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AbstractFor any �nite point set S in Ed, an oriented matroid DOM(S) can be de�nedin terms of how S is partitioned by Euclidean hyperspheres. This orientedmatroid is related to the Delaunay triangulation of S and is realizable, becauseof the lifting property of Delaunay triangulations.We prove that the same construction of a Delaunay oriented matroid canbe performed with respect to any smooth, strictly convex distance function inthe plane E2 (Theorem 3.5). For these distances, the existence of a Delaunayoriented matroid cannot follow from a lifting property, because Delaunay trian-gulations might be non-regular (Theorem 4.2(i). This is related to the fact thatthe Delaunay oriented matroid can be non-realizable (Theorem 4.2(ii) ).
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1 Introduction
In this paper we describe a link between the Delaunay triangulation of a �nitepoint set S in the Euclidean d-space Ed and a certain oriented matroid DOM(S)of rank d + 2, which we will call the Delaunay oriented matroid of S. For theEuclidean distance, DOM(S) was introduced by R.G. Bland and M. Las Vergnasin [3] (see also [2, pp. 29{32]). There, only the planar case is considered and theoriented matroid is described in terms of its circuits. We present a description of
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On Delaunay oriented matroids for convex distance functions 2
DOM(S) in terms of covectors/cocircuits which seems to us simpler. Our mainpurpose is to generalize Delaunay oriented matroids to the case of Delaunaytriangulations computed with respect to the so-called convex distance functions.A brief introduction to oriented matroids is included.
De�nition 1.1 Let S be a �nite set of points in the Euclidean space Ed. Wede�ne its Delaunay triangulation Del(S) to be the following polyhedral complex:the convex hull conv(T ) of a certain subset T of S is a cell in the Delaunaytriangulation of S if and only if a Euclidean hypersphere exists passing throughevery point of T and having every point of S n T in its exterior.

Delaunay triangulations are named after the Russian mathematician B. De-lone [8]. They have become a major subject of study in computational geometryand they are geometrically dual to the Voronoi diagrams [1, 13]. Some of thecells in the Delaunay triangulation may not be simplices, if more than d + 2points lie in a certain hypersphere. We will still use the word `triangulation' inthis degenerate case. The fact that the Delaunay triangulation is a polyhedralcomplex is a corollary of the lifting property of Delaunay triangulations [4, 9]:
Proposition 1.2 (lifting property) Let S be a �nite point set in Ed. Then,the Delaunay triangulation of S coincides with the orthogonal projection of thelower envelope of the point set �S � Ed+1 obtained lifting S into the paraboloidof equation xd+1 =Pdi=1 x2i . I,e:

�S := f(x1; . . . ; xd; xd+1 2 Ed+1j(x1; . . . ; xd) 2 Sd; xd+1 = dX
i=1 x

2i )g
The lifting property holds because the intersection of the paraboloid withany non-vertical hyperplane of Ed+1 projects down to a hypersphere in Ed. Asa consequence, the oriented matroid M �S of a�ne dependencies of �S describesthe partitions of S induced by hyperspheres. For this reason we call M �S theDelaunay oriented matroid of S and denote it DOM(S). The reader not familiarwith oriented matroids can see our introduction to them in section 2, or consult[2]. The above argument indicates that DOM(S) can be directly de�ned fromS by hypersphere partitions. Our main results are:
� this direct de�nition of DOM(S) generalizes to the case where hyper-spheres are substituted by the collections of K-circles of a smooth, strictlyconvex distance function DK in the plane (Theorem 3.5).
� the K-Delaunay oriented matroids so obtained may be non-realizable(Theorem 4.2).
� these distance functions do not have, in general, a lifting property (Theo-rem 4.2).
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We also prove that the conditions smooth, strictly convex and in the plane inTheorem 3.5 are necessary.
Remark 1.3 Our results can be interpreted as incidence theorems on K-circles(scaled translations of a given convex body K in the plane). For example, thefollowing theorem holds for Euclidean circles:

Let p1; . . . ; p8 be eight distinct points in the plane. If the following quadruplesof points are cocircular: [1; 2; 3; 4], [3; 4; 5; 6], [5; 6; 7; 8], [7; 8; 1; 2], [1; 2; 5; 6] then[3; 4; 7; 8] is also cocircular.
Our construction in the proof of Theorem 4.2 is based on a version of thistheorem, where two of the circles have in�nite radius. Modifying a little bit ourconstruction, one can prove that this incidence theorem does not hold when Eu-clidean circles are substituted by theK-circles of any symmetric convex distancefunction, with the only exception of K being an ellipse.

Remark 1.4 A di�erent approach to Delaunay oriented matroids is implicitin [9], although there oriented matroid formalism is replaced by the relatedconcept of a pseudo-hyperplane arrangement. Let S be a �nite point set in Ed
and let D be any continuous distance function. For each p 2 S consider thepseudo-hyperplane Hp := f(x; xd+1) 2 Ed+1jxd+1 = D(x; p)g in Ed+1. LetH = fHpjp 2 Sg be the arrangement of pseudo-hyperplanes so obtained. In [9]it is shown that the lower envelope of H projects down to the Voronoi diagramof S with respect to distance D.The relation to our Delaunay oriented matroids is as follows: any cell Cin the hyperplane arrangement H partitions S in three parts, depending onwhether C lies below, on or above the pseudo-hyperplane Hp of a point p 2 S.This partition of S coincides with the one obtained with a certain D-sphere.Thus, a Delaunay oriented matroid exists if the arrangement H satis�es certaingood-intersection conditions [2, Chapter 4]. Since the intersection of pseudo-hyperplanes of H is a lifting of the bisector of the corresponding points of S,the results in [6] can provide a di�erent proof of our Theorem 3.5. A Delaunayoriented matroid is realizable if the arrangement H is stretchable, as is the casefor the Euclidean distance (see again [9]).
2 Delaunay oriented matroids. The Euclidean

case
Oriented matroids are abstractly de�ned as combinatorial objects satisfying theaxioms in De�nition 2.2 below. Before introducing this formal de�nition let ussee its geometric meaning, from the point of view of a�ne point con�gurations.Technically speaking we will consider only acyclic oriented matroids.A signed subset of a set S is a partition X = (X+; X0; X�) of S into threeparts, respectively called the positive, zero and negative part of X. The support



On Delaunay oriented matroids for convex distance functions 4
(noted X) of a signed subset X = (X+; X0; X�) is de�ned as X = X+ [X�.Let S � Ed be a �nite set with n points, which a�nely span Ed. A (signed)covector of the point con�guration S is a signed subset X = (X+; X0; X�)of S such that an a�ne form h : Ed ! R exists with h�1(R>0) \ S = X+,h�1(R<0) \ S = X� and h�1(0) \ S = X0 (in other words, covectors arepartitions of S induced by hyperplanes, together with the empty signed subset(;; S; ;)). A covector is called a cocircuit if it has minimal, non-empty support.Equivalently, if X0 a�nely spans a hyperplane. The chirotope of S is the map� : Sd+1 ! f+; 0;�g de�ned by

�(p1; . . . ; pd+1) = sign
���� 1 1 � � � 1p1 p2 � � � pd+1

����
De�nition 2.1 The oriented matroid MS of a�ne dependencies of the pointcon�guration S is de�ned as the pair (S;VS), where VS is the set of covectorsof S.
De�nition 2.2 An oriented matroid is a pair M = (E;V) where E is a �niteset and V is a collection of signed subsets of E called covectors which satisfy thefollowing axioms: (V0) (;; E; ;) 2 V,

(V1) V = �V, where �(X+; X0; X�) := (X�; X0; X+),(V2) composition: for all X;Y 2 V, we have X � Y 2 V, where
X � Y := (X+ [ (Y + \X0); X0 \ Y 0; X� [ (Y � \X0)):

(V3) vector elimination: for all X;Y 2 V, e 2 X+ \ Y �, there is a Z 2 Vsuch that Z+ � (X+ [ Y +) n e,Z� � (X� [ Y �) n eand (X n Y ) [ (Y nX) [ (X+ \ Y +) [ (X� \ Y �) � Z.
An oriented matroid M = (E;V) is called acyclic if (E; ;; ;) 2 V. It is calledpolytopal if (E nfeg; feg; ;) 2 V for all e 2 E. The rank of an oriented matroidis the maximum number of covectors none of which has support contained in theunion of the supports of the others.An oriented matroid M = (V ; E) of rank r in n elements is said to be realiz-able if there is a map v : E ! Rr such that �(e1; . . . ; en) = sign(det(v(e1); . . . ;v(en))).
The axiomatic de�nition of oriented matroids can equivalently be given interms of a set of cocircuits, or a chirotope, (or by other means; see [2, Chapter3]). Any of them can be translated into the others. For example, the cocircuitsare the covectors with minimal non-empty support. Reciprocally, the covectorsare exactly those signed subsets which can be recovered from the cocircuits bythe composition operations appearing in axiom (V2). The empty signed subset(;; S; ;) is considered a covector, but not a cocircuit.



On Delaunay oriented matroids for convex distance functions 5
The chirotope of an oriented matroid can be read from the collection C ofcocircuits with the following rules. Let T � S be a subset of cardinality d, ande; e0 2 S n T . Then

�(T [ feg) = 0 () 9X 2 C s:t: T [ feg � X0
�(T [feg) = �(T [fe0g) 6= 0 () 9X 2 C s:t: T � X0 and fe; e0g 2 X+

For an acyclic oriented matroid, realizability is equivalent to the existenceof a set S = fp1; . . . ; png � Er�1 such that M is isomorphic to the orientedmatroid MS of a�ne dependencies of a point con�guration S, as in De�nition2.1. In this case the realizing vectors are v(ei) = (1; pi). An acyclic, realizableoriented matroid is polytopal if and only if the realizing points are in convexposition.
Let C be any hypersphere or hyperplane and let C+ and C� be the twoconnected components of Ed n C. Then C induces two opposite signed subsetsX = (S \ C+; S \ C; S \ C�) and �X = (S \ C�; S \ C; S \ C+) of S. Thesigned subsets obtained in this way, together with the empty signed subset,coincide with the covectors of the oriented matroid M �S = DOM(S) of a�nedependencies of the lifted point set �S, as de�ned in the introduction.The rank of DOM(S) equals d + 2 if and only if S is not contained in ahypersphere or hyperplane. In this case, the cocircuits are those covectors X =(X+; X0; X+) for which a unique hypersphere or hyperplane passes through allpoints in X0. The chirotope of DOM(S) can be obtained as

�(p1; . . . ; pd+2) = sign
������

1 1 � � � 1p1 p2 � � � pd+2p12 p22 � � � pd+22
������

where pk2 :=Pdi=1 xk;i2 for a point pk = (xk;1; . . . ; xk;d).The determinant de�ning � was called the \InCircle" predicate by Guibasand Stol� [11] (see also [14, x17] ) and used as the basic primitive for computingDelaunay triangulations. Its value is zero if and only if the points lie in ahyperplane or hypersphere. If not, let p1; . . . ; pd+1 be in general position andlet C be the unique hypersphere passing through them. Then, �(p1; . . . ; pd+2)is positive if and only if pd+2 lies in the \positive" component of Ed n C withrespect to the orientation de�ned in C by the ordering of p1; . . . ; pd+1. For acircle C passing through the points p1, p2 and p3 in the plane E2, by conventionwe take the positive component of E2 n C to be the one at the left side of Cwhen C is walked so that one encounters the points p1, p2 and p3 in this order.A description of DOM(S) at the level of circuits can be found in [2, pp.29{32], for the planar case.
Remark 2.3 Cells in the Delaunay triangulation are convex hulls of subsets Tof S such that (S nT; T; ;) is a covector of DOM(S). Nevertheless, the converse
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is not true because such a covector can correspond to a hypersphere passingthrough T and having all S n T inside, instead of outside.To solve this ambiguity we can extend the covectors in DOM(S) with anextra point noted 1 and supposed to lie on any hyperplane and outside anyhypersphere. The extended covectors still de�ne an oriented matroid, whichwe call the extended Delaunay oriented matroid of S (and note EDOM(S)). Asigned subset, (S[f1gnT; T; ;), where T � S, is a covector of EDOM(S) if andonly if T de�nes a cell in the Delaunay triangulation of S. Moreover, EDOM(S)contains the combinatorial information of the Voronoi diagram of S of any orderk (see [9]). For example, a subset T � S of k points de�ne a non-empty cell inthe Voronoi diagram of order k of S if and only (T; ;; S [1 n T ) is a covectorof EDOM(S). This is related to the fact that the k-level of the arrangementof pseudo-hyperplanes mentioned in Remark 1.4 projects down to the Voronoidiagram of order k.The extended Delaunay oriented matroid is again acyclic and polytopal. Ithas rank d+ 2 if and only if S a�nely spans Ed. If we delete from it the point1 we obtain DOM(S). If we contract EDOM(S) at the point1, we obtain theusual oriented matroid MS of a�ne dependencies of S.
3 The case of convex distance functions
This section is devoted to introduce convex distance functions and to prove theexistence of Delaunay oriented matroids for smooth, strictly convex distancefunction in the plane (Theorem 3.5). Also, examples showing the necessity ofthe three conditions (smooth, strictly convex and in the plane) are given, as wellas a more abstract setting in which Delaunay oriented matroids can be de�ned(Proposition 3.8).
De�nitions 3.1 Let K be a convex body in the Euclidean space Ed, boundedand with the origin in its interior. The convex distance function DK(p; q) be-tween two arbitrary points p and q is de�ned to be the unique scaling factor0 < � <1 for which q lies in p+ �@K, where @ denotes the topological bound-ary operator. The scaled translations p+�@K of K will be called K-spheres (orK-circles if d = 2). In particular, @K is called the unit K-sphere and K theunit K-ball.A convex distance function DK is called strictly convex if @K does not con-tain three collinear points. It is called smooth if K has a unique supportinghyperplane at each boundary point.

Convex distance functions include all the Minkowski metrics (in particularLp distances), which are obtained if K is centrally symmetric. If K is notcentrally symmetric thenD is not a proper metric but it still satis�es the triangleinequality DK(p1; p2) +DK(p2; p3) � DK(p1; p3). Convex distance functions inthe plane were introduced in computational geometry by P. Chew and R.L.
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Drysdale in [5], where a divide and conquer strategy is used to compute theVoronoi diagrams they produce. Their Voronoi diagrams have also been studiedin [6, 7, 12, 15].For a strictly convex distance functionDK in the plane, we can de�ne the De-launay triangulation of a point set S with respect to DK substituting Euclideanhyperspheres by K-spheres in De�nition 1.1. This Delaunay triangulation is awell-de�ned polyhedral complex. If DK is, in addition, smooth then any edgein the convex hull of S is a Delaunay edge (cf. [16]).In the contrary, for non-strictly convex distance functions in the plane, orfor convex distance functions in dimension d � 3 whose de�ning convex body isnot an ellipsoid, De�nition 1.1 may not yield a polyhedral complex. The mainreason for this is that through d + 1 points in general position, more than oneK-sphere can pass. This gives rise to overlapping cells. The interested readercan easily verify the following example: points (0; 0; 2), (0; 0;�2), (�1; 2; 0),(2;�1; 0) in E3 lie in exactly three di�erent L4-spheres, with centers along theline fz = 0; x = yg. Even more, this cannot be considered a degeneracy, becauseit still happens for any small perturbation of the four points. This bad behaviourof convex distance functions in 3-space is described in [12] (see also [15]).
Proposition 3.2 Let DK be a convex distance function in Ed, d � 2. For any�nite point set S, let VK(S) be the collection of signed subsets of S induced byK-spheres (and hyperplanes), together with the empty signed subset. Supposethat d = 2 and DK is non-smooth or non-strictly convex, or that d > 2 andK is not an ellipsoid. Then, there exists a point set S for which VK(S) is notthe set of covectors of an oriented matroid. Moreover, S can be found with fourpoints in the non-smooth case, �ve in the non-strictly convex case and d+ 3 inthe case d > 2.
Proof: The three cases follow from the following general fact: let p and q betwo points in S. Suppose there exist K-spheres C and D with C \ S = S n fpgand D \ S = S n fp; qg, but no K-sphere contains S n fqg. Then, VK(S) is notthe set of covectors of an oriented matroid. For the proof of this, consider thesigned subsets coming from C and D with signs given so that p is positive inone and negative in the other: axiom (V3) of De�nition 2.2 should produce acovector which is zero in S n fqg, but not in q; this contradicts the hypothesis.Let us now prove the three cases:(a) For any non-strictly convex distance function DK one can �nd two K-circles C and D intersecting in a line segment [p1; p2]. Let p3 = (p1 + p2)=2.Take q 2 C n D. Finally, Take p 62 [p1; p2] but very close to p3 and let S =fp1; p2; p3; p; qg.(b) For a distance DK which is not smooth, one can always �nd three pointsp1, p2 and p which are neither K-cocircullar nor collinear. Consider two arbi-trary (di�erent) K-circles C and D passing through p1 and p2 and a point qlying in C but not in D. Let S = fp1; p2; p; qg.
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(c) If d > 2 and K is not an ellipsoid then, according to [10], there existd+ 1 points p1; . . . ; pd+1 not in a hyperplane and which belong to at least twodi�erent K-spheres C and D. Let p be a point in the interior of the simplexConv(p1; . . . ; pd+1). Take q 2 C nD and S = fp1; . . . ; pd+1; p; qg. 2
In the sequel we will only be concerned with smooth, strictly convex distancefunctions in the plane. It will be convenient to compactify the Euclidean spaceE2 into a 2-sphere S2 by adding a point at in�nity, noted 1. This additionalpoint lies on every line and in the exterior region of any K-circle. In this setting,lines will also be considered K-circles (they are limit cases).Our proof of Theorem 3.5 will follow from the following properties of K-circles.

Lemma 3.3 Let DK be a smooth, strictly convex distance function in the com-pacti�ed plane S2 = E2 [ f1g. Then:(i) Through any three points in S2 there passes at least one K-circle.(ii) Two di�erent K-circles intersect in at most two points.(iii) Let C and D be two K-circles which intersect in two points. Then,the two connected components of C n D lie one in each of the two connectedcomponents of S2 nD.(iv) For any K-circle C and any points p 2 C, q 2 S2 the collection Cp;C ofK-circles intersecting C exactly at p has a unique representative passing throughq. (v) For any point p in S2 and any two disjoint K-circles C and D not passingthrough p, there is a K-circle E passing through p and not intersecting C norD. Moreover, if p is \between" C and D (i.e. in the component of S2 nC whichcontains D and in the component of S2 nD which contains C) E can be foundseparating C and D (i.e. with C and D contained in di�erent components ofS2 nE).
Proof: Translated to the non-compacti�ed plane (i) and (ii) are equivalent to\three collinear points are not K-cocircular and through any three non-collinearpoints there passes exactly one K-circle". For the proof of this see, for example,[12] , [16] or [15]. (The latter gives a more general result in arbitrary dimension).Actually, strict convexity is only needed in (ii) and smoothness in (i).We will prove that (iii) actually follows from (i) and (ii). Let C and Dbe two K-circles intersecting at two points p and q, so that C = c1 [ c2 andD = d1 [ d2, where c1, c2, d1 and d2 are closed arcs joining p to q. If (iii) is nottrue, we can suppose without loss of generality that c1[d1 separates c2 from d2.Consider two points pc and pd in c1 and d1 respectively and a K-circle passingthrough p, pc and pd (which exists, by (i)). This K-circle must intersect eitherc2 or d2 in another point, which contradicts (ii).In (iv) several cases need to be studied. If p is the point at in�nity, thenCp;C is the collection of lines parallel to C. If C is a line but p is not the point
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at in�nity, then Cp;C contains C and the collection of proper K-circles passingthrough p and having C as supporting line. If C is a proper K-circle thenCp;C = Cp;l, where l is the supporting line of C at p.The �rst part of (v) is trivial, considering a very small K-circle passingthrough p (or a very far away line if p = 1). If p is between C and D, thenthe K-circle E separating C and D is still easy to �nd, considering the possiblecases for C and D (being proper K-circles or lines) and for p (being at in�nityor not). 2
Lemma 3.4 Let DK be a smooth, strictly convex distance function in the com-pacti�ed plane S2 = E2[f1g. Let C and D be two K-circles (or lines). Denoteby C+ and C� (resp. D+ and D�) the two connected components of S2 n C(resp. of S2 nD), and let p be a point in C+\D�. Then, there exists a K-circleE such that(i) p 2 E and E \ C = E \D = C \D(ii) the two connected components of S2 n E are contained respectively inC+ [D+ and C� [D�.
Proof: Let us consider separately the three possibilities for C \ D (being twopoints, one point or empty).� If C and D intersect in two points q and r, then take E to be the K-circlepassing through p, q and r (Lemma 3.3(i)). By Lemma 3.3(ii) E satis�es (i).Also, Lemma 3.3(iii) and the fact that E intersects C+\D� imply that the twocomponents of E n fq; rg are contained respectively in C+ \D� and C� \D+.� If C and D intersect in one point q, then take E to be the unique K-circlepassing through p in Cq;C = Cq;D (Lemma 3.3(iv)), which trivially satis�es (i).E nfqg is connected and does not intersect C nor D. Since p 2 C+\D� is in E,E nfqg must be contained in C+\D�. This implies that one of the componentsof S2 n E is contained in C+ and one (may be the same one) in D�. If it isnot the same component we have �nished. If it is the same one (call it E1 andcall the other one E2), then we either have E1 � C+ � D� or E1 � D� � C+.This implies that either C� [D� or C+ [D+ equals S2 n fqg, which obviuoslycontains E2.� If C and D do not intersect, then there are essentially two possibilitiesfor the point p. If p is between C and D, then take as E any K-circle passingthrough p and separating C and D. Otherwise, take as E any K-circle passingthrough p and not intersecting C nor D. 2
Theorem 3.5 Let DK be a smooth, strictly convex distance function in thecompacti�ed plane S2 = E2 [ f1g. Let S be a �nite point set. Call VK(S)the collection of signed subsets induced by K-circles (and lines), together withthe empty signed subset (;; S; ;). Then VDK (S) is the set of covectors of anacyclic, polytopal oriented matroid DOMDK (S). Its rank equals 4 if and only ifS is not contained in a K-circle (or line). We will call this oriented matroidthe Delaunay oriented matroid DOMK(S) of S with respect to distance DK .
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Proof: Axioms (V0) and (V1) in De�nition 2.2 are trivially satis�ed for VK(S).Axioms (V2) and (V3) are also trivial if one of the covectors involved is theempty covector. Thus, consider two covectors XC and XD in VDK (S) comingfrom two DK-spheres (or lines) C and D. Call C+, C�, D+ and D� respectivelythe connected components of S2 n C and S2 n D, in the way that agrees withthe signs in covectors XC and XD. In these conditions, the vector eliminationaxiom (V3) follows directly from Lemma 3.4.The composition axiom (V2) needs to be proved only in the case that nopoint of S lies in U = (C+ \ D�) [ (C� \ D+), according to [2, Corollary3.7.7]. If U is empty, then there is nothing to prove. If U is not empty, thenwithout loss of generality assume that C+ \D� is not empty. Otherwise applythe following to the opposite covectors �XC and �XD. Take an additionalpoint p in C+ \ D�. Consider the augmented point set S0 = S [ fpg and thetwo extended covectors YC and YD in VK(S) induced by the K-spheres C andD. Since fpg = (YC+ \ YD�) [ (YC+ \ YD�), the covector Z' produced byaxiom (V3), which we have already proved, is an extension of XC �XD. Thus,a K-circle exists producing XC �XD 2 VK(S).Lemma 3.3(v) implies that a covector X = (X+; X0; X�) with maximalX+ must equal (S; ;; ;). Thus, DOMK(S) is acyclic. Lemma 3.3(iv) impliesthat a covector X = (X+; X0; X�) with p 2 X0 and maximal X+ must equal(S n fpg; fpg; ;). Thus, DOMK(S) is polytopal.Suppose that there are �ve non-zero covectors X1; . . . ; X5 each with supportnot contained in the union of the supports of the others. Then, there are threepoints p1 2 X1, p2 2 X2 and p3 2 X3 with p1; p2; p3 62 X4 [ X5. I.e, thethree points lie in the K-circles de�ning X4 and X5. This implies that X4 andX5 are equal or opposite, which contradicts the assumption. Thus, the rankof DOMK(S) is at most 4. Moreover, if a K-circle exists containing S, thesame argument shows that the rank cannot be 4, because this would imply theexistence of a non-zero covector X4 passing throug three di�erent points of S.If S does not lie in a K-circle, take four points in S which are neither collinearnor K-cocircular. The four covectors corresponding to the K-circles passingthrough three of them prove that the rank is at least four. 2
Remark 3.6 The compacti�ed setting makes the extended Delaunay orientedmatroid de�ned in section 2 be an instance of a Delaunay oriented matroidDOM(S) in which S contains the point 1. Everything we said in section 2 forDelaunay oriented matroids (extended or not) in the Euclidean case holds forthe Delaunay oriented matroids de�ned in Theorem 3.5. The only exception isthe determinantal formula for computing the chirotope, although the rule forcomputing it by orienting the K-circle passing through three points still holds.A non-empty covector X of DOMK(S) is a cocircuit if and only if X0 has atleast three points.
Remark 3.7 Our proof of Theorem 3.5 is completely based on Lemma 3.3.This is emphasized in the following statement which generalizes this fact to
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arbitrary dimension. The redundant condition (iii) in Lemma 3.3 has beensubstituted by a new inductive one which applies only to d > 2. The proof ofProposition 3.8 can be found in [16]. It is similar to our derivation of Theorem3.5 from Lemma 3.3, with two new technical steps: proving that any non-emptyintersection of D-spheres is either a point or a sphere of a certain dimensionbetween 0 and d � 1 and proving that any D-sphere contains d + 1 points \ingeneral position", i.e. d+ 1 points not contained in any other D-sphere.
Proposition 3.8 Let Sd be a d-dimensional sphere (d � 2), and let D be acollection of (d�1)-dimensional spheres (to be called D-spheres) in Sd. Supposethat D satis�es the following properties:(i) Through any d+ 1 points in Sd there passes at least one D-sphere.(ii) Two any non disjoint D-spheres C and D intersect either in a (d� 2)-dimensional sphere or in a point.(iii0) If d > 2 then, for any D-sphere C, the collection of (d�2)-dimensionalspheres DC := fC \D j D 2 D; C and D intersect in more than one pointg,considered as a system of spheres in C, again satis�es conditions (i), (ii) and(iii0), (iv) and (v).(iv) For any D-sphere C and any points p 2 C, q 2 Sd the collection Dp;Cof D-spheres intersecting C exactly at p has a unique representative passingthrough q.(v) For any point p in Sd and any two disjoint D-spheres C and D notpassing through p, there is a D-sphere E passing through p and not intersectingC nor D. Moreover, if p is \between" C and D (i.e. in the component of Sd nCwhich contains D and in the component of Sd nD which contains C) E can befound separating C and D (i.e. with C and D contained in di�erent componentsof Sd n E).Let S � Sd be a �nite point set. Call VD(S) the collection of signed subsetsde�ned by D-spheres together with the empty signed subset. Then, VK(S) is theset of covectors of an acyclic, polytopal oriented matroid DOMD(S). Its rankequals d+ 2 if and only if S is not contained in any D-sphere.
4 Non-realizable Delaunay oriented matroids
In this section we will show that the Delaunay oriented matroids appearing inTheorem 3.5 may be non-realizable. Actually, we will see that non-realizableones appear for any symmetric, smooth, strictly convex distance function whoseunit ball is not an ellipse. The symmetry assumption is due to the use of Lemma4.1 but the result is possibly true without it. We will also see that, for thesame class of distance functions, no lifting property is possible: we construct aDelaunay triangulation which is not the projection of the lower envelope of anypolyhedron. Triangulations with this negative property are called non-regular[17]. The names non-convex or non-coherent are used by other authors.
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Theorem 4.2 is related to Theorem 3 in [7], which says that Voronoi diagramsand Delaunay triangulations for convex distance functions can have combinato-rial types forbidden for the Euclidean distance (this result has been extended tothe non-symmetric case in [16]). Note, however, that the Delaunay triangulationin Figure 1 has the combinatorial type of a Euclidean Delaunay triangulation.

Lemma 4.1 Let K be a compact, centrally symmetric convex body in the planeE2, which is neither a line segment nor the convex hull of an ellipse. Then,there exists an ellipse E with the same center as K and such that E nK has atleast four connected components.
Proof: If K is a symmetric cuadrilateral, then any ellipse passing through itsfour vertices satis�es the lemma. Otherwise, consider any three pairs of oppo-site points in @K in strictly convex position and the unique ellipse E0 passingthrough them. We deal separately with the following cases:(a) If @K does not contain an arc of E0, then E0 n @K has (at least) threepairs of opposite connected components. Thus, either at least two of the threepairs of connected components are exterior to @K, in which case E0 satis�esthe conditions of the lemma, or at least two of the three pairs of connectedcomponents are interior to @K. In the latter case, take let E be an ellipseexterior to E0 but su�ciently close to it and with the same center.(b) Suppose that @K contains an arc of E0 and at least one point x exteriorto E0. Let p be an interior point in the intersection arc. Consider the ellipse Epassing through p, through x and through their opposite points p0 and x0, andhaving the same tangent as E0 at p. E satis�es the conditions of the lemmabecause each of the arcs px, xp0, p0x0 and x0p along E have their endpoints in@K but contain points exterior to K (namely, those very close to p and p0).(c) Finally, suppose that @K contains an arc of E0 and no point exterior toE0. Call p, q and r three points in such an arc, in this order. Call s a point of@K interior to E0 (which exists because @K is not an ellipse). Then, let E bean ellipse passing through p, q and their opposite points p0 and q0 and havingboth r and s (and their opposite points) in its interior. 2
Theorem 4.2 Let DK be a symmetric, smooth, strictly convex distance func-tion in the plane de�ned by a convex body K. If K is not an ellipse then thereexists a set S of eight points in general position such that(i) the K-Delaunay triangulation of S is not the projection of the lowerenvelope of a polyhedron in three space and(ii) DOMK(S) is not realizable.
Proof: Let us apply Lemma 4.1 to K and, without loss of generality, let ussuppose that the ellipse E obtained is actually an Euclidean circle (we canmake a linear transformation to K, if needed). Let a, b, c and d be four di�erentconnected components of E nK, c and d being the symmetric copies of a andb, respectively. Call A, B, C and D their respective extreme points in the
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Figure 1: Eight points with non-realizable D. O. M.
counterclockwise direction. Let A0, B0, C 0 and D0 be interior points of a, b, cand d respectively, with segments [A;A0], [B;B0], [C;C 0] and [D;D0] being ofequal length (see Figure 1 (a) ).Let S consist on the eight points in Figure 1 (b), obtained as

p1 = A; p2 = D0; p3 = C 0; p4 = D;
p5 = p4 + (D0 �A0); p6 = p4 + (A�A0);

p7 = p6 + (A0 �B0) = p2 + (D � C); p8 = p6 + (B �B0) = p2 + (C 0 � C):
By construction, points p1p2p5p6 and points p3p4p7p8 are collinear. Pointsp1p2p3p4, p3p4p5p6, p5p6p7p8 and p7p8p1p2 are cocircular with respect to Eu-clidean circles but, with respect to the distance DK , their Delaunay triangu-lation contains all the edges in Figure 1(b). For example, the unique K-circleC passing through points p1, p2 and p4 must have p3 outside because the unitK-circle passes through p1 and p4 and has p2 and p3 outside. Points p5, p6,p7 and p8 must also be outside C, because of strict convexity. Thus, the threeedges p1p2, p2p4 and p4p1 are Delaunay edges.Let us perturb the con�guration a little bit, moving the points p1, p3, p5and p7 in counterclockwise sense and the points p2, p4, p6 and p8 in clockwisesense. If the perturbation is su�ciently generic, no three points will be colinearand no four will be K-cocircular. For simplicity, we will keep the same namesfor the perturbed points.From Figure 1(b) and the rule for obtaining �[p; q; r; s] from the orientationof the K-circle passing through p, q and r it is easy to derive the following:

�[1; 3; 5; 2] = �[3; 5; 7; 4] = �[5; 7; 1; 6] = �[7; 1; 3; 8] = ��[1; 3; 5; 4] = �[3; 5; 7; 6] = �[5; 7; 1; 8] = �[7; 1; 3; 2] = ��[1; 3; 5; 6] = �[3; 5; 7; 8] = �[5; 7; 1; 2] = �[7; 1; 3; 4] = �; (1)
as well as

�[1; 2; 3; 4] = �[3; 4; 5; 6] = �[5; 6; 7; 8] = �[7; 8; 1; 2] = +�[1; 2; 6; 5] = �[3; 4; 8; 7] = + (2)
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Note that the two last signs were zero before the perturbation. All the otherwere non-zero and preserve their sign if the perturbation is su�ciently small.Let us suppose that the Delaunay oriented matroid is realizable by eightvectors in R4. Because of general position, we have �[1; 3; 5; 7] 6= 0. Withoutloss of generality we assume �[1; 3; 5; 7] = + and take the corresponding fourvectors as a basis for our coordinate system. Taking into account the signs in(1), the coordinate matrix turns out to be of the form

0
B@
1 ? 0 +a 0 +b 0 +c0 �d 1 ? 0 �e 0 �f0 +g 0 +h 1 ? 0 +i0 �j 0 �k 0 �l 1 ?

1
CA

where a; . . . ; l are strictly positive numbers. The signs in (2) imply the inequal-ities
gk > jh; al > kb; bf > ce; di > gf; ej > dl; ch > ai;

which multiplied together give a contradiction. This �nishes the proof of (ii).For (i), suppose that there is a lifting fq1; . . . q8g � R3 of fp1; . . . ; p8g whoselower envelope projects down to our triangulation. Let l1 and l2 be the linesin tha plane passing respectively through the points p1p2p5p6 and p3p4p7p8(before the perturbation). Let v be the vertical line through the intersectionpoint of l1 and l2. Let us denote by �pqr the plane passing through three non-collinear points p, q and r in 3-space. The structure of the triangulation, afterperturbation, implies that each of the planes
�q1q2q4 ; �q1q3q4 ; �q3q4q6 ; �q3q5q6 ; �q5q6q8 ;

�q5q7q8 ; �q7q8q2 ; �q7q1q2 ; �q1q2q4
intersects the line v in a point below the intersection of the previous one. Thisgives a contradiction. 2
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