. Then, f is periodical of period � (because M

0

is centrally

symmetric) and takes the same value in three di�erent points 0 � x < y < z < �

(the points where @M

0

intersects the circle C

0

). In these conditions, f has at

least two local maxima in a period. In fact, either at least two of the open

intervals (x; y), (y; z) and (z; x + �) contain a local maximum of f , or one of

them (say (x; y)) contains a local maximum and the third point (i.e. z) is

another local maximum, or the three points x, y and z are local maxima.

Let � and � be two local maxima of f in the period [0; �) and suppose

without loss of generality that � is actually a global maximum. Consider the

collection of linear transformations l

r

(0 < r � 1) that �x the direction of � and

that contract its perpendicullar direction by a ratio r. Call f

r

the transformed

of f by l

r

, i.e. f

r

= f � l

r

. Then, for r close to 0 � is clearly a global maximum

of f

r

. Call r

0

the supremum of the values of r for which this happens. Our

claim is that in these conditions � is a global maximum for f

r

0

, but it is not the

only one.

To prove the claim, the fact that � is a global maximumof f

r

, for r arbitrarily

close to r

0

implies that it is also a global maximum of f

r

0

. On the other hand,

for any r > r

0

the absolute maximumof f

r

is not attained on �, nor in a certain

interval [� � �; � + �] around � (because � is a local maximum of every f

r

).

Consider a sequence r

1

> r

2

> : : : with limit r

0

, and for every r

i

let 


i

be an

absolute maximum of l

r

i

. Then the sequence 


i

has at least one limit point 


in the compact [0; � � �] [ [� + �; �] and this limit point must be an absolute

maximum of f

r

0

.

The claim �nishes the proof of the lemma as follows. Let l = l

r

0

� l

0

, M =

l(K) = l

r

0

(M

0

) and C be the circle of radius f

r

0

(�). This circle contains M and

the boundaries @M and @C intersect in the two pairs of opposite points in the

directions of � and 
. 2
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Proof: (of Theorem 1) If K is convex let us apply lemma 3 to it, and obtain a

circle C and a linear transformation l sending K to a convex M in such a way

thatM � C and @C\@M consists on at least two pairs of opposite points. The

inverse image E = l

�1

(C) is an ellipse in the conditions of Theorem 1.

If K is not convex, apply the previous remark to its convex hull conv(K).

We will prove that any point in @conv(K) \ @E is also in @K \ @E, and that

will �nish the proof. Let P be one of the intersection points in @conv(K) \ @E.

As we have @conv(K) � conv(K) = conv(@K), P is contained in a segment

[Q;R] with Q;R 2 @K � E. Then, as P 2 @E, the only possibility is P = Q or

P = R. Thus, P 2 @K. 2

3 An application to Minkowski geometry.

A bounded convex body K in R

n

, centrally symmetric respect to the origin O

de�nes a Minkowski distance funtction (to be called the K-distance) as follows.

The K-distance between a point P and a point Q equals the unique scaling

factor � for which Q lies in the boundary of P + �Q. These distance functions

include all the L

p

metrics and, actually, all the metrics compatible with a norm

of the vector space R

n

.

Chew and Drysdale [3] used the name convex distance functions for the

Minkowski distances and showed a divide-and-conquer algorithm for computing

Voronoi diagrams with respect to them. Such Voronoi diagrams have further

been studied in [4], [5] and [7] (the later in 3-space).

K is the unit ball of the K-distance, and its boundary @K the unit circle.

All the other K-circles are scaled translations of @K. If the convex K is strictly

convex and smooth, then the K-circles satisfy the following good properties:

(i) there is a unique K-circle passing through any given three non-collinear

points, and there is no K-circle passing through three collinear points.

(ii) if A, B, C and D are the four vertices of a convex cuadrilateral in

consecutive order, and no K-circle passes through the four points, then either

A and B lie outside and C and D lie inside the K-circles passing through the

other three points, or viceversa.

In [5] Theorem 1 is used (without proof) to show that the topological types

of Delaunay triangulations which can appear with a metric whose ball is not

elliptical di�er from those obtained for elliptical balls (the latter are the same

as those of the Euclidean distance). In the same context, we are going to apply

Theorem 1 to show that a certain theorem of Euclidean geometry translates

to \Minkowskian" geometry if and only if the unit ball K is an ellipse. The

construction in the proof of the following theorem is based in [9]. Asplund

and Gr�umbaum [1] have also given a characterization of ellipses in terms of a

property of triangles of the Minkowskian geometry.
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Theorem 4 Let K be a bounded, smooth, strictly convex and symmetric body

in the plane. Then, K is an ellipse if and only if the following statement is

satis�ed for the metric associated with K:

Let p

1

; : : : ; p

8

be eight distinct points in the plane. If the quadruples

of points [p

1

; p

2

; p

5

; p

6

], p

3

; p

4

; p

7

; p

8

], [p

1

; p

2

; p

3

; p

4

], [p

3

; p

4

; p

5

; p

6

]

and [p

5

; p

6

; p

7

; p

8

] are all collinear orK-cocircular, then [p

1

; p

2

; p

7

; p

8

]

is also collinear or K-cocircular.

Proof: The statement is a well-known and easy to proof theorem of Euclidean

geometry, and will still be valid for convex distance functions with elliptical

balls, by an a�ne transformation argument. We will consider a non-elliptical,

strictly convex, smooth and symmetric body K and construct a counterexample

to the statement.

Let us apply Theorem 1 to K and, without loss of generality, suppose that

the ellipse E obtained is actually an Euclidean circle (we can make a linear

transformation to K, if needed). Let A, B, C and D be two pairs of opposite

points in @K \ @E. Let A

0

, B

0

, C

0

and D

0

be other four points in @E, with the

segments [A;A

0

], [B;B

0

], [C;C

0

] and [D;D

0

] being of equal (small) length (see

Figure 3 (a) ). Since K does not coincide with E, we can assume that at least

A

0

and C

0

lie outside K.

E

p

p

p p

A’

A

D

D’

C’

C

B’

B

p

p

p

p

K

1

2

4

3

6

5

8

7

(a) (b)

Figure 3.

Let S consist on the eight points in Figure 3 (b), obtained as

p

1

= A; p

2

= D

0

; p

3

= C

0

; p

4

= D;

p

5

= p

4

+ (D

0

� A

0

); p

6

= p

4

+ (A �A

0

);

p

7

= p

6

+ (A

0

�B

0

) = p

2

+ (D � C); p

8

= p

6

+ (B �B

0

) = p

2

+ (C

0

�C):

By construction, the quadruples [p

1

; p

2

; p

5

; p

6

] and [p

3

; p

4

; p

7

; p

8

] are collin-

ear. In the other hand, the points p

1

, p

3

, p

5

and p

7

lie (respectively) inside the

K-circles passing through [p

2

; p

3

; p

4

], [p

4

; p

5

; p

6

], [p

6

; p

7

; p

8

] and [p

8

; p

1

; p

2

].
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We can one-by-one move the points p

5

, p

3

and p

1

along the lines p

1

p

2

p

5

p

6

and p

3

p

4

p

7

p

8

to a position where the quadruples [p

5

; p

6

; p

7

; p

8

], [p

3

; p

4

; p

5

; p

6

]

and [p

1

; p

2

; p

3

; p

4

] are K-cocircular (the movements will be towards the exterior

of the �gure). After these movements p

7

will still be outside the K-circle passing

through p

1

, p

2

and p

8

. 2
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