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Abstract
Voronoi diagrams in the plane for strictly convexdistances have been studied in [3], [5] and [7]. These dis-tances induce the usual topology in the plane and, more-over, the Voronoi diagrams they produce enjoy manyof the good properties of Euclidean Voronoi diagrams.Nevertheless, we show (Th.1) that it is not possible totransform, by means of a bijection from the plane intoitself, the computation of such Voronoi diagrams to thecomputation of Euclidean Voronoi diagrams (except inthe trivial case of the distance being a�nely equivalentto the Euclidean distance). The same applies if we wantto compute just the topological shape of a Voronoi dia-gram of at least four points (Th. 2).Moreover, for any strictly convex distance not a�ne-ly equivalent to the Euclidean distance, new, non Eu-clidean shapes appear for Voronoi diagrams, and weshow a general construction of a nine-point Voronoi di-agram with non Euclidean shape (Th.3).

1. Introduction and Statement of Results
Given a partition V of the plane into �nitely manyregions, Ash and Bolker [1] have studied the problem ofdeciding if V is an Euclidean Voronoi diagram for someset of points (see also [2] and [5]). We can relax theconditions and ask if the given partition V has at least
* Partially supported by ESPRIT-BRA "POSSO"-6846 andCICyT-PB 89/0379/C02/01.ye-mail: mazon@ccucvx.unican.es / recio@ccucvx.unican.es /santos@ccucvx.unican.es

the same topological shape of an Euclidean Voronoi di-agram of some �nite set of points. Here and in whatfollows we say that two cellular decompositions of theplane, each with a �nite number of cells, have the sametopological shape if there is an homeomorphism of theplane onto itself sending cells to cells.This question is theoretically quite easy, becauseone can construct an algorithm to decide it as follows:taking the coordinates of the points for the Voronoi di-agram as indeterminates, the fact that the Voronoi di-agram for these points has the shape of V can be ex-pressed as a �nite set of conditions on these indeter-minates, in such a way that there exists an EuclideanVoronoi diagram with the shape of V if and only if theconditions are satis�ed for some values of the indetermi-nates. Now, the conditions appearing are always aboutthe position of the circle passing by three of the pointsrespect to a fourth one, i.e. they are polynomial equali-ties or inequalities and real quanti�er elimination givesthe answer to the problem whether they have a solutionor not.More interesting is to study the question about hav-ing the same topological shape of a planar EuclideanVoronoi diagram for the entire collection of partitionsV arising as Voronoi diagrams for a non Euclidean dis-tance. Does the changing of the distance imply a drasticchange on the shape of Voronoi diagrams? Concretelywe will consider the class of normed distances verifyingthe strong triangle inequality (i.e. the triangle equalityholds only for collinear points, cf. [6]). Voronoi dia-grams for these distances (that we shall call in whatfollows strictly convex distances) have been �rst con-sidered by Chew and Drysdale [3] and then studied byKlein [5], Maz�on [8], exhibiting an algorithm for theircomputation. Moreover, these distances are in manyother respects quite close to the Euclidean distance; forinstance they yield the usual topology on the plane andthe Voronoi diagrams for them induce the same kindof cellular decomposition of the plane as the EuclideanVoronoi diagrams do. Thus the problem we posed aboutthe conservation of the topological shape of Voronoi di-agrams is quite natural in this situation.
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The main results of this paper are:
Theorem 1. Let d and � be two strictly convex dis-tances in the plane.(i) If d = ��f with f a bijection of the plane onto itself(i.e. d(P;Q) = �(f(P ); f(Q)); 8P;Q), then f is ana�ne mapping and for every �nite set S � IR2:

f(V ord(S)) = V or�(f(S)):
(ii) If there exists a bijection f : IR2 ! IR2 preservingthe bisectors of every two points, i.e. such that:

8P;Q 2 IR2 f(Bid(P;Q)) = Bi�(f(P ); f(Q));
then f is a�ne, d = k � � � f = � � (k � f), for someconstant k > 0, and thus we are in the conditionsof (i).
Two distances such that d = � � f , with f ana�ne bijection will be called a�nely equivalent. Part(i) of Theorem 1 says that if one knows how to com-pute Voronoi diagrams for a given distance �, then onecan also compute them for any other a�nely equiva-lent distance d. For instance, the problem of computingVoronoi diagrams with respect to a strictly convex dis-tance d whose unit ball is an ellipse can be reduced tocompute Euclidean Voronoi diagrams.Part (ii) of Theorem 1 establishes that, for twogiven strictly convex distances d and � to be a�nelyequivalent, it su�ces that a bijection f from the planeonto the plane exists such that it preserves bisectors(which are two-point Voronoi diagrams). In this case,(i) implies that the Voronoi diagram of any �nite setof points will be also preserved. In other words, (ii)is a strong reciprocal of (i): the only transformationswhich allow to reduce the computation of the Voronoidiagram for one strictly convex distance to another oneare bijective a�nities. Note also that if we take the bi-jection f as being the identity, (i) and (ii) say that twodistances produce identical Voronoi diagrams for every�nite collection of points if and only if they have thesame bisectors and that, in this case, they are relatedby d = k� and so they have the same circles (a circle fora distance d is the set of points with equal distance toa �xed center; if it is convenient to specify the distancewe shall call them d-circles).
After this, in some sense, negative result, we areinterested in knowing when this procedure of reductionpermits to obtain, if not the exact diagrams, at leasttheir topological shape, as this is the hardest part inthe computation of a Voronoi diagram ([4]). We �ndthe next negative result, with the additional hypothesisof the distances being smooth (i.e. with smooth circles).

Theorem 2. Let d and � be two strictly convex andsmooth distances in the plane. If there exists a bijec-tion f from the plane onto itself such that for every

�nite set S, V ord(S) has the same topological shape asV or�(f(S)), then f is a�ne, d = k� � f for some con-stant k > 0 and we are in the conditions of Th.1(i).Moreover, the hypothesis is only needed for sets S offour or less points and it is not su�cient to have it forsets of three points.
As a corollary to Theorems 1 and 2, to look forhomeomorphism between Voronoi diagrams of strictlyconvex smooth distances is the same as to look for equal-ity. We want to remark that the additional hypothesisof the distances being smooth is used in our proof, butpossibly Theorem 2 would be still true without it.
Finally we ask if strictly convex distances induce,for all Voronoi diagrams, the topological shape of anEuclidean one. The answer is given in the followingTheorem which states that it is so only for distancesa�nely equivalent to the Euclidean distance.

Theorem 3. If d is a strictly convex distance, nota�nely equivalent to the Euclidean distance, then thereexists some collection S of nine points whose Voronoidiagram with respect to distance d, V ord(S), has notEuclidean shape.
2. Voronoi Diagrams for Strictly Convex Dis-tances

Strictly convex distances include all the Lp dis-tances for 1 < p < 1 for which Lee [7] has generalizedthe standard divide and conquer algorithm to computethe Voronoi diagram. Also Chew and Drysdale [3] pro-posed a further generalization of the divide and conqueralgorithm to convex distance functions.A strictly convex distance in the plane is any dis-tance induced by a norm and such that the boundaryof its unit ball contains no three collinear points. Theclosed unit ball of a strictly convex distance is a compactand strictly convex subset K of the plane that containsthe origin in its interior and is symmetrical with respectto it. Conversely, any set K with these properties is theclosed unit ball of a certain strictly convex distance [6].The distance dK(P;Q) induced by K between two pointsP and Q, is measured as follows: translate K so that itis centered at P and call it KP . Let Z be the uniquepoint of intersection of the half line from P throughQ with the boundary of KP . The distance between Pand Q is, by de�nition, the quotient of the Euclideandistances between P and Q and P and Z.If the convex K has smooth boundary (i.e. if ithas only one supporting line through each point of itsboundary) we will say that the corresponding distanceis smooth.
Let d be a strictly convex distance on the planeand P and Q any two distinct points. The bisectorBid(P;Q) of P and Q with respect to the distance d is
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de�ned as Bid(P;Q) = fX 2 IR2 : d(P;X) = d(Q;X)gand the d-circle of centre P and radius r, Cd(P; r) isde�ned as Cd(P; r) = fX 2 IR2 : d(P;X) = rg. Threegiven points are said to be d-cocircular if they belong tosome d-circle.
Let S be a �nite collection of points. LetH(P;Q) =fX 2 IR2 : d(X;P )� d(X;Q) < 0g. Then:

RS;d(P ) = \
Q2S�fPgH(P;Q)

is the Voronoi region of P with respect to S and:
V ord(S) = [P2SBdRS;d(P )

is the Voronoi diagram of S with respect to the distanced, where BdRS;d(P ) denotes the topological boundaryof the Voronoi region RS;d(P ).
Interested readers may consult [8] for general prop-erties of strictly convex distances. Here we just recallthe more important ones for our purposes:

(i) d(X;Y ) = d(X;P ) + d(P; Y ) if and only if P be-longs to the closed segment [X;Y ] (strong triangleinequality).(ii) Three given collinear points cannot be d-cocircular.Conversely, if d is smooth, three non collinear pointsare always d-cocircular. This converse is no longertrue if d is not smooth.(iii) Any two d-circles intersect at most in two points(i.e. there is at most one d-circle containing threegiven points).(iv) Bisectors are simple curves that divide the plane intwo unbounded regions.
Strictly convex distances produce Voronoi diagramswith very good properties, as stated in [8]. Summariz-ing, if S is a �nite collection of points then:

(i) RS;d(P ) is an open and not empty subset of theplane andRS;d(P ) =fX 2 IR2 : d(X;P ) < d(X;Q);8Q 2 S � fPgg.(ii) If X 2 RS;d(P ), then the whole closed segment[P;X] is contained in RS;d(P ).(iii) ClRS;d(P ) = fX 2 IR2 : d(X;P ) � d(X;Q), forevery Q 2 S�fPgg, where ClRS;d(P ) denotes thetopological closure of RS;d(P ).(iv) SP2S ClRS;d(P ) = IR2.
As a consequence the Voronoi diagram for any �nitecollection S of points induces a �nite cellular decom-position of the plane in which the 2-dimensional cellsare the Voronoi regions, and the 1-dimensional and 0-dimensional cells are, respectively, the edges and ver-tices of the diagram.

Given a Voronoi diagram V ord(S), with d a strictlyconvex distance, its dual is called the Delaunay diagramof S, Deld(S). The Delaunay diagram is the imbeddedgraph whose vertices are the given collection S of pointsand having an edge between every two points whosecorresponding Voronoi regions share an edge.The polygons that appear as regions in the Delau-nay diagram are characterized by the fact that thereexists a certain d-circle passing through all the verticesof the polygon and having the rest of points of S out-side. This implies that the polygons are strictly convex(they are convex and do not have three collinear ver-tices). In a similar way, an edge appears joining twopoints P and Q of the Delaunay diagram if and onlyif there exists a d-circle passing through P and Q andwith all the other points of S outside. If S does notcontain four d-cocircular points, the Delaunay diagramis a triangulation, known as the Delaunay triangulation.The topological information of a Voronoi diagramis not lost in passing to the dual Delaunay diagram andDelaunay diagrams are much easier to handle, speciallywhen our distance is not the Euclidean one, as the edgesare now segments instead of bisectors. For this reasonin the following examples we shall work with Delaunaydiagrams.In order to study the topological shapes of Voronoidiagrams coming from a strictly convex distance d, wecan simply construct all the possible shapes of imbeddedgraphs with strictly convex regions and then �nd out,for each of these graphs, whether it is realizable as aDelaunay diagram. Figure 1 shows all the shapes ofimbedded graphs with convex faces up to four vertices,with the corresponding shapes for their dual Voronoidiagrams, which are shown in soft lines.

Figure 1
The �rst eight diagrams in Figure 1 are all of themeasily realizable by some Euclidean Delaunay diagramsand, in fact, by Delaunay diagrams with any strictlyconvex distance. On the contrary the two last ones,with four points each, are not realizable by Euclideandiagrams. The reason is that Euclidean Delaunay dia-grams have convex contour, i.e. the edges in the convexhull of S are edges of the Delaunay diagram. This is sobecause for every two consecutive points in the convexhull, a su�ciently large Euclidean circle passing throughthem can be found not containing any other point of S.
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Moreover, this happens not only for the Euclidean dis-tance, but for every smooth strictly convex distance. Weconclude that no Delaunay diagram for a smooth dis-tance has the shape of the two last diagrams in Figure1. Nevertheless, this is no longer true for non smoothdistances. Figure 2 shows two unit balls which real-ize, respectively, the two last diagrams in Figure 1. Inthe two cases the realization is possible because of theexistence of groups of three points which are neithercollinear nor cocircular, for the distance we consider.

Figure 2
One can then think that only non smooth distancesproduce topological shapes di�erent than the Euclideanones for the Delaunay and Voronoi diagrams. In fact,up to six points, all possible shapes of imbedded graphswith convex contour and strictly convex polygons havebeen exhaustively explored resulting that all of themhave the shape of some Euclidean Delaunay diagram.With seven points several shapes exist which cannot berealized by any Euclidean Delaunay diagram; two ofthem are shown in Figure 3.

Figure 3
If the diagram in Figure 3(a) was an Euclidean De-launay diagram, then the points 1, 2, 3 and 4 would liein an Euclidean circle and thus the sum of the angles� and �0 would equal to 180o. The same thing wouldhappen to polygons (2456) and (3457), and we wouldhave that � + � + 
 + �0 + �0 + 
0 = 3 � 180o. But�0 + �0 + 
0 = 360o and so � + � + 
 = 180o. Thisis not possible, because the sum of the three angles ofthe triangle (167) is also 180o, and �+ � + 
 is clearlysmaller.In Figure 3(b) we must have � + �0 < 180o, aspoint 4 must be outside the Euclidean circle passingthrough 1, 2 and 3. With similar arguments we conclude�+�+
+�0+�0+
0 < 3�180o and then �+�+
 <180o. This is again impossible as the contour of thediagram (the hexagon (125673) ) is convex.

The question is now whether these shapes can berealized by Delaunay diagrams for some smooth strictlyconvex distance or not. The answer is a�rmative as in-dicated in Figure 4 for the diagram in Figure 3(a). Thesixteen points in the left part of Figure 4 form a strictlyconvex, symmetrical polygon, and thus there exists asymmetrical, smooth and convex closed curve passingthrough all of them. If we take as unit d-circle any suchcurve, then the right part of the �gure is actually a De-launay diagram for the induced distance d: to see this,note that polygons (1234), (2456) and (3457) havetheir vertices in the d-circles with centers (0; 9), (�8; 3)and (8; 3) and radii 8=17, 1 and 1, respectively. A simi-lar construction can be made for the diagram in Figure3(b).

Figure 4
We do not know either if every diagram with con-vex contour and strictly convex regions has the shapeof a Delaunay diagram for some strictly convex dis-tance, nor if for every strictly convex distance thereexists a seven-point Delaunay diagram with non Eu-clidean shape. Nevertheless, in the proof of Theorem 3we will see that any strictly convex distance, providedit is not a�nely equivalent to the Euclidean distance,produces some nine-point Delaunay diagram with oneof the shapes shown in Figure 5. The proof that no Eu-clidean Delaunay diagram has these shapes is similar tothe proofs made for the diagrams in Figure 3, and leftto the reader.

Figure 5
3. Proofs of Theorems
Proof of Theorem 1.(i). To prove that f is a�ne itsu�ces to see that it sends collinear points to collinearpoints. By the Fundamental Theorem of A�ne Geom-etry any bijection from the plane onto itself preservingcollinearity is a�ne.Let P , Q and R be three collinear points and, with-out loss of generality, suppose that R is in the segment
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[P;Q]. Then, by the strong triangle inequality on d,d(P;Q) = d(P;R) + d(R;Q). Thus, �(f(P ); f(Q)) =�(f(P ); f(R)) + �(f(R); f(Q)) and by the strong trian-gle inequality on �, f(P ), f(Q) and f(R) are collinear.It remains only to study how f trasforms Voronoidiagrams. We recall the de�nition of Voronoi regions:
RS;d(P ) = fX2 R2 : d(X;P ) < d(X;Q); 8Q 2 S�fPgg
Now:
d(X;P ) < d(X;Q)() �(f(X); f(P )) < �(f(X); f(Q))
and then X 2 RS;d(P ) () f(X) 2 Rf(S);�(f(P )). Weconclude that f(RS;d(P )) = Rf(S);�(f(P )), i.e. that fpreserves the Voronoi regions. As f is bijective, thesame happens for the union of the regions and so alsofor the Voronoi diagrams.

The proof of Theorem 1.(ii) is based in the followingsequence of lemmas:
Lemma 1. In the hypothesis of (ii), for every d-circleCd with center at X, its image f(Cd) is a �-circle withcenter at f(X).Proof. Let Cd be a d-circle with center at a point Xand let us prove that f(Cd) is contained in a certain�-circle C� with center f(X). By a similar argument wewould prove that f�1(C�) is contained in a certain d-circle C 0d with center at f�1(f(X)) = X and necessarilyC 0d = Cd and so f(Cd) = C�, and the lemma holds.Let P , Q and R be three points in Cd. Then thedistance from X to any of them is the same and X isthe only point having this property, because any pointhaving this property would be the center of another d-circle intersecting Cd in at least the three points P , Qand R. Then,

Bid(P;Q) \Bid(Q;R) = fXg:
Now, f being bijective and preserving bisectors impliesthat

f(Bid(P;Q)) \ f(Bid(Q;R)) = ff(X)g; and
Bi�(f(P ); f(Q)) \Bi�(f(Q); f(R)) = ff(X)g;

so f(P ), f(Q) and f(R) lie in a certain �-circle C� withcenter at f(X).To prove that for any other T 2 Cd, f(T ) also liesin C�, it su�ces to make the same considerations forthe points P , Q and T and conclude that they lie in acertain �-circle with center at f(X). This circle must bethe same C� because it has the same center f(X) andthe same radius �(f(X); f(P )).

Lemma 2. In the hypothesis of (ii), if R is the midpointof P andQ, then f(R) is the midpoint of f(P ) and f(Q).Proof. The midpoint R of a segment [P;Q] is the onlypoint of intersection of Bid(P;Q) with the d-circle withcenter P and radius r = d(P;Q)=2. As we already knowthat f transforms d-circles to �-circles and d-bisectorsto �-bisectors, it follows that f(R) is the only point ofintersection of Bi�(f(P ); f(Q)) with a certain �-circleC� centered at f(P ). In these conditions, the radiusof C� must be �(f(P ); f(Q))=2 and thus f(R) is themidpoint of f(P ) and f(Q).
Lemma 3. In the hypothesis of (ii), f is an homeomor-phism.Proof. We know by Lemma 1 that f sends each d-circleCd to a �-circle C� = f(Cd). Let us see now that it alsosends the region Bd bounded by Cd to the region B�bounded by C�. Let O be the center of Cd and r itsradius. Consider a point P with d(O;P ) = 2r and letR be the midpoint of O and P , which is on Cd. As fpreserves midpoints, the point f(R), which lies on C�,is the midpoint of f(O) and f(P ).Any point X in Bd belongs to a d-circle centeredin O and with radius smaller than r, and thus notintersecting the bisector Bid(O;P ). Its image f(X)must be then in a certain �-circle centered in f(O)and not intersecting the bisector Bi�(f(O); f(P )). So�(f(O); f(X)) < �(f(O); f(P ))=2 = �(f(O); f(R)), con-cluding that f(X) belongs to B�.As the families of Bd's and B�'s are both basis forthe usual topology, f is an homeomorphism.
Lemma 4. In the hypothesis of (ii), f sends collinearpoints to collinear points.Proof. Let P , Q and R be three collinear points and,without loss of generality, suppose that Q is between Pand R. We can construct a sequence of \midpoints" insegment [P;R] having Q as limit: let X1 be the mid-point of P and R, X2 the midpoint of the halfsegmentin which Q is contained and so on. As f preservesmidpoints, the image sequence f(Xn) is contained insegment [f(P ); f(R)] and, being f continuous, f(Xn)has f(Q) as limit and f(Q) belongs to the segment[f(P ); f(R)].
Proof of Theorem 1.(ii). Firstly, f is a�ne becauseany bijection in the plane sending collinear points tocollinear points is a�ne, by the Fundamental Theoremof A�ne Geometry.It remains only to prove that d = k � � f , for someconstant k > 0.Let P and R be any two points and let us compute�(f(P ); f(R)). For that, let Cd be the d-circle centeredat P with radius 1 and let Q be the unique point ofintersection of the half line from P through R with Cd.By de�nition of d we have d(P;R) = kP �Rk=kP �Qk.
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By Lemma 1, f(Cd) is some �-circle centered atf(P ) and radius r = �(f(P ); f(Q)).To measure �(f(P ); f(R)), note that f being a�neimplies: kP �RkkP �Qk = kf(P )� f(R)kkf(P )� f(Q)k ;
and, by de�nition of � we have:

kf(P )� f(R)kkf(P )� f(Q)k = �(f(P ); f(R))�(f(P ); f(Q))
So �(f(P ); f(R)) = �(f(P ); f(Q)) kP�RkkP�Qk = r � d(P;R),where we have used that:
r = �(f(P ); f(Q)) and d(P;R) = kP �Rk=kP �Qk:

Thus, � � f = r � d and d = k � � � f , with k = 1=r.Finally, k � � � f = � � (k � f) (any normed distancecommutes with homotecies) and we are in the conditionsof (i).
Proof of Theorem 2. First we are going to see thatf sends collinear points to collinear points, and thus fis a�ne. Let P , Q and R be three collinear points. Iff(P ), f(Q) and f(R) were not collinear, they would be�-cocircular (because of � being smooth, recall property(ii) of strictly convex distances) and the center O0 ofa �-circle passing through them would belong to theclosures of the three regions in V or�(ff(P ); f(Q); f(R)g(by property (iii) of Voronoi diagrams).Now, V or�(ff(P ); f(Q); f(R)g) has the same topo-logical shape than V ord(fP;Q;Rg) and thus there ex-ists some common point O in the closures of the threeVoronoi regions in V ord(fP;Q;Rg). This implies thatO has the same distance to P , Q and R, and thus thereis a d-circle passing through P , Q and R, which is im-possible because they are collinear.Now let us see that f sends any d-circle with centerat O to a �-circle with center at f(O).Let Cd be any d-circle andO its center. For every �-nite collection S of three or four points in Cd, O belongsto the closure of each of the Voronoi regions in V ord(S)(again by property (iii) of Voronoi diagrams). As f pre-serves the topological shape of Voronoi diagrams of atmost four points, there must exist a point O0 in theclosure of each of the Voronoi regions of V or�(f(S)).Then, all the points in f(S) are in a certain �-circle CSwith center at O0. This CS is uniquely determined by S,because two �-circles cannot have three common points.Now, if S � S0, (i.e. if S = fP;Q;Rg and S0 =fP;Q;R; Tg), then clearly CS = CS0 , for they intersectin f(S). For arbitrary S and S0, say S = fP;Q;Rgand S0 = fP 0; Q0; R0g, we can consider the intermediatesets:
S1= fP; P 0; Q;Rg; S2= fP 0; Q;Rg; S3= fP 0; Q0; Q;Rg;

S4 = fP 0; Q0; Rg and S5 = fP 0; Q0; R0; Rg;
and conclude that:
CS = CS1 = CS2 = CS3 = CS4 = CS5 = CS0 :
So, CS is the same for every chosen S and we cancall it simply C�. We conclude that f(Cd) � C�, whereC� is some �-circle and a similar argument (applied tof�1) proves the converse; thus f(Cd) = C�. Moreover,f being a�ne, the center O0 of C� must coincide withf(O), because a�ne maps preserve centers of symmetry.Once we know that f is a�ne and that it sends d-circles to �-circles we can �nish the proof of d = k � � � fas in Theorem 1.(ii).

Proof of Theorem 3. The reasoning will be made withthe Delaunay diagrams, rather than with the Voronoiones; due to the considerations made in Section 2, aVoronoi diagram has the same topological shape of anEuclidean Voronoi diagram if and only if its dual De-launay diagram has the shape of an Euclidean Delaunaydiagram.Let C be the unit d-circle of the given distanced. C is a closed curve, with strictly convex interior andsymmetrical respect to the origin. We give the followinglemma on C, whose proof we do not reproduce for it isquite long and uses analytical methods having nothingto do with Voronoi diagrams.
Lemma 5. Let C be any closed curve, symmetricalwith respect to the origin and with convex interior.Then there exists a certain ellipse E centered at theorigin containing C in its inside and intersecting C inat least two pairs of opposite points (see Figure 6).

Figure 6
The lemma says, roughly speaking, that there ex-ists an ellipse circumscribed to C by four points. Forthe sake of simplicity we can suppose, moreover, thatthe ellipse E is actually a circle; this produces no loss ofgenerality because, by theorems 1 and 2, an a�ne bijec-tive transformation to distance d makes no changes inthe topological shapes obtained for Voronoi diagrams.Now, the two pairs of opposite points in which Eand C coincide, E being a circle, are the vertices ofa rectangle in the plane and we can form a nine-point�gure with four copies of this rectangle, as indicatedin Figure 7(a). Clearly the Delaunay diagram of thesenine points, both for the Euclidean distance and for the
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distance d, consists on the four rectangles 1245, 2365,5698 and 4587 because the vertices of each rectangle lieboth in a circle and in a scaled translation of C (whichis a d-circle).

Figure 7
We are now going to move a little the four verticesof the bigger rectangle (i.e. the points 1, 3, 7 and 9 inthe �gure) in order to change the shape of the Delaunaydiagram: note that if we move one of these vertices, say1, along the circle passing by it, the other three verticescan be moved accordingly in their respective circles, insuch a way that the contour (1'23'69'87'4) is still arectangle with the four points points 2, 4, 6 and 8 inits sides (as in Figure 7(b)).Using this property we can move the four vertices1, 3, 7 and 9 to a position in which at least one of them(say 1') does not lie on the corresponding d-circle (thisis possible because, by hypothesis, the d-circles are notcircles). In these conditions, point 1' must be exteriorto the d-circle passing through vertices 2, 4 and 5 (forthe d-circle is \inscribed in the circle"), and this makesthe segment joining points 2 and 4 to appear as a newedge in the Delaunay diagram of the nine points for thedistance d.By symmetry, the same thing occurs at the point 9'opposite to 1'. For the other two vertices 3' and 7', twopossibilities may happen: either they lie on their corre-sponding d-circles or are exterior to them. In the �rstcase no more edges appear and the Delaunay diagramis the one in Figure 5(a), and in the second case theedges 26 and 48 are also in the Delaunay diagram, andit has the shape of Figure 5(b). Neither 5(a) nor 5(b)have the shape of any Euclidean Delaunay diagram, sothe proof is complete.
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