
On the Integration of the Feature Model and PL-AOVGraph
Lidiane Santos

Computer Science Department

Federal University of Rio Grande do
Norte (UFRN)

diane_lid@hotmail.com

Lyrene Silva
Computer Science Department

Federal University of Rio Grande do
Norte (UFRN)

lyrene@gmail.com

Thais Batista
Computer Science Department

Federal University of Rio Grande do
Norte (UFRN)

thaisbatista@gmail.com

ABSTRACT

In this paper we propose PL-AOVGraph, an extension to the
aspect-oriented requirements modeling language, AOV-Graph,
to support the definition of software product line requirements.
With PL-AOVGraph it is possible to specify requirements and
variabilities. In general SPL variabilities are represented using
the Feature Model, however, this model does not represent the
requirements of the system. PL-AOVGraph and the Feature
Model are complementary approaches as they represent different
perspectives of a system. With the goal of inserting PL-
AOVGraph in the SPL development process, this work proposes
a bi-directional mapping between PL-AOVGraph and the
Feature Model.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications.

General Terms
Documentation, Design, Languages.

Keywords
Software Product Line, Feature Model, PL-AOVgraph,
requirements, variabilities

1. INTRODUCTION
Software Product Line Development (SPL) [2] supports the
creation of a portfolio of similar products using a common
software infrastructure to assembly and configure parts designed
to be reused across products. SPL approaches identify
commonalities of all family members, as well as features that
vary among members of the family, the variabilities. Thus,
members of a family have a basic set of common functions with
many variants. A fundamental challenge in this context is to
manage the variabilities by defining the variation points and the
dependencies between them. A same feature can be spread and
tangled in a same product. In order to handle this crosscutting
nature of common and variable features, Aspect-oriented
software development (AOSD) [3] has been recently explored in
the development of SPLs. In general such crosscutting elements
cannot be suitably modularized with conventional variability
mechanisms, such as conditional compilation or inheritance [2].

Therefore, AOSD can be used to support improved modularity
of crosscutting concerns, expressing them as aspects.

Following this tendency of integrating SPL and AOSD, in this
paper we propose PL-AOVGraph [7], an aspect-oriented
requirement language that extends AOV-Graph [9] by adjusting
its aspect-oriented abstractions to support the SPL concepts. PL-
AOVGraph includes a new type of relationship and properties.

Feature models represent commonalities and variabilities in
terms of features. A feature is a concept that is prominently
visible to any stakeholder involved in the development of
applications. This model provides a clear representation of the
features that are relevant to the product line family domain.
However, the high level of abstraction of the feature model lets
several requirements details aside. Thus, the feature model must
be integrated with other requirements model in order to provide
more detailed and meaningful information to the development of
a SPL. In this context, we propose PL-AOVGraph, an aspect-
oriented requirement modeling language that represents both the
variability and the requirement information. The aim of PL-
AOVGraph is to complement the feature model by (i) detailing
the requirements with SPL information, and (ii) identifying and
modularizing crosscutting concerns.

As the feature model is already part of the SPL development
process and with PL-AOVGraph it is possible to identify and
modularize the crosscutting concerns, in this work we propose a
bi-directional mapping between the Feature Model and PL-
AOVgraph. Via this mapping it is possible to associate the
elements of the feature model and the PL-AOVgraph elements
and to include PL-AOVGraph in the development process of
SPL using existing feature model. The mapping defined in this
work was implemented in the ReqSys tool [5] – an Eclipse
plug-in that allows the automatic generation of a PL-AOVGraph
specification from a feature model and vice-versa. This paper
also presents a case study that illustrates the result of the
mapping.

This paper is structured as follows. Section 2 contains a brief
presentation about the feature model. Section 3 presents PL-
AOVGraph. Section 4 contains the details about the bi-
directional mapping. Section 5 presents the case study. Section 6
present some related work and Section 7 contains the final
remarks.

2. FEATURE MODEL
As previously mentioned, features are organized in feature
models that are hierarchical graphs where the root is the context
of the model and the descendent nodes are features. Features can
be classified into: (i) Mandatory : all products of the family
must contain this feature; (ii) Optional: the products can contain
this feature or not; (iii) Alternative : the products must contain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

EA'11, 21-MAR-2011, Porto de Galinhas, Brazil
Copyright 2011 ACM 978-1-4503-0645-4/11/03…$10.00.

exactly one feature from a group of features; (iv) Inclusive-or:
the products must contain at least one from a group of features.

Feature models can contain additional information such as
cardinality, groups, attributes, references, and annotations
defined by the users.

Figure 1 shows a part of the Mobile Media feature model, a SPL
to mobile devices. “Media Selection”, “View Photo”, “Play
Music”, and “Play Video” are mandatory. “Capture Photo” and
“Capture Video” are optional and “Photo”, “Music”, and
“Video” are inclusive-or, representing the variabilities.

Figure 1. Mobile Media Feature Model (partial).

3. PL-AOVGraph
PL-AOVGraph is an extension of the AOV-Graph goals model
that inherits all its properties. It can represent positive and
negative conflicts among the requirements (goals, softgoals, and
tasks). It also modularizes the crosscutting concerns. AOV-
Graph is open to include new properties to the goals model by
using the property element. Thus, PL-AOVGraph does not
include new elements it semantically enriches existing AOV-
Graph elements by including the following properties to support
variabilities: cardinalityMin, cardinalityMax, groupFeature,
cardinalityGroupMin, cardinalityGroupMax, and isFeature.

The cardinalityMin and cardinalityMax properties are used to
associate the minimum and maximum cardinality to a
component, respectively. The PL-AOVGraph groupFeature,
property specify the members of a group and the
cardinalityGroupMin and cardinalityGroupMax properties are
used to determine the cardinality of the group. The isFeature
property indicates if a PL-AOVGraph component is equivalent
or not to a feature. This is a decision of the requirements
engineer when elaborating the PL-AOVgraph specification
because depending on the abstraction level, a requirement is not
always a feature. For instance, the feature model that focuses on
users in general does not present implementation requirements.

PL-AOVGraph also includes a new type of contribution
relationship, named inc-or, to indicate that at least one and at
most all elements with this relationship must be included in the
product line.

Figure 2 presents the PL-AOVGraph representation of Mobile
Media, (a) graphical notation (b) textual notation. The “Media
Selection” task has three contributions of the xor type (Photo,
Music, and Video), that indicates that one of those must be
included in the product line. The “Photo” task has two
contributions: (i) or type (Capture Photo), indicating that this
element can be included or not in the product (ii) and type
(View Photo), indicating that this element is always included.
The “Music” task has just one contribution and (Play Music)

and the “Video” task has two contributions: (i) and (Play
Video), (ii) or (Capture Video).

Figure 2. PL-AOVgraph example: (a) Graphic Notation (b)

Textual Notation.

4. BIDIRECTIONAL MAPPING
This section describes a bidirectional mapping among the
feature model and PL-AOVgraph. Section 4.1 explains how this
mapping can be inserted in SPL development process. Section
4.2 presets a running example – the Smart Home system.
Section 4.3 defines the mapping rules, associating the elements
of these artifacts, features models and PL-AOVGraph
specifications. Section 4.4 reports some constraints of this bi-
direction mapping.

4.1 The process
Silva et al [10] explain two situations to use this bidirectional
mapping in the SPL development: (i) when there is only a PL-
AOVGraph specification, and (ii) when there is only a feature
model. In the first case, a PL-AOVGraph model is created from
requirements and it will be input to the bidirectional mapping,
generating a feature model. In the second case, there is a feature
model generated from the requirements and it will be the input
to the bidirectional mapping, generating a PL-AOVGraph
specification. After that, in both of cases, the outputs must be
analyzed in order to identify and correct mistakes and omissions
and then go back to the bidirectional mapping again. When
corrections are not necessary, the PL-AOVGraph specification
and the feature model can be used to help the development of
the architecture and other design models.

4.2 Running Example – Smart Home
Smart Home [7, 9] is a SPL to residential systems. A smart
home can contain several floors, with many rooms, each room
can contain controllers, such as, weather, doors, windows, lights
controllers, fire detector, and presence simulator. [6].

Sánchez et al [6] defines the Smart Home features model (Figure
3) and describes its functional requirements. Based on this
requirements and non-functional requirements defined by Tomás
et al [11], we create a PL-AOVGraph specification [7]
presented in Figure 4.

Figure 3. Smart home feature model.

Figure 4. Smart Home PL-AOVgraph specification.

4.3 Mapping Rules
Section 4.3.1 presents the mapping rules to generate the PL-
AOVGraph specification from the feature model. Section 4.3.2
shows the mapping rules to transform the feature model into a
PL-AOVgraph specification.

4.3.1 Mapping Features model to PL-AOVgraph
Table 1 summarizes the rules to transform Features models into
PL-AOVgraph.

By using these rules (described in table 1), the feature model of
figure 3 is mapped into the PL-AOVGraph specification
illustrated in Figure 5, as following:

• Rule 1: “Smart Home” root in the feature model is mapped
into the Smart Home goal model in PL-AOVgraph.

• Rule 2: All hierarchy of this feature model is mapped into a
similar hierarchy in PL-AOVgraph. In this case, features
are mapped into tasks.

• Rule 3: Mandatory (for instance, “BlindActuador”) and
optional features (for instance, “FloorGUI”), are mapped
into AND and OR contributions, respectively.

• Rule 4: Features with cardinality (for instance “Floor”) are
transformed into tasks with cardinalityMin and
cardinalityMax properties.

• Rule 6: Reference features (for instance, “GUI”) are
mapped into task_ref in PL-AOVgraph.

Rule Description

1 Each feature model generates a goal model.

2 Each goal model generated consists of a hierarchy identical to the feature model
hierarchy, i.e., a feature father will be transformed into a task father in PL-AOV-
graph, and so on.

3 Mandatory, optional, alternative and o r-inclusive features are represented by and,
or, xor, and inc-or contribution relationships, respectively.

4 Features with cardinality are transformed into tasks with cardinalityMin and
cardinalityMax properties.

5 Grouped features with cardinality are transformed into grouped tasks with
groupFeature, cardinalityGroupMin and cardinalityGroupMax properties.

6 Features defined as reference are mapped to task_ref.

7 If a feature has an annotation about a correlation relationship (hurt, break, make,
help, unknown) then it is mapped into a source of a correlation whose type and
target will be described by an annotation.

8 If there are more than one reference to the same feature then this feature is mapped
to an advice of a crosscutting relationship, features linked to that feature are
mapped into pointcuts and the feature father of feature referred is mapped into the
source of this crosscutting relationship.

9 If a feature has an annotation defining one type of PL-AOVGraph components
(task, goal, softgoal), then this feature generates a component of the type described
in this annotation.

Table 1: Rules to transform Feature Models into PL-
AOVgraph.

1. goal_model (Smart Home; GM1){
2. task Fire Detection (or; T2;){
3. task Enable Alarm (or; T2.1;){
4. task Activate Siren (inc-or; T2.1.1;){ property{isFeature=no} }
5. task Activate Lights (inc-or; T2.1.3;){ property{isFeature=no} } }
6. task Sprinkle Water (and; T2.2;){} }
7. task Light Management (or; T3;){
8. task Regulate Intensity Light Automatically (inc-or; T3.1;){}
9. task Select Predefined Values [Light] (inc-or; T3.2;){
10. task Select mode [TV watching] (inc-or; T3.2.1;){}
11. task Select mode [Reading] (inc-or; T3.2.2;){}
12. task Select mode [Normal] (inc-or; T3.2.3;){}
13. task Select mode [Ambient] (inc-or; T3.2.4;){} } }
14. task Presence Simulation (or; T5;){
15. task_ref = (Regulate Blinds Automatically; T1.2; inc-or;) }
16. task Minimize Waste of Energy (or; T6;){
17. task Measure Luminosity (and; T6.1;){}
18. task Detect Movement (and; T6.2;){}
19. task_ref = (Regulate Heater Automatically; T4.2.1; inc-or;) }
20. softgoal Security (S1;){
21. softgoal Maintaining Privacy (S1.1;){
22. softgoal Access Control (S1.1.1;){} }
23. softgoal Protect Communications (S1.2;){} }
24. softgoal Availability (S2;){
25. softgoal Availability [Controllers] (S2.1;){}
26. softgoal Availability [Sensors] (S2.2;){}
27. softgoal Availability [Actuators] (S2.3;){} }
28 correlation (hurt){
29. source = softgoal_ref = (Availability; S2;)
30. target = softgoal_ref = (Security; S1;) }
31. crosscutting (source = Light Management (T3)){
32. pointcut (PC1): include(Presence Simulation; T5;) and
33. include(Minimize Waste of Energy; T6;)
34. advice (around): PC1{
35. task_ref = (Regulate Intensity Light Automatically; T3.1; inc-or;)} } }

Figure 5. Smart Home PL-AOVGraph generated from the
Feature model (partial view).

In this case study, there are no situations to use rule 5, 7 and 9,
because there are no grouped features either annotations. “GUI”,
“BasicFacilities”, and “ComplexFacilities” features can be
considered advices of a crosscutting relationship, because there
are references repeated more than once (in accordance with the
rule 8 in Table 1), however in the feature model proposed by
Sánchez et al [6] each one of these features is a distinct feature
model (distinct tree). Therefore, these features should be
analyzed by the requirement engineer. The Rule 8 is not applied
in this case. But if we consider the example shown in Figure 6
we see that the "Regulate Light Intensity Automatically"
reference feature appears twice in the feature model, therefore it
represents the advice of the crosscutting relationship, while
"Presence Simulation" and "Minimize Waste of Energy" are the
pointcuts because they are the features that call the feature
corresponding to advice. The source of the crosscutting
relationship is "Light Management" because it is the father of
the referenced feature, as shown in Figure 7 (lines 11-15).

Figure 6. Identifying crosscutting relationship in the feature

model.

Figure 7. Crosscutting relationship generated from the feature

model.

4.3.2 Mapping PL-AOVGraph to the Feature
Model
Table 2 presents the rules to transform a PL-AOVGraph
specification into a Feature Model.

Rule Description

1 Each goal model is mapped into a feature model root.

2 Goals, softgoals and tasks hierarchy is mapped into a similar feature hierarchy, i. e.,
a task root is transformed into a feature root, a goal leaf is mapped into a feature
leaf, and so on.

3 And, or, xor and inc-or contributions are mapped into mandatory, optional,
alternative and or-inclusive features, respectively.

4 Goals, softgoals and tasks with cardinalityMin and cardinalityMax properties
generate features with these properties, as follows: if cardinalityMin=0 then it is
generated an optional feature with cardinality [0..m], if cardinalityMin != 0 then it
is generated a mandatory feature with cardinality [n..m], where n is given by
cardinalityMin and m is given by cardinalityMax.

5 Goals, softgoals, and tasks grouped with the groupFeature property are mapped
into grouped features with cardinality [i..j], where i is given by
cardinalityGroupMin and j is given by cardinalityGroupMax.

6 Goals, softgoals, and tasks that are references generate references features.

7 Correlation relationships are mapped into annotations with the type of correlation
and a feature related to target, this annotation is added to the feature generated by
source of this correlation.

8 In crosscutting relationship, advices are mapped into reference features related to
features defined in pointcuts.

9 Components with isFeature set to “no” are not mapped into a feature

10 The type of components in PL-AOVGraph (task, goal, or softgoal) generates an
annotation in the feature, specifying this type.

Table 2. Rules to transform PL-AOVGraph into the Feature
Model.

By using these rules (table 2), the PL-AOVGraph specification
(Figure 4) is mapped into the feature model (Figure 8), as
follows:

• Rule 1: “Smart Home” goal model (line 1) is mapped into a
feature model root.

• Rule 2: Features are generated from tasks, goals and
softgoals, following the same hierarchy described in PL-
AOVgraph.

• Rule 3: Tasks with AND (for instance, “Sprinkle Water”,
line 6), OR (for instance, “Fire Detection”, line 2) and inc-
or (for instance, “Regulate Intensity Light Automatically”,
line 8) contributions are mapped into mandatory, optional
and inclusive-or features, respectively.

• Rule 6: Task_refs (for instance, “Regulate Blinds
Automatically”, line 15) are transformed into reference
features.

• Rule 7: Correlation relationships are mapped into
annotations, for instance, the hurt correlation from
“Availability” to “Security” (lines 28-30) is mapped into an
annotation in Availability describing the type (hurt) and the
target (Security).

• Rule 8: As the crosscutting relationship has not a
representation in feature model, it is mapped into features,
for instance: the “Regulate Intensity Light Automatically”
advice (line 35) generates two reference features related to
the features correspondent to its pointcuts: “Presence
Simulation” (line 32) and “Minimize Waste of Energy”
(line 33).

1. goal_model (Smart Home; GM1){
2. task Minimize Waste of Energy (or; T1;){
3. task Measure Luminosity (and; T2;){}
4. task Detect Movement (and; T3;){}
5. task Regulate Heater Automatically (inc-or; T4;) }
6. task Presence Simulation (or; T5;){
7. task Regulate Blinds Automatically (inc-or; T6;) }
8. task Light Management (or; T7;){
9. task Regulate Intensity Light Automatically (inc-or; T8;){}
10. task Select Predefined Values [Light] (inc-or; T9;){} }
11. crosscutting (source = Light Management (T7)){
12. pointcut (PC1): include(Presence Simulation; T5;) and
13. include(Minimize Waste of Energy; T1;)
14. advice (around): PC1{
15. task_ref = (Regulate Intensity Light Automatically; T8; inc-or;) } } }

1. goal_model (Smart Home; GM1){
2. task Floor(int) (T1;){property{cardinalityMin=1;cardinalityMax=n;}
3. task FloorGUI (or; T2;){
4. task_ref = (GUI; T26; and;) }
5. task Door (T3;){property{cardinalityMin=0;cardinalityMax=n;}
6. task DoorSensor (or; T4;){}
7. task DoorOpener (or; T5;){} }
8. task Room(String) (T6;){property{cardinalityMin=1;cardinalityMax=n;}
9. task RoomDevice (T7;){property{cardinalityMin=0;cardinalityMax=n;}}
10. task WaterSprinkler (T8;){property{cardinalityMin=0;cardinalityMax=n;}}
11. task RoomGUI (or; T9;){
12. task_ref = (GUI; T26; and;) }
13. task Alarm (or; T10;){}
14. task Window (T11;){property{cardinalityMin=0;cardinalityMax=n;}
15. task Blind (or; T12;){
16. task BlindActuador (and; T13;){} }
17. task WindowActuator (or; T14;){}
18. task WindowSensor (or; T15;){} }
19. task Light (T16;){property{cardinalityMin=0;cardinalityMax=n;}
20...

• Rule 9: PL-AOVgraph elements with the isFeature
property equal to “no” are not transformed into a feature.
For instance “ActivateSiren” (line 4) and “Activate Lights”
(line 5) tasks. It is necessary to stress this decision and the
setting is not done by bidirectional mapping, it is a manual
configuration.

• Rule 10: each feature is generated with an annotation
describing the type of the PL-AOVGraph component from
which it was originated. Figure 8 presents two annotations,
in “Security” and “Presence Simulation” features.

In this case study rules 4 and 5 are not necessary.

Figure 8. Smart Home feature model generated from PL-
AOVgraph.

4.4 Constraints
There are some constraints to be considered when executing the
bidirectional mapping between the feature model and PL-
AOVgraph:

Feature model to PL-AOVGraph – (i) tasks naming cannot be
appropriated because tasks names should contain a verb, while
features name cannot contain it; (ii) only the around advices are
generated. Intertype declarations are not generated, so there are
limitations in the use of the resources offered by PL-AOVgraph.

PL-AOVGraph to the Feature model – feature models contain
so many features, because each requirement (task, goal and
softgoal) generates a feature (except when the isFeature
property is set to “no”). It can be seen as an advantage, because
the generated feature model is more complete, and can be seen
as a drawback, because this feature model can be too big.

5. CASE STUDY: SMART HOME
As illustrated in Figure 9, this case study consists of two stages
where in each one two transformations are performed. All
transformations have been automated by the ReqSys tool [5].

In the first stage, using the smart home PL-AOVGraph
specification it was generated a Feature Model. Then, this
Feature Model was the source for the reverse transformation,
producing a new specification PL-AOV-graph.

In the second stage, using the Feature Model defined by Sanchez
et al [6], partly presented in figure 3, it was generated a PL-
AOVGraph specification which after was input to the inverse
transformation, producing a new Feature Model.

After the transformations, we compared the
results. These results are presented in section 5.1. The full
description is available at
https://sites.google.com/site/plaovgraph.

Figure 9: Steps used to transform the case study.

5.1 Analysis of the Case Study
Sections 5.1.1 and 5.1.2 present the analysis of 1st and 2nd stage
of this case study, respectively. Section 5.1.3 describes the
analysis involving the artifacts used in both steps.

5.1.1 Analysis of 1st Stage
Comparing the PL-AOVGraph specifications 1.1 and 1.2, some
tasks of the 1.1 specification do not appear in the 1.2
specification. This occurs because on the specification 1.1 these
tasks have the isFeature property set to “no”. Another difference
is that the identifier of the tasks always is incremented but this
does not affect the consistency of the specification.

In the PL-AOVGraph specification 1.2 there is no problem
regarding the constraint of naming of tasks since this
specification was obtained from the Feature Model 1.1 which
was also generated from a PL-AOVGraph specification.

Regarding the Feature Model 1.1 it has a large number of
features since each requirement has been transformed into a
feature, except only two, due to the isFeature property. We
conclude that this strategy make difficult the visualization of the
feature model and the analysis of variabilities. This problem is
worse in case of large specifications.

5.1.2 Analysis of 2st Stage
The Feature Models 2.1 and 2.2 are equal. Regarding the PL-
AOVGraph specification 2.1, we observe the problem of naming
tasks because the name of the features in the Feature Model 2.1
is not always composed by a verb. An example is the “Door”
task. The noun “door” alone does not indicate any function that
the system needs to realize. Therefore it is not a requirement. In
this case it would be relevant to describe which functionalities of
the system would interact with the door, for example
“Open/Close Door automatically”.

5.1.3 General Analysis
Comparing the Feature Models 1.1 and 2.1 we conclude that
they present different views of the system. At first some features
represent physical components of the house, it is the case of
"Heater", "Window", and "Light", while in the second all
features represent requirements of the system.

Feature Models generated from PL-AOVGraph specifications
represent the system under a more detailed view. On one hand
this is an advantage because it makes the model more complete,
it provides more information to the development team. On the
other hand, there is the drawback of the complexity and the size
of the model, which can negatively interfere in its use.

Similarly, the PL-AOVGraph specifications 1.1 and 2.1 are
quite different since the first was developed based on the
requirements of the Smart Home aiming at guiding the
development team regarding the functionalities that the system
needs to execute, while the second was generated based on the
features which in some instances makes the specification
confusing because of the vagueness of the requirements.

Anyway, the ReqSys tool generates a Feature Model that has
limitations but it serves as a basis for adjustments in order to
have a more appropriate model. Similarly, specifications
generated from the Feature Models, serve as an initial release to
be corrected when necessary. Thus, in situations where there is
only one these artifacts ReqSys generates the other
automatically saving the requirements engineer of the burden of
developing the artifact from the scratch.

6. RELATED WORK
Alférez et al [1] presents two complementary approaches to
variabilities and requirements management in SPL: (i)
Semantics-based Variability Modelling, through extended
Requirements Description Language (RDL) which maintains
semantic links between variabilities and requirements; and (ii)
Variability Modeling Language for Requirements (VML4RE), a
domain specific language that allows to specify and to relate
variabilities to abstractions of requirements expressed in
different models of requirements.

Silva et al [8] present the language i*- c, an extension of i* with
support to cardinality for representation of the variability in
SPL, in addition the approach G2SPL (Goal to Software Product
Line) that allows to identify features from i* models and
configuration of products within the SPL.

Both works have defined languages that allow representing
variabilities and some mechanism to relate these variabilities to
the requirements. Our work is similar to them once it defines the
extension of AOV-Graph for SPL aiming to fully represent the
variability. But our work also developed a bi-directional
mapping between PL-AOVGraph and the Feature
Model, automated by the ReqSys tool. We consider that
the Feature Model and PL-AOVGraph are essential for the
development of a SPL since they present different
complementary views. Therefore, these models must be used
simultaneously.

7. Final Remarks
In this work we presented PL-AOVGraph and a bidirectional
model between the Feature model and PL-AOVgraph. We
presented the transformation rules that allows the association
between PL-AOVGraph and the Feature model. Such rules were
implemented by the ReqSys plug-in that automates such
activity. We used a well-known case study to analyze and
validate the mapping mechanism.

REFERENCES

[1] Alférez, M. et al. A Metamodel for Aspectual Requirements Modelling and
Composition. AMPLE Project Deliverable D1.3, September 2008.

[2] Brown, L. et al. A widget framework for augmented interaction in SCAPE.
In Proceedings of the 16th Annual ACM Symp. on User interface Software
and Technology Canada, 2003. UIST '03. ACM Press, New York, NY, 1-10.
DOI= http://doi.acm.org/10.1145/964696.964697

[3] Filman, R. E. et al. Aspect-Oriented Software Development. Addison-
Wesley, 2005.

[4] Neiva, D. F. S. Engenharia de Requisitos para Linha de Produto de
Software. Recife, 2008. Tech. Report – UFPE.

[5] Rocha, D. K. F. Visualização de Requisitos a partir de modelos AOV-Graph.
Natal, 2009. 84p. Tech. Report. UERN

[6] Sánchez, P. et al. A Metamodel for Designing Software Architectures of
Aspect-Oriented Software Product Lines. AMPLE Project deliverable D2.2,
September 2007.

[7] Santos, L. O. PL-AOVgraph: Uma extensão de AOV-Graph para Linha de
Produto de Software. Natal, 2010. 84p. Technical Report UERN.
https://sites.google.com/site/plaovgraph.

[8] Silva, C. et al. G2SPL: Um Processo de Engenharia de Requisitos Orientada
a Objetivos para Linhas de Produtos de Software. In: 13th Workshop on
Requirements Engineering (WER 2010), 2010, Cuenca. Proceeding of the
13th Workshop on Requirements Engineering, 2010. p. 1-11.

[9] Silva, L. F. Uma Estratégia Orientada a Aspectos para Modelagem de
Requisitos. Rio de Janeiro, 2006. 222p. PhD Thesis - PUC-Rio.

[10] Silva, L. et al. On the Role of Features and Goals Models in the
Development of a Software Product Line. In: International Workshop on
Early Aspects at AOSD’10, 2010.

[11] Tomás, M. R. S. et al. SMART HOME. Technical Report. Universidade
Nova de Lisboa, 2009.
http://subversion.assembla.com/svn/erdssmarthome/Relatorios/SmartHome.
pdf

