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Abstract

For any finite point set S in E£<, an oriented matroid DOM(S) can be defined
in terms of how S is partitioned by Euclidean hyperspheres. This oriented
matroid is related to the Delaunay triangulation of S and is realizable, because
of the lifting property of Delaunay triangulations.

We prove that the same construction of a Delaunay oriented matroid can
be performed with respect to any smooth, strictly convex distance function in
the plane E? (Theorem 3.5). For these distances, the existence of a Delaunay
oriented matroid cannot follow from a lifting property, because Delaunay trian-
gulations might be non-regular (Theorem 4.2(¢). This is related to the fact that

the Delaunay oriented matroid can be non-realizable (Theorem 4.2(7) ).

KEYWORDS : ORIENTED MATROID, DELAUNAY TRIANGULATION, VORONOI
DIAGRAM

1 Introduction

In this paper we describe a link between the Delaunay triangulation of a finite
point set S in the Euclidean d-space E4 and a certain oriented matroid DOM(S)
of rank d + 2, which we will call the Delaunay oriented matroid of S. For the
Fuclidean distance, DOM(S) was introduced by R.G. Bland and M. Las Vergnas
in [3] (see also [2, pp. 29-32]). There, only the planar case is considered and the
oriented matroid is described in terms of its circuits. We present a description of
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DOM(S) in terms of covectors/cocircuits which seems to us simpler. Our main
purpose is to generalize Delaunay oriented matroids to the case of Delaunay
triangulations computed with respect to the so-called convez distance functions.
A brief introduction to oriented matroids is included.

Definition 1.1 Let S be a finite set of points in the Euclidean space E. We
define its Delaunay triangulation Del(S) to be the following polyhedral complex:
the conver hull conv(T) of a certain subset T of S is a cell in the Delaunay
triangulation of S if and only if a Buclidean hypersphere exists passing through
every point of T and having every point of S\T in ils exterior.

Delaunay triangulations are named after the Russian mathematician B. De-
lone [8]. They have become a major subject of study in computational geometry
and they are geometrically dual to the Voronoi diagrams [1, 13]. Some of the
cells in the Delaunay triangulation may not be simplices, if more than d + 2
points lie in a certain hypersphere. We will still use the word ‘triangulation’ in
this degenerate case. The fact that the Delaunay triangulation is a polyhedral
complex is a corollary of the lifting property of Delaunay triangulations [4, 9]:

Proposition 1.2 (lifting property) Let S be a finite point set in E¢. Then,
the Delaunay triangulation of S coincides with the orthogonal projection of the
lower envelope of the point set S C B! obtained lifting S into the paraboloid
of equation xqy1 =y ., x?. Le:

d
Si={(x1,..., 24,2441 € Ed+1|(x1,...,xd) e s, Tyl = fo)}
i=1

The lifting property holds because the intersection of the paraboloid with
any non-vertical hyperplane of E4t! projects down to a hypersphere in E?¢. As
a consequence, the oriented matroid Mg of affine dependencies of S describes
the partitions of S induced by hyperspheres. For this reason we call Mz the
Delaunay oriented matroid of S and denote it DOM(S). The reader not familiar
with oriented matroids can see our introduction to them in section 2, or consult
[2]. The above argument indicates that DOM(S) can be directly defined from
S by hypersphere partitions. Our main results are:

e this direct definition of DOM(S) generalizes to the case where hyper-
spheres are substituted by the collections of K-circles of a smooth, strictly
convex distance function Dg in the plane (Theorem 3.5).

e the K-Delaunay oriented matroids so obtained may be non-realizable
(Theorem 4.2).

e these distance functions do not have, in general, a lifting property (Theo-
rem 4.2).
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We also prove that the conditions smooth, strictly conver and in the plane in
Theorem 3.5 are necessary.

Remark 1.3 Our results can be interpreted as incidence theorems on K-circles
(scaled translations of a given convex body K in the plane). For example, the
following theorem holds for Euclidean circles:

Let py,...,ps be eight distinct points in the plane. If the following quadruples
of points are cocircular: [1,2,3,4], [3,4,5,6], [5,6,7,8], [7,8,1,2], [1,2,5,6] then
[3,4,7,8] is also cocircular.

Our construction in the proof of Theorem 4.2 is based on a version of this
theorem, where two of the circles have infinite radius. Modifying a little bit our
construction, one can prove that this incidence theorem does not hold when Eu-
clidean circles are substituted by the K-circles of any symmetric convex distance
function, with the only exception of K being an ellipse.

Remark 1.4 A different approach to Delaunay oriented matroids i1s implicit
in [9], although there oriented matroid formalism is replaced by the related
concept of a pseudo-hyperplane arrangement. Let S be a finite point set in E¢
and let D be any continuous distance function. For each p € S consider the
pseudo-hyperplane H, = {(z,zq41) € E*lzge1 = D(z,p)} in B4 Let
H = {Hp|p € S} be the arrangement of pseudo-hyperplanes so obtained. In [9]
it 1s shown that the lower envelope of H projects down to the Voronoi diagram
of S with respect to distance D.

The relation to our Delaunay oriented matroids is as follows: any cell C
in the hyperplane arrangement H partitions S in three parts, depending on
whether C' lies below, on or above the pseudo-hyperplane H, of a point p € S.
This partition of S coincides with the one obtained with a certain D-sphere.
Thus, a Delaunay oriented matroid exists if the arrangement H satisfies certain
good-intersection conditions [2, Chapter 4]. Since the intersection of pseudo-
hyperplanes of H is a lifting of the bisector of the corresponding points of 5,
the results in [6] can provide a different proof of our Theorem 3.5. A Delaunay
oriented matroid is realizable if the arrangement H is stretchable, as is the case
for the Euclidean distance (see again [9]).

2 Delaunay oriented matroids. The Euclidean
case

Oriented matroids are abstractly defined as combinatorial objects satisfying the
axioms in Definition 2.2 below. Before introducing this formal definition let us
see 1ts geometric meaning, from the point of view of affine point configurations.
Technically speaking we will consider only acyclic oriented matroids.

A signed subset of a set S is a partition X = (X, X% X~) of S into three
parts, respectively called the positive, zero and negative part of X. The support
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(noted X) of a signed subset X = (Xt X% X~) is defined as X = XTUX~.
Let S C E? be a finite set with n points, which affinely span E4. A (signed)
covector of the point configuration S is a signed subset X = (X X% X7)
of S such that an affine form h : E4 — R exists with hA~}(Rs0) N S = X,
Y (Reo) NS = X~ and A=10) NS = X° (in other words, covectors are
partitions of S induced by hyperplanes, together with the empty signed subset
(0,5,0)). A covector is called a cocircust if it has minimal, non-empty support.
Equivalently, if X° affinely spans a hyperplane. The chirotope of S is the map
X ST~ L40, —} defined by

1 ... 1

e = sign
N pas1) g Pt P2 - Pdt1

Definition 2.1 The oriented matroid Mg of affine dependencies of the point
configuration S is defined as the pair (S,Vg), where Vg is the set of covectors
of S.

Definition 2.2 An oriented matroid is a pair M = (E,V) where E is a finite
set and V 1s a collection of signed subsets of £ called covectors which satisfy the

Jollowing azioms: (V0) (0, F,0) €V,

(V1) V = =V, where —(XT, X% X7) = (X, X° X7T),
(V2) composition: for all XY €V, we have X oY €V, where

XoY =(XTuWtnX?, X°ny® X" u(Y nXx?%).

(V3) vector elimination: for all XY € V, e € Xt NY ™, thereisa Z € V
such that
7 C(XFUYH)\ e,
7= C(X~Uuy)\

and (X\Y)UX\X)UXtNYHuUu(X—NnY")CZ.

An oriented matroid M = (F,V) is called acyclic if (E,0,0) € V. It is called
polytopal if (E\{e},{e},0) €V for alle € E. The rank of an oriented matroid
15 the mazimum number of covectors none of which has support contained in the
unton of the supports of the others.

An oriented matroid M = (V, E) of rank r in n elements is said to be realiz-
able if there is « map v : E — R such that x(e1,..., ey) = sign(det(v(ey),...,

v(en)))-

The axiomatic definition of oriented matroids can equivalently be given in
terms of a set of cocircuits, or a chirotope, (or by other means; see [2, Chapter
3]). Any of them can be translated into the others. For example, the cocircuits
are the covectors with minimal non-empty support. Reciprocally, the covectors
are exactly those signed subsets which can be recovered from the cocircuits by
the composition operations appearing in axiom (V2). The empty signed subset
(B,5,0) is considered a covector, but not a cocircuit.

[
[
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The chirotope of an oriented matroid can be read from the collection C of
cocircuits with the following rules. Let 7" C S be a subset of cardinality d, and
e,e/ € S\T. Then

x(TU{e})=0 — IX €C st. Tu{e}C X°

X(TU{e) =x(TU{N#0 <= 3IXeC st. TCX%and{e, '} eXxt

For an acyclic oriented matroid, realizability 1s equivalent to the existence
of aset S = {p1,...,pn} C E"~! such that M is isomorphic to the oriented
matroid Mg of affine dependencies of a point configuration S, as in Definition
2.1. In this case the realizing vectors are v(e;) = (1,p;). An acyclic, realizable
oriented matroid is polytopal if and only if the realizing points are in convex
position.

Let C be any hypersphere or hyperplane and let Ct and C~ be the two
connected components of £¢\ C. Then C induces two opposite signed subsets
X=((Snct,snc,sSNnC7)and —X = (SNC~,SNC,SNCT) of S. The
signed subsets obtained in this way, together with the empty signed subset,
coincide with the covectors of the oriented matroid Mg = DOM(S) of affine
dependencies of the lifted point set S, as defined in the introduction.

The rank of DOM(S) equals d + 2 if and only if S is not contained in a
hypersphere or hyperplane. In this case, the cocircuits are those covectors X =
(X, X% X*) for which a unique hypersphere or hyperplane passes through all
points in X°. The chirotope of DOM(S) can be obtained as

1 1 ... 1
X(P1s .-, Page) =sign| p1 p2 o+ Page
P12 P22 Pd+22
where pp? 1= Zle ry ;2 for a point pr = (Tg1,...,Thd)-

The determinant defining x was called the “InCircle” predicate by Guibas
and Stolfi [11] (see also [14, §17] ) and used as the basic primitive for computing
Delaunay triangulations. Its value is zero if and only if the points lie in a
hyperplane or hypersphere. If not, let p1,...,pay1 be in general position and
let C' be the unique hypersphere passing through them. Then, x(p1,...,pat+2)
is positive if and only if pgyo lies in the “positive” component of £¢\ C with
respect to the orientation defined in C' by the ordering of pi1,...,psy1. For a
circle C' passing through the points pq, p» and ps in the plane E?, by convention
we take the positive component of E2\ C to be the one at the left side of C
when C'is walked so that one encounters the points p;, ps and p3 in this order.

A description of DOM(S) at the level of circuits can be found in [2, pp.
29-32], for the planar case.

Remark 2.3 Cells in the Delaunay triangulation are convex hulls of subsets T'
of S such that (S\7,T,0) is a covector of DOM(S). Nevertheless, the converse
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i1s not true because such a covector can correspond to a hypersphere passing
through T' and having all S\ T inside, instead of outside.

To solve this ambiguity we can extend the covectors in DOM(S) with an
extra point noted oo and supposed to lie on any hyperplane and outside any
hypersphere. The extended covectors still define an oriented matroid, which
we call the extended Delaunay oriented matroid of S (and note EDOM(S)). A
signed subset, (SU{co}\T, T, 0), where T'C S, is a covector of EDOM(S) if and
only if 7' defines a cell in the Delaunay triangulation of S. Moreover, EDOM(S)
contains the combinatorial information of the Voronoi diagram of .S of any order
k (see [9]). For example, a subset T'C S of k points define a non-empty cell in
the Voronoi diagram of order k of S if and only (7,0,.5 U oo\ T) is a covector
of EDOM(S). This is related to the fact that the k-level of the arrangement
of pseudo-hyperplanes mentioned in Remark 1.4 projects down to the Voronoi
diagram of order k.

The extended Delaunay oriented matroid is again acyclic and polytopal. It
has rank d + 2 if and only if S affinely spans £, If we delete from it the point
oo we obtain DOM(S). If we contract EDOM(S) at the point oo, we obtain the
usual oriented matroid Mg of affine dependencies of S.

3 The case of convex distance functions

This section 1s devoted to introduce convex distance functions and to prove the
existence of Delaunay oriented matroids for smooth, strictly convex distance
function in the plane (Theorem 3.5). Also, examples showing the necessity of
the three conditions (smooth, strictly convex and in the plane) are given, as well
as a more abstract setting in which Delaunay oriented matroids can be defined
(Proposition 3.8).

Definitions 3.1 Let K be a conver body in the Euclidean space E?, bounded
and with the origin in its interior. The convex distance function Dg(p,q) be-
tween two arbitrary points p and q is defined to be the unique scaling factor
0 < A < oo for which q lies in p+ A0K, where O denotes the topological bound-
ary operator. The scaled translations p+ AOK of K will be called K-spheres (or
K-circles if d = 2). In particular, OK s called the unit K-sphere and K the
unit K-ball.

A convex distance function Dg is called strictly convex if 0K does not con-
tain three collinear points. It is called smooth if K has a unigque supporting
hyperplane at each boundary point.

Convex distance functions include all the Minkowski metrics (in particular
L, distances), which are obtained if K is centrally symmetric. If K is not
centrally symmetric then D is not a proper metric but it still satisfies the triangle
inequality Dg (p1,p2) + Dr(p2, p3) > Dr(p1,ps). Convex distance functions in
the plane were introduced in computational geometry by P. Chew and R.L.
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Drysdale in [5], where a divide and conquer strategy is used to compute the
Voronoi diagrams they produce. Their Voronoi diagrams have also been studied
in [6, 7, 12, 15].

For a strictly convex distance function Dg in the plane, we can define the De-
launay triangulation of a point set S with respect to Dg substituting Fuclidean
hyperspheres by K-spheres in Definition 1.1. This Delaunay triangulation is a
well-defined polyhedral complex. If Dg is, in addition, smooth then any edge
in the convex hull of S is a Delaunay edge (cf. [16]).

In the contrary, for non-strictly convex distance functions in the plane, or
for convex distance functions in dimension d > 3 whose defining convex body is
not an ellipsoid, Definition 1.1 may not yield a polyhedral complex. The main
reason for this is that through d + 1 points in general position, more than one
K-sphere can pass. This gives rise to overlapping cells. The interested reader
can easily verify the following example: points (0,0,2), (0,0,-2), (—1,2,0),
(2,—1,0) in E3 lie in exactly three different Ls-spheres, with centers along the
line {z = 0, = y}. Even more, this cannot be considered a degeneracy, because
it still happens for any small perturbation of the four points. This bad behaviour
of convex distance functions in 3-space is described in [12] (see also [15]).

Proposition 3.2 Let Dy be a convex distance function in E®, d > 2. For any
finite point set S, let Vi(S) be the collection of signed subsets of S induced by
K-spheres (and hyperplanes), together with the empty signed subset. Suppose
that d = 2 and Dg 1is non-smooth or non-strictly convez, or that d > 2 and
K is not an ellipsoid. Then, there exists a point set S for which Vi (S) is not
the set of covectors of an oriented matroid. Moreover, S can be found with four
points in the non-smooth case, five in the non-strictly convez case and d+ 3 n
the case d > 2.

Proof: The three cases follow from the following general fact: let p and ¢ be
two points in S. Suppose there exist K-spheres C' and D with CNS = S\ {p}
and DNS =S\ {p, ¢}, but no K-sphere contains S\ {¢}. Then, Vg (S5) is not
the set of covectors of an oriented matroid. For the proof of this, consider the
signed subsets coming from C" and D with signs given so that p is positive in
one and negative in the other: axiom (V3) of Definition 2.2 should produce a
covector which is zero in S\ {¢}, but not in ¢; this contradicts the hypothesis.
Let us now prove the three cases:

(a) For any non-strictly convex distance function Dg one can find two K-
circles €' and D intersecting in a line segment [py,p2]. Let ps = (p1 + p2)/2.
Take ¢ € C'\ D. Finally, Take p & [p1,ps] but very close to ps and let .S =
{p1,p2,p3,0, 4}

(b) For a distance Dg which is not smooth, one can always find three points
p1, p2 and p which are neither K-cocircullar nor collinear. Consider two arbi-
trary (different) K-circles C' and D passing through p; and ps and a point ¢
lying in C' but not in D. Let S = {p1,p2,p,¢}-
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(¢) If d > 2 and K is not an ellipsoid then, according to [10], there exist
d + 1 points pi,...,ps+1 not in a hyperplane and which belong to at least two
different K-spheres (' and D. Let p be a point in the interior of the simplex
Conv(py,...,pit1). Take g € C\ D and S = {p1,...,pa+1,0,¢}. O

In the sequel we will only be concerned with smooth, strictly convex distance
functions in the plane. It will be convenient to compactify the Fuclidean space
E? into a 2-sphere S? by adding a point at infinity, noted co. This additional
point lies on every line and in the exterior region of any K-circle. In this setting,
lines will also be considered K-circles (they are limit cases).

Our proof of Theorem 3.5 will follow from the following properties of K-
circles.

Lemma 3.3 Let Di be a smooth, strictly convex distance function wn the com-
pactified plane S? = E? U {oo}. Then:

(i) Through any three points in S? there passes at least one K-circle.

(#i) Two different K -circles intersect in at most two points.

(#i1) Let C and D be two K-circles which intersect in two points. Then,
the two connected components of C'\ D lie one in each of the two connecled
components of S?\ D.

(iv) For any K-circle C and any points p € C, q € S? the collection Cp ¢ of
K-circles intersecting C' exactly at p has a unique representative passing through
q.

(v) For any point p in S? and any two disjoint K -circles C' and D not passing
through p, there 1s a K-circle F passing through p and not intersecting C' nor
D. Moreover, if p is “between” C and D (i.e. in the component of S*\ C' which
contains D and in the component of S\ D which contains C') E can be found
separating C' and D (i.e. with C' and D contained in different components of
SZ\E).

Proof: Translated to the non-compactified plane (¢) and (i) are equivalent to
“three collinear points are not K-cocircular and through any three non-collinear
points there passes exactly one K-circle”. For the proof of this see, for example,
[12], [16] or [15]. (The latter gives a more general result in arbitrary dimension).
Actually, strict convexity is only needed in (¢¢) and smoothness in (7).

We will prove that (4i¢) actually follows from (¢) and (i). Let C and D
be two K-circles intersecting at two points p and ¢, so that C' = ¢; U ¢y and
D =dyUds, where ¢1, ¢a, di and dy are closed arcs joining p to ¢. If (¢4i) is not
true, we can suppose without loss of generality that ¢y Ud; separates ¢ from ds.
Consider two points p. and pg in ¢y and dy respectively and a K-circle passing
through p, p. and pg (which exists, by (¢)). This K-circle must intersect either
¢o or dy in another point, which contradicts (é¢).

In (iv) several cases need to be studied. If p is the point at infinity, then
Cp,c 1s the collection of lines parallel to C'. If C'is a line but p is not the point
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at infinity, then C, ¢ contains C' and the collection of proper K-circles passing
through p and having ' as supporting line. If C' is a proper K-circle then
Cp,c = Cp 1, where [ is the supporting line of C' at p.

The first part of (v) is trivial, considering a very small K-circle passing
through p (or a very far away line if p = o0). If p is between C' and D, then
the K-circle E separating C' and D is still easy to find, considering the possible
cases for C' and D (being proper K-circles or lines) and for p (being at infinity
or not). O

Lemma 3.4 Let Dg be a smooth, strictly convex distance function i the com-
pactified plane S? = E?U{co}. Let C and D be two K-circles (or lines). Denote
by CT and C~ (resp. DY and D~ ) the two connected components of S*\ C
(resp. of S?\ D), and let p be a point in CTND~. Then, there exists a K-circle
E such that

HpeEFand ENC=END=CND

(ii) the two connected components of S*\ E are contained respectively in
CtuDt and C-UD™,

Proof: Let us consider separately the three possibilities for C'N D (being two
points, one point or empty).

o If C' and D intersect in two points ¢ and r, then take £ to be the K-circle
passing through p, ¢ and r (Lemma 3.3(7)). By Lemma 3.3(4i) F satisfies (7).
Also, Lemma 3.3(7i7) and the fact that F intersects C* N D~ imply that the two
components of F'\ {q,r} are contained respectively in CT N D~ and C~ N Dt.

o If C' and D intersect in one point ¢, then take ¥ to be the unique K-circle
passing through p in C; ¢ = C; p (Lemma 3.3(iv)), which trivially satisfies (¢).
E\{q} is connected and does not intersect C' nor D. Since p € CTND~ isin F,
E\{q} must be contained in C* N D~. This implies that one of the components
of S\ E is contained in CT and one (may be the same one) in D~. If it is
not the same component we have finished. If it is the same one (call it £y and
call the other one E3), then we either have £ C CtcD orEy,CD CCH.
This implies that either C~ U D~ or CT U D¥ equals S?\ {¢}, which obviuosly
contains Fo.

o If ' and D do not intersect, then there are essentially two possibilities
for the point p. If p is between C' and D, then take as £ any K-circle passing
through p and separating C' and D). Otherwise, take as £ any K-circle passing
through p and not intersecting C' nor D. O

Theorem 3.5 Let D be a smooth, strictly convex distance function in the
compactified plane S? = E* U {co}. Let S be a finite point set. Call Vi (95)
the collection of signed subsets induced by K-circles (and lines), together with
the empty signed subset (0,5,0). Then Vp, (S) is the set of covectors of an
acyclic, polytopal oriented matroid DOMp . (S). Its rank equals 4 if and only if
S is not contained in a K-circle (or line). We will call this oriented matroid
the Delaunay oriented matroid DOMgk (S) of S with respect to distance D .
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Proof: Axioms (V0) and (V1) in Definition 2.2 are trivially satisfied for Vg (.5).
Axioms (V2) and (V3) are also trivial if one of the covectors involved is the
empty covector. Thus, consider two covectors X¢ and Xp in Vp, (S) coming
from two Dg-spheres (or lines) C'and D. Call Cy, C_, Dy and D_ respectively
the connected components of S? \ C and S?\ D, in the way that agrees with
the signs in covectors X¢ and Xp. In these conditions, the vector elimination
axiom (V3) follows directly from Lemma 3.4.

The composition axiom (V2) needs to be proved only in the case that no
point of S lies in U = (Cy N D_) U (C- N Dy), according to [2, Corollary
3.7.7]. If U is empty, then there is nothing to prove. If U is not empty, then
without loss of generality assume that C'y N D_ is not empty. Otherwise apply
the following to the opposite covectors —X¢ and —Xp. Take an additional
point p in Cy N D_. Consider the augmented point set S’ = S U {p} and the
two extended covectors Yo and Yp in Vg(S) induced by the K-spheres C' and
D. Since {p} = (YeT NnYp )U (YT NYp™), the covector Z” produced by
axiom (V3), which we have already proved, is an extension of X o Xp. Thus,
a K-circle exists producing X¢ o Xp € Vg(S).

Lemma 3.3(v) implies that a covector X = (Xt X% X~) with maximal
Xt must equal (S,0,0). Thus, DOMg(S) is acyclic. Lemma 3.3(iv) implies
that a covector X = (X+, X% X~) with p € X" and maximal X must equal
(S\ {p}, {p},0). Thus, DOMk(S) is polytopal.

Suppose that there are five non-zero covectors Xy, ..., X5 each with support
not contained in the union of the supports of the others. Then, there are three
points py € Xj, ps € X5 and ps € X3 with p;,ps,ps € Xy U X5, lLe, the
three points lie in the K-circles defining X4 and X5. This implies that X4 and
Xy are equal or opposite, which contradicts the assumption. Thus, the rank
of DOMk(S) is at most 4. Moreover, if a K-circle exists containing S, the
same argument shows that the rank cannot be 4, because this would imply the
existence of a non-zero covector X, passing throug three different points of S.
If S does not lie in a K-circle, take four points in .S which are neither collinear
nor K-cocircular. The four covectors corresponding to the K-circles passing
through three of them prove that the rank is at least four. 0O

Remark 3.6 The compactified setting makes the extended Delaunay oriented
matroid defined in section 2 be an instance of a Delaunay oriented matroid
DOM(S) in which S contains the point co. Everything we said in section 2 for
Delaunay oriented matroids (extended or not) in the Euclidean case holds for
the Delaunay oriented matroids defined in Theorem 3.5. The only exception is
the determinantal formula for computing the chirotope, although the rule for
computing it by orienting the K-circle passing through three points still holds.
A non-empty covector X of DOMg(S) is a cocircuit if and only if X° has at
least three points.

Remark 3.7 Our proof of Theorem 3.5 is completely based on Lemma 3.3.
This is emphasized in the following statement which generalizes this fact to
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arbitrary dimension. The redundant condition (¢i¢) in Lemma 3.3 has been
substituted by a new inductive one which applies only to d > 2. The proof of
Proposition 3.8 can be found in [16]. Tt is similar to our derivation of Theorem
3.5 from Lemma 3.3, with two new technical steps: proving that any non-empty
intersection of D-spheres is either a point or a sphere of a certain dimension
between 0 and d — 1 and proving that any D-sphere contains d 4+ 1 points “in
general position”, i.e. d+ 1 points not contained in any other D-sphere.

Proposition 3.8 Let S? be a d-dimensional sphere (d > 2), and let D be a
collection of (d—1)-dimensional spheres (to be called D-spheres) in S?. Suppose
that D satisfies the following properties:

(i) Through any d + 1 points in S there passes at least one D-sphere.

(#) Two any non disjoint D-spheres C' and D intersect either in a (d — 2)-
dimensional sphere or in a point.

(#i1") If d > 2 then, for any D-sphere C, the collection of (d—2)-dimensional
spheres Do .= {CND | DeD, C and D inlersect in more than one point},
considered as a system of spheres in C, again satisfies conditions (i), (ii) and
(#it"), (iv) and (v).

(iv) For any D-sphere C' and any points p € C, ¢ € S? the collection Dp.c
of D-spheres intersecting C' exactly at p has a unique representative passing
through q.

(v) For any point p in S and any two disjoint D-spheres C' and D not
passing through p, there 1s a D-sphere E passing through p and not intersecting
C nor D. Moreover, if p is “between” C' and D (i.e. in the component of S\ C
which contains D and in the component of S\ D which contains C) E can be
found separating C' and D (i.e. with C and D contained in different components
of ST\ E).

Let S C S? be a finite point set. Call Vp(S) the collection of signed subsets
defined by D-spheres together with the empty signed subset. Then, Vi (S) is the
set of covectors of an acyclic, polytopal oriented matroid DOMp(S). Its rank
equals d+ 2 if and only if S is not contained in any D-sphere.

4 Non-realizable Delaunay oriented matroids

In this section we will show that the Delaunay oriented matroids appearing in
Theorem 3.5 may be non-realizable. Actually, we will see that non-realizable
ones appear for any symmetric, smooth, strictly convex distance function whose
unit ball is not an ellipse. The symmetry assumption i1s due to the use of Lemma
4.1 but the result is possibly true without it. We will also see that, for the
same class of distance functions, no lifting property is possible: we construct a
Delaunay triangulation which is not the projection of the lower envelope of any
polyhedron. Triangulations with this negative property are called non-regular
[17]. The names non-conver or non-coherent are used by other authors.
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Theorem 4.2 is related to Theorem 3 in [7], which says that Voronoi diagrams
and Delaunay triangulations for convex distance functions can have combinato-
rial types forbidden for the Euclidean distance (this result has been extended to
the non-symmetric case in [16]). Note, however, that the Delaunay triangulation
in Figure 1 has the combinatorial type of a Euclidean Delaunay triangulation.

Lemma 4.1 Let K be a compact, centrally symmetric convex body in the plane
E?, which is neither a line segment nor the convex hull of an ellipse. Then,
there exists an ellipse E with the same center as K and such that E\ K has al
least four connected components.

Proof: If K 1s a symmetric cuadrilateral, then any ellipse passing through its
four vertices satisfies the lemma. Otherwise, consider any three pairs of oppo-
site points in JK in strictly convex position and the unique ellipse Ey passing
through them. We deal separately with the following cases:

(a) If 0K does not contain an arc of Ey, then Ey\ 0K has (at least) three
pairs of opposite connected components. Thus, either at least two of the three
pairs of connected components are exterior to J K, in which case Ej satisfies
the conditions of the lemma, or at least two of the three pairs of connected
components are interior to dK. In the latter case, take let £/ be an ellipse
exterior to Fy but sufficiently close to it and with the same center.

(b) Suppose that 9K contains an arc of Ey and at least one point # exterior
to Ey. Let p be an interior point in the intersection arc. Consider the ellipse E
passing through p, through = and through their opposite points p’ and z’, and
having the same tangent as Fy at p. E satisfies the conditions of the lemma
because each of the arcs pz, xp’, p'z’ and z'p along F have their endpoints in
JK but contain points exterior to K (namely, those very close to p and p').

(¢) Finally, suppose that 9K contains an arc of Fy and no point exterior to
Ey. Call p, ¢ and r three points in such an arc, in this order. Call s a point of
JK interior to Ey (which exists because K is not an ellipse). Then, let E be
an ellipse passing through p, ¢ and their opposite points p’ and ¢’ and having
both r and s (and their opposite points) in its interior. O

Theorem 4.2 Let Dy be a symmetric, smooth, strictly conver distance func-
tion in the plane defined by a conver body K. If K s not an ellipse then there
exists a set S of eight points in general position such that

(7) the K-Delaunay triangulation of S is not the projection of the lower
envelope of a polyhedron in three space and

(#i) DOM§g(S) is not realizable.

Proof: Let us apply Lemma 4.1 to K and, without loss of generality, let us
suppose that the ellipse £ obtained is actually an Euclidean circle (we can
make a linear transformation to K, if needed). Let a, b, ¢ and d be four different
connected components of F'\ K, ¢ and d being the symmetric copies of ¢ and
b, respectively. Call A, B, C and D their respective extreme points in the
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Figure 1: Eight points with non-realizable D. O. M.

counterclockwise direction. Let A’, B’, C' and D’ be interior points of a, b, ¢
and d respectively, with segments [A, A’], [B, B'], [C,C’] and [D, D’] being of
equal length (see Figure 1 (a) ).

Let S consist on the eight points in Figure 1 (b), obtained as

p1 =4, pa =D, ps=C", psa =D,
ps =pa+ (D' = A), pe =pa+ (A - A",
pr=ps+ (A =B)=p4+(D-C), ps=ps+(B-B)=p+(C"-C).

By construction, points pipapsps and points pspaprps are collinear. Points
P1P2P3pa, P3PaPsPs, Pspep7ps and prpspips are cocircular with respect to Eu-
clidean circles but, with respect to the distance Dy, their Delaunay triangu-
lation contains all the edges in Figure 1(b). For example, the unique K-circle
C passing through points p1, p2 and ps must have ps outside because the unit
K-circle passes through p; and ps and has p; and ps outside. Points ps, ps,
p7 and ps must also be outside (', because of strict convexity. Thus, the three
edges p1ps2, popa and pap; are Delaunay edges.

Let us perturb the configuration a little bit, moving the points pq, ps, ps
and p7 in counterclockwise sense and the points po, ps, ps and pg in clockwise
sense. If the perturbation is sufficiently generic, no three points will be colinear
and no four will be K-cocircular. For simplicity, we will keep the same names
for the perturbed points.

From Figure 1(b) and the rule for obtaining x[p, ¢, r, s] from the orientation
of the K-circle passing through p, ¢ and r it is easy to derive the following:

X[1a3a5a2] = X[3a5a7a4] = X[5a7a 1a6] = X[7a 1a3a8] = -
X[1a3a5a4] = X[3a5a7a 6] = X[5a7a 1a8] = X[7a 1a3a2] = - (1)
X[1a3a5a6] = X[3a5a7a8] = X[5a7a 1a2] = X[7a 1a3a4] =
as well as
X[1a2a3a4] = X[3a4a5a6] = X[5a6a7a8] = X[7a8a 1a2] =+ (2)
X[1a2a6a5] = X[3a4a8a7] =+
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Note that the two last signs were zero before the perturbation. All the other
were non-zero and preserve their sign if the perturbation is sufficiently small.

Let us suppose that the Delaunay oriented matroid is realizable by eight
vectors in R*. Because of general position, we have x[1,3,5,7] # 0. Without
loss of generality we assume y[1,3,5,7] = + and take the corresponding four
vectors as a basis for our coordinate system. Taking into account the signs in
(1), the coordinate matrix turns out to be of the form

1 2 0 4a 0 +b 0 +c
0 —d 1 ? 0 —e 0 —f
0 49 0 +h 1 2 0 +i
0 —j 0 —k 0 —1 1 7

where a, ..., [ are strictly positive numbers. The signs in (2) imply the inequal-
ities

gk > jh, al>kb, bf >ce, di>gf, ej>dl, ch>ai,

which multiplied together give a contradiction. This finishes the proof of (ii).

For (i), suppose that there is a lifting {¢1,...gs} C R® of {p1,...,ps} whose
lower envelope projects down to our triangulation. Let /1 and l» be the lines
in tha plane passing respectively through the points pipapsps and pspaprps
(before the perturbation). Let v be the vertical line through the intersection
point of {; and l5. Let us denote by m,,, the plane passing through three non-
collinear points p, ¢ and r in 3-space. The structure of the triangulation, after
perturbation, implies that each of the planes

7T‘]1(]2(14 ’ ﬂ-qﬂla(]u 7TQ3(14(16 ’ ﬂ-qaqs(]ea ﬂ-(JS(JG(]sa

Tgsqrqs> Tqrgsqas Tqrq192> Tq1q294

intersects the line v in a point below the intersection of the previous one. This
gives a contradiction. 0O
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