
Mapping Connection Templates to Spring Aspects to
Integrate Business Rules

Sandra Casas
Universidad Nacional de la Patagonia

Austral
Piloto Rivera S/N

Río Gallegos, Argentina
54 2966 442313

scasas@unpa.edu.ar

 Juan G. Enriquez
Universidad Nacional de la Patagonia

Austral
Piloto Rivera S/N

Río Gallegos, Argentina
54 2966 442313

jenriquez@.unpa.edu.ar

ABSTRACT
AOP is a convenient approach to encapsulate business rule

connection code since AOP reduces dependences and coupling;

thus, best reusing is achieved and maintenance efforts reduced. In

our previous works we proposed strategies to assist the developer

in the operation face of software, to manage aspectual

connections. These strategies are: a template (ACT) to document

the aspectual connections and taxonomy of them. In this work, we

propose a new step in this course, the implementation of ACT in

XML, and a mapping process to generate automatically Spring

aspects.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques -

Object-oriented programming, Pretty printers, Program editors,

Reentrant code, Standards, Structured programming

General Terms
Design. Languages. Documentation.

Keywords
Business Rule, Spring, Volatile concerns, AspectJ, AOP.

1. INTRODUCTION
Business rule connection code it is refer to the code not only in

charge of triggering the application of the rules at certain events,

but also gathering the necessary information for their application

and incorporating their results in the rest of the core application

functionality. It has been observed that, even when the decoupling

of the business rules is successfully achieved, the connection code

is still tangled with and scattered in the core application

functionality [1]. This situation occurs independently of the

concrete approach [2][3][4] used for representing the rules.

Therefore, when the current business rules change and they need

to be integrated in the existing application; or new business rules

are added which need to be connected at unanticipated events of

the core application, the source code of the core application must

be adapted manually at different places. Consequently, it becomes

difficult to localize, add, change or remove rule connections.

Another issue is that the business rules are volatile concerns, that

is to say, they change all the time. Then, the rule connection code

must change too, therefore it is suitable that the rule be isolated

and thus easy to localize.

AOP [5] is a convenient approach to encapsulate business rule

connection code. AOP reduces dependences and coupling; thus,

best reusing is achieved and maintenance efforts reduced. Some

works [6][7][8][9][10] have studied the implementation of rule

connection with AOP. Others works have considered the handling

of volatile concerns in early stage of software development with

aspects [11][12][13]. However, the mapping of rule connections to

aspects has been less explored.

In [14], we present taxonomy of aspectual connections that can

serve to identify the different elements of the possible aspectual

connections and the situations where they can occur, in a

commendable schema. Furthermore we have proposed a template to

document the aspectual connections (ACT). However we have

observed, mainly in complex applications such as business-to-

business (B2B) and business-to-consumer (B2C) systems, where

rules play an important role and aspectual connections link

business rules with the core functionality, it is necessary to manage

these connections to really assist the developers. The automatic

mechanisms are needful too, in order to ease the business rules

deployment, software maintenance and evolution.

In this work we provide a method to map the ACT to Spring AOP

framework, automatically. The taxonomy [14] guides the mapping

process. ACT and mapping process could be used in different

stages of software development; design and implementation of

volatile concerns, after core domain construction; or in order to

maintain volatile concerns. Also, ACT could be used to generate

source-code in other aspect-oriented languages.

The remainder of this work continues as follows: Section 2

presents the Spring AOP approach in brief. In Section 3 the

aspectual connections taxonomy is explained, because of being a

guide for next sections. In Section 4, we describe the ACT in

XML format. In Section 5, we present the mapping process to

transform ACT in Spring aspects and a simple example. Finally,

in Section 6, we finish with conclusions, related and future works.

2. SPRING AOP IN A NUTSHELL
The J2EE specification and especially the EJB specification has

been criticized for being too heavy-weight. There are popping up

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.

To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

EA'11, 21-MAR-2011, Porto de Galinhas, Brazil

Copyright 2011 ACM 978-1-4503-0645-4/11/03…$10.00.

open-source component frameworks that are trying to make it

easier and more lightweight to create enterprise applications. The

Spring Framework [15] is one such framework. The Spring

Framework is based on the Inversion of Control pattern, or

Dependency Injection (DIP) as it is called now. DIP is also called

“The Hollywood Principle” – don’t call us, we call you. Spring

provides a simple AOP framework. This is mainly a means of

inserting hooks into the composition. However, Spring is

designed to be used with other AOP frameworks such as AspectJ

[17]. It has well defined points and flows for pointcuts. Even

though the AOP framework is simple, it still enables Spring to

separate some complex crosscutting concerns. This includes

remoting and declarative transactions. Spring´s support for AOP

comes in four flavors: Classic Spring proxy-based AOP;

@AspectJ annotation-driven aspects; Pure-POJO aspects

(Schema-based AOP support); and Injected AspectJ aspects. The

first three are all variations on Spring´s proxy-based AOP.

Consequently, Spring´s AOP support is limited to method

interceptions.

We have experienced the business rule connections with pure-

POJO aspects approach [10]. We found that the instantiation

aspect model (Singleton) is an important restriction, particularly

when it is necessary to implement complex connections. For this

reason, in this work, we adopt the @AspectJ annotation-driven

aspects approach.

@AspectJ refers to a style of declaring aspects as regular Java

classes annotated with Java 5 annotations. The @AspectJ style

was introduced by the AspectJ project as part of the AspectJ 5

release. Spring 2.0 interprets the same annotations as AspectJ 5,

using a library supplied by AspectJ for pointcut parsing and

matching. The AOP runtime is still pure Spring AOP though, and

there is no dependency on the AspectJ compiler or weaver.

Aspects (classes annotated with @Aspect) may have methods

and fields just like any other class. They may also contain

pointcut, advice, and introduction (inter-type) declarations (they

should be annotated with @Pointcut, @Before, @After, etc.) A

pointcut declaration has two parts: a signature comprising a name

and any parameters, and a pointcut expression that determines

exactly which method executions we are interested in. In the

@AspectJ annotation-style of AOP, a pointcut signature is

provided by a regular method definition, and the pointcut

expression is indicated using the @Pointcut annotation (the

method serving as the pointcut signature must have a void

return type). For example, in Figure 1, the Logging class is an

aspect, the LogPoint pointcut defines the interception of debit

method of Account class. An after advice is defined to the

LogPoint pointcut.

Aspect must be declared in the application context, like any other

Spring bean. In this declaration also it is also possible to

configure the scope and order properties. Scope or instantiation

can be singleton, prototype, etc. Order property is used to solve

the situation when two or more aspects have the same pointcut

and advice, it is also know as interaction or conflict.

 @Aspect

 public class Logging {

 @Pointcut(“execution Account.debit(..)”)

 public void LogPoint ()

 {}

 @After(“LogPoint()”)

 public void register()

 { // register information of debit

 // operation }

}

Figure 1. An aspect in @AspectJ annotation-driven aspects

approach.

3. TAXONOMY OF ASPECTUAL

CONNECTION AND SPRING SUPPORT.
An aspectual connection links a business rule with core

functionality; it is any implementation mechanism that

encapsulates: the object rule invocation; the transmission of the

information required by the business rule; the interaction

resolution among business rules and the information returned by

the rule.

The aspectual connection must satisfy some requirements for

business rule could be triggered. According to the imposed

domain constrains, we clearly can identify three categories of

aspectual connections: basic, query and change. Next we explain

these categories and their implementation in @AspectJ

annotation-style approach. The text in <> symbols is generic, they

should be replaced by the code of particular cases. For all cases, it

is assumed that the implementation of business rules classes

follows the Object Rule pattern [2] whose interface consists of

apply(..), condition(..) and action (..) methods, this interface is

denominated Rule.

Basic Aspectual Connection: the aspectual connection triggers

the business rule in a specific point of the core functionality

(event), the information required by the business rule is either

available in the event context or it is global system information.

In Spring this aspectual connection could be implemented as a

class with a field for the rule (Figure 2). The mainEvent method is

the pointcut. The triggerRule method is an advice that triggers the

business rule.

 @Aspect

 public class <id_aspect_connection> {

 private Rule rule;

 @Pointcut("execution(<jointpoint> [and

 <context>]")

 public void mainEvent([<context>]) {}

 @<advice>(“mainEvent([<context>])”)

 public void triggerRule([<context>]) {

 this.rule.apply([<context>]);

 }

 public Rule getRule() {

 return rule;

 }

 public void setRule(Rule rule) {

 this.rule = rule;

 }

}

Figure 2. Implementation of basic aspectual connection.

Although it is necessary to configure the Application Context

(XML file). First, it is necessary to inject the business rule to

aspect bean. After, the aspect (a simple bean) should be instanced

and scope and order properties should be defined.

Query Aspectual Connection: the aspectual connection triggers

the business rule in a specific point of the core functionality but

the information required by the business rule is not available in

the event context. Then connection must first retrieve the

information in order for it to be available when the business rule

be applied. In this case, the aspectual connection should manage

two event (pointcuts) and two advices, each one with different

purpose.

In Spring this aspectual connection is similar to basic connection,

(Figure 3), because of containing the same methods, but also a

new pair of pointcut-advice is added to retrieve the information of

another event. When this event is intercepted, the information is

held in a field (<retrieved_field>) of the aspect. This field is used

in the moment of triggering the rule.

 @Aspect

 public class <id_aspect_connection> {

 private Rule rule;

 private <retrieved field>

 @Pointcut("execution(<jointpoint> [and

 <context>]")

 public void mainEvent([<context>]) {}

 <@advice>(“mainEvent [and <context>]”)

 public void triggerRule([Object obj]) {

 this.rule.apply([<context>,]

 <retrieve_field);

 }

 @Pointcut("execution(<jointpoint> and

 <context>")

 public void queryEvent(<context>) {}

 <@advice>("queryEvent and <context>")

 public void retrieveContext(<context>) {

 // assign retrieve context to

 // <retrieved field>

 }

 // getRule and setRule methods

}

Figure 3. Implementation of query aspectual connection.

Change Aspectual Connection: the aspectual connection should

add new properties (fields/methods) to the core functionality

components, so that a business rule could be triggered. It means,

the new business rule requires adapting the domain vocabulary.

Then the connection must support the domain adaptation such as

the addition of new fields and methods in existing classes.

In AOP this operation is well-know as introduction or inter-type

declarations.

 @Aspect

 public class <id_aspect_connection> {

 private Rule rule;

 @DeclareParents(value=<"change_class">,

 defaultImpl=<”class_new_properties”>)

 @Pointcut("execution(<jointpoint> [and

 <context>]")

 public void mainEvent([<context>]) {}

 <@advice>(“mainEvent [and <context>]”)

 public void triggerRule(<context>) {

 this.rule.apply(<context>);

 }

 // getRule and setRule methods

 }

 Figure 4. Implementation of change aspectual connection.

In Spring the way to modify a class, is to create a new class with

the new methods and fields to add. In the aspect, the annotation

sentence @DeclareParents has two arguments: the class to be

adapted for value attribute and the class with new properties

(Figure 4). The modification of domain class occurs when the

system of Spring executes the configuration. After, a business rule

can be applied to these new properties, as a basic connection.

4. ASPECTUAL CONNECTION

TEMPLATES.
Initially we propose the ACT [14] as artifact to identify and

document the required elements in order to define a connection

between a business rule and base functionality. Also, ACT allows

analyzing and classifying the aspectual connection before

implementation. In this first version, the ACT was specified in a

natural language format. Now, we propose implementing ACT in

XML format. Due to the fact that we pretend to use it for later

mapping process, we have to include more implementations

details. Figure 5 presents a DTD.

<!ELEMENT act (aspect, businessRule, mainEvent,

queryEvent?, changeEvent?, relations?)>

<!ELEMENT businessRule (businessRuleClass,

require*, return?)>

<!ELEMENT mainEvent (eventJP, this?, arg*)>

<!ELEMENT queryEvent (eventJP, this?, arg*,

retrieve*)>

<!ELEMENT changeEvent (classBase, changeClassEvent,

addField*, addMethod*)>

<!ELEMENT addMethod (arg*)>

<!ATTLIST act category (basic|query|change)

"basic">

<!ATTLIST aspect instantiation (singleton |

prototype) "singleton" >

<!ATTLIST aspect order CDATA #REQUIRED>

<!ATTLIST require type CDATA #REQUIRED>

<!ATTLIST this type CDATA #REQUIRED>

<!ATTLIST arg type CDATA #REQUIRED>

<!ATTLIST retrieve type CDATA #REQUIRED>

<!ATTLIST mainEvent when (After | Before | Around)

"After">

<!ATTLIST queryEvent when (After | Before |

Around) "After">

<!ATTLIST addField type CDATA #REQUIRED>

<!ATTLIST addMethod name CDATA #REQUIRED return

CDATA #REQUIRED>

<!ELEMENT aspect (#PCDATA)>

<!ELEMENT businessRuleClass (#PCDATA)>

<!ELEMENT require (#PCDATA)>

<!ELEMENT return (#PCDATA)>

<!ELEMENT eventJP (#PCDATA)>

<!ELEMENT this (#PCDATA)>

<!ELEMENT arg (#PCDATA)>

<!ELEMENT retrieve (#PCDATA)>

<!ELEMENT classBase (#PCDATA)>

<!ELEMENT changeClassEvent (#PCDATA)>

<!ELEMENT addField (#PCDATA)>

Figure 5. Document Type Definition (DTD) of ACT.

According to this definition, the root element “act” has a category

attribute that indicates the category of taxonomy (basic, query or

change). Inside, in the same level, there are six sections or tags:

aspect, businessRule, mainEvent, queryEvent, changeEvent and

relations.

Aspect tag has two attributes; instantiation and order; value of this

element corresponds to the aspect name. BusinessRule tag

consists of several elements to describe the business rule as the

class, inputs and outputs rule. MainEvent tag is a set of attributes

and elements that describe the event and moment that business

rule is triggered, also the context of this event it should be passed

to aspect. QueryEvent tag consists of necessary elements to

retrieve information of another context. ChangeEvent tag,

indicates elements (fields and methods) that are necessary in order

to adapt a domain to applied a business rule. When

(after/before/around) and eventJP (jointpoint) are attributes of

some tag, as mainEvent and queryEvent.

ACT category is basic if aspect, businessRule and mainEvent

sections are completed; it is query if also queryEvent section is

completed; and it is change if also changeEvent section is

completed. Then aspect, businessRule and mainEvent sections are

mandatory.

5. MAPPING ACT TO SPRING ASPECTS.
In this section, we explain the mapping process (rules), to

transform the ACT to Spring aspects. We use the taxonomy

(presented in Section 3) to define the necessary steps for each

case. In Table 1, the actions are described; the text enclosed in <>

symbols referred to elements mentioned in Section 3.

Table 1. Mapping Actions.

Basic ACT

1. Create empty class annotated with @Aspect
 Replace <id_aspect_connection> with value of
 aspect tag of ACT.

2. Create mainEvent method with @Pointcut
 annotation. Replace <joinpoint> with eventJP
 element of mainEvent tag of ACT.

3. Create triggerRule method with @<advice>
 annotation, replace <advice> with when
 attribute of mainEvent tag of ACT.

4. If this/arg tag of mainEvent element is not
 empty, then use to replace <context>

5. Configuration: Declare a bean to aspect
 class. Inject the business rule bean. Set
 bean aspect according instantiation and
 order attributes of aspect tag of ACT.

Query ACT

Apply step 1, 2, 3 and 4 for basic ACT.

5. Create a declaration for <retrieved_field>
 in aspect.

6. Create queryEvent method with @Pointcut
 annotation. Replace <joinpoint> with eventJP
 element of queryEvent tag of ACT.

7. Create retrieveContext method with @<advice>
 Annotation. Replace <advice> with when
 attribute of queryEvent tag of ACT.

8. Replace <context> with this/arg tag not
 Empty. Assign <context> to <retrieved_field>

9. Apply step 5 for basic ACT.

Change ACT

Apply step 1, 2, 3 and 4 for basic ACT.

5. Create @DeclareParents annotation.
 Replace <”change_class”> with classBase of
 ACT. Replace <”class_new_properties”> with
 changeClassEvent of ACT.

6. Apply step 5 for basic ACT.

The algorithms analyze the type of required data by business rules

and the read data of the context events (main event or query

event) and perform the necessary operations.

Next, we enlighten the mapping process, with very simple

example of a store. The logic of the business dictates firstly, the

customer orders are registered (Order), these operations include

the customer data (Customer) and requested items (Item). Later on

(the same day or another), when the customer wants to place the

order and pay it, the invoice (Invoice) is performed, then the

system calculates subtotal, discount and total. Each invoice

maintains a copy of customer details (CustomerDetails) for print.

After the invoice is created, customer purchase quantity is

incremented (inv_count field in Customer class). The Figure 6

shows a simplify diagram class of the store.

-id

-name

-adress

-birthdate

-inv_count

Customer

+addCustomer()

+addItem()

+removeItem()

+getCustomer()

-Customer

-items

-date

Order

+setCustomDetails()

+calculateTotalItem()

+setDiscount()

+calculateTotal()

+getDiscount()

+getTotalItems()

-number

-date

-costum_details

-Items

-total_items

-discount

-total

Invoice

-id

-description

-price

Item

-name

-address

CustomDetails

1

1

1
1

1

1

*

*

1

1
1

1

Figure 6. Summarized diagram of the Store.

The business rules that should be added in the application are

classes that implement condition(), action() and apply() methods.

These rules are:

BR#1: if today is store anniversary then apply a discount of 0,5%

when perform the invoice.

BR#2: if invoice date is equivalent with customer birth date then

apply a discount of 1% when perform the invoice.

According to the schema showed in Figure 6, for BR#1 is necessary

a basic connection, and for BR#2 is necessary a query connection.

ACT and the mapping process are showed in Figures 7 and 8,

respectively. Each step of the mapping process is indicated with

numbered arrows.

Figure7. Mapping process for connecting BR#1.

6. CONCLUSIONS
Some works have dealt with aspectual connections to compose

business rules, but they have covered implementation approaches

with different AOP tool, such as AspectJ[8], JasCo[9] and Spring

AOP Framework [10]. These works, mainly analyze the reuse and

flexibility of implemented code. [6] presents a template to

implement the business rule with AspectJ. [7] presents an

experience of refactoring business rule with AspectJ, in an important

J2EE application. These contributions do not propose automatic

method to generate aspect code.

Others contributions consider the handling of volatile concerns in

early stage of software development. For example, an interesting

contribution is [11], the authors present a method for handling

volatile concerns during early lifecycle software modeling. The

method consists of several steps: concern classification,

requirements refactoring, model instantiation and model

composition. These techniques improve the business rules ant

their aspectual connection in modeling activities but not their

implementation directly. Along the same line, a framework [12]

[13] is proposed to identify volatile and crosscutting concerns at

the requirements level. The identification of such concerns is

based on a crosscutting pattern and simple matrix operations.

Neither these works propose automatic methods to generate aspect

code. Again, these contributions do not propose automatic method

to generate aspect code.

Perhaps, the contributions more related with our work are [16]

[18]. This approach consists of defining business rules and their

connections to the existing applications in dedicated, high-level

languages and expressing them in terms of the domain. In order to

make these rules executable and integrate them with the existing

application according to the connections, they follow a Model-

Driven Engineering (MDE) approach: the rules and connections

are automatically translated to object-oriented and aspect-oriented

programs, respectively. The transformations use a mapping from

the domain entities, used in the high-level rules and connections,

to implementation elements in the existing application. The

differences with our work are, i) the aspect-programming

language destination of mapping is JasCo [19]; ii) they transform

not only aspectual connections to aspects; they also transform the

business rules. We assumed the business rules exist as reusable

units.

 <act category="query">

 <aspect instantiation="prototype" order="1">BR2Connection</aspect>

 <businessRule>

 <businessRuleClass>BirthDateDiscount</businessRuleClass>

 <require type="Invoice">invoice</require>

 <require type="Calendar">birthDate</require>

 </businessRule>

 <mainEvent when="Before">

 <eventJP>Invoice.calculateTotal(..)</eventJP>

 <this type="Invoice">inv</this>

 </mainEvent>

 <queryEvent when="After">

 <eventJP>Invoice.setCustomDetails(..)</eventJP>

 <arg type="Customer">customer</arg>

 <retrieve type="Calendar">birthDate</retrieve>

 </queryEvent>

</act>

1

2
3

4

8

@Aspect

@Order 1
public class BR2Connection {
 private Rule rule;

 private Calendar birthDate;

 @Pointcut (“execution(* Invoice.calculateTotal(..) and this(inv))”)

 public void mainEvent(Invoice inv)

 { }

 @Before (“mainEvent(inv)”)

 public void triggerRule(Invoice inv) {

 rule.apply(inv, birthDate);

 }

 @Pointcut (“execution(* Invoice.setCustomDetails(..) and args(custom))”)

 public void queryEvent(Customer custom)

 { }

 @After (“queryEvent(custom)”)

 public void retrieveContext(Custom custom) {

 birthDate=custom.getBirthDate(); }

 public Rule getRule() {

 return rule; }

 public void setRule(Rule rule) {

 this.rule = rule; }

}

<bean id="BR2Connection" class="BR2Connection" scope=”prototype”>
 <property name="regla" ref="BirthDateDiscount"/>
</bean>

5

6
7

9

Figure 8. Mapping process for connecting BR#2.

Another discussion, less evident, is the different approaches to

implement aspectual connections. With the goal of achieving the

reusability of aspects; Cibrian [8] proposes the next guidelines: i)

code an aspect to express the event that triggers the business rule

(pointcut); ii) code an aspect (optional) that captures and/or

exposes the context not available or introduce information not

anticipated; iii) code an aspect that unifies aspects created, and

triggers the business rule. This implementation approach outlines

some questions, when it is necessary to update, remove or add

business rule very frequently: a) how many aspects must to be

considered to perform operations correctly? b) Where and how

the aspect relationships that form one connection are maintained,

so that the connection entity does not lose; c) how these different

parts interact with other parts of others aspectual connections; d)

how to manage the dependencies among business rules and their

aspectual connections. In others words, this approach generates a

proliferation of aspects, therefore it is difficult to maintain

operations, and for this reason our approach proposes to

implement each connection in one aspect.

As we have mentioned, in our previous work we have proposed

taxonomy of aspectual connections, and a template to document

them. These strategies allow to identify the elements of each

category of connections, as events, pointcuts and advices required,

additional declarations, etc. Both strategies are independent of any

AOP tool. In this work, we use them to generate aspect code

automatically in Spring. We chose Spring AOP framework for

two reasons. First, it is a very popular tool in Java community

developers; second, it is not very used in AOP community

research, which is very influenced by AspectJ. Then in this sense,

this work covers the expectative of a captive audience. Also a

guideline to implements aspectual connections is provided in

Section 3. Nevertheless, ACT implemented in XML, could be

used to map the aspectual connections to others AOP languages,

or to map following a different implementation approach, such as

[8]. In this last case, the ACT serves too, to document and

maintain the unit of connection that is implemented in several

aspects. The ACT and the mapping process should be used in

different stages of software development, as advanced design and

implementation stage, or after, during maintenance stage.

At the present time we are developing a tool in order to integrate

some techniques to manage aspectual connections: the mapping

process presented here; and some methods to handle interactions

and relations among aspectual connections in automatic way.

Lastly we plan to design and implement a domain specific aspect

language (DSAL), for the aspectual connections, in order to

overcome semantic and syntactic restrictions of GPAL, such as

AspectJ, reported in [8].

7. ACKNOWLEDGMENTS
This work was partially supported by the Universidad Nacional de

la Patagonia Austral, Santa Cruz, Argentina.

8. REFERENCES
[1] M. A. Cibrán, D. Suvée, M. D’Hondt, W. Vanderperren, and

V. Jonckers. 2004. Integrating Rules with Object-Oriented

Software Applications using Aspect-Oriented Programming.

In Proceedings of the Argentine Conference on Computer

Science and Operational Research (ASSE’04), Córdoba,

Argentina.

[2] A. Arsanjani. 2001. Rule object 2001: A Pattern Language
for Adaptive and Scalable Business Rule Construction.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995.
Design Patterns, Elementsof Reusable Object-Oriented

Software. Addison-Wesley.

[4] Business Rule Group. Hybrid systems “Defining Business
Rules: What Are They Really?”

http://www.businessrulesgroup.org/.

[5] Kiczales G., Lamping L., Mendhekar A., Maeda C., Lopes
C., Loingtier J., Irwin J. 1997. Aspect-Oriented

Programming. In Proceedings ECOOP’97 – Object-Oriented

Programming, 11th European Conference. Finland,

Springer-Verlag.

[6] Laddad R. (2003). “AspectJ in Action” Manning
Publications Co.

[7] Kellens A., De Schutter K., D´Hondt T., Jonckers V. and
Doggen H. 2008 “Experiences in modularizing business

rules into aspects” ICSM 24 th. IEEE International

Conference on Software Maintenance. Page(s):448 – 451.

China.

[8] Cibrán M. and D’Hondt M. 2003. Composable and reusable
business rules using AspectJ. In Workshop on Software

engineering Properties of Languages for Aspect

Technologies (SPLAT) at the International Conference on

AOSD. Boston, USA.

[9] Cibrán, M., D'Hondt, M., Suvee, D., Vanderperren, W. and
Jonckers, V.(2005) “Linking Business Rules to Object-

Oriented software using JAsCo#.” Journal of Computational

Methods in Sciences and Engineering, pp 13-27, IOS Press,

Volume 5(1).

[10] Vidal G., Enriquez J. and Casas S. 2010. Integración de
Reglas de Negocio con Conectores Aspectuales Spring. 11th

Argentine Symposium on Software Engineering - Argentina

– 2010

[11] Moreira A., Araújo J., and Whittle J. 2006. Modeling
Volatile Concerns as Aspects. E. Dubois and K. Pohl (Eds.):

CAiSE 2006, LNCS 4001, pp. 544 – 558, 2006.Springer-

Verlag Berlin Heidelberg.

[12] M. Conejero, J. H. Hernandez, A. Moreira and J. Araújo
2007. Discovering Volatile and Aspectual Requirements

Using a Crosscutting Pattern. 15th IEEE International

Requirements Engineering Conference.

[13] K. van der Berg, J. M. Conejero, J. M., and J.Hernández, J.
Analysis of Crosscutting in Early Software Development

Phases based on Traceability. Transactions on AOSD,

Special Issue on Early Aspects – 2007

[14] Casas S. 2010. Clasificación y Documentación de
Conexiones Aspectuales para Reglas de Negocio. I

Encuentro Internacional de Computación e Informática del

Norte de Chile. Chile.

[15] Spring Framework Guide http://www.springsource.org/

[16] M. A. Cibrán and M. D’Hondt. A Slice of MDE with AOP:
Transforming High-Level Business Rules to Aspects. In

International Conference on Model Driven Engineering

Languages and Systems (MODELS’06), Genoa, Italy,

October 2006. LNCS Springer.

[17] The AspectJ Prog. Guide, http://eclipse.org/aspectj

[18] M. A. Cibrán and M. D’Hondt. High-level specification of
business rules and their crosscutting connections. In 8th

International Workshop on Aspect-Oriented Modeling at the

5th International Conference on Aspect-Oriented

Programming(AOSD’06), Bonn, Germany.

[19] Vanderperren, W., Suvee, D., Cibrán, M., Verheecke, B. and
Jonckers, V. 2005. Adaptive Programming in JAsCo. In

Proceedings of AOSD, ACM Press, Chicago, USA

