
An Early Aspect for Model-Driven Transformers
Engineering

Valdemar Vicente Graciano Neto
Instituto de Informática

Universidade Federal de Goiás
P.O. Box 131

Goiânia-GO, Brazil
valdemarneto@inf.ufg.br

Juliano Lopes de Oliveira
Instituto de Informática

Universidade Federal de Goiás
P.O. Box 131

Goiânia-GO, Brazil
juliano@inf.ufg.br

ABSTRACT
This paper presents preliminary results of application of
aspects to address one of the Model-Driven Development
(MDD) approach key issues, namely the pluggability prin-
ciple. According to this principle, a MDD based software
solution should provide transformation definition rules that
can be plugged into a model-driven transformer to provide
automatic mapping between models. We identified the invo-
cation of these transformation rules as a new early aspect for
model-driven transformers engineering. This paper presents
the main ideas behind this new early aspect, discussing its
impact on model-driven transformers engineering.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Model-Driven—model trans-
formation rules, transformers modularization

General Terms
Model-Driven Development, Aspects

Keywords
Aspects, Model-Driven Development, transformation rules
modularization

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) aims at

providing improved modularization and composition tech-
niques to handle crosscutting concerns. Crosscutting con-
cerns are encapsulated in separate modules, known as as-
pects, and composition, or weaving, mechanisms are later
used to weave them back to the base modules in compila-
tion, loading or execution time [16, 3].

Aspects are concerns that crosscut an artifact’s domi-
nant decomposition or base modules derived from the dom-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EA ’11, 21-MAR-2011, Porto de Galinhas, Brazil
Copyright 2011 ACM 978-1-4503-0645-4/11/03 ...$10.00.

inant separation-of-concerns. Early Aspects (EA) are as-
pects identified since the earliest phases of software devel-
opment process [3]. Separation of crosscutting properties in
early stages of the development and identification of their
mapping and influence on later development stages makes
it possible to identify conflicts and establish possible trade-
offs early in the development cycle and promotes traceability
of broadly scoped requirements and constraints throughout
system development, maintenance and evolution [14].

Techniques to identify EA have been proposed [1, 6], but
it is still an open issue for AOSD [12]. To deal with this chal-
lenge, we investigated EA on the model-driven transformers
engineering specific application domain. For this domain,
this paper proposes a new early aspect: the transformation
rules set and its invocation.

This paper claims that these transformation rules are a
crosscutting concern in model-driven transformers. The pa-
per also argues that encapsulating these transformation rules
in one aspect addresses the pluggability principle, one of the
main issues in model transformers engineering.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses the model-driven transformers engineering;
Section 3 analyses the transformation rules aspect, and the
impact of this aspect on the model transformers engineering;
Section 4 concludes the paper and discusses future works.

2. MODEL-DRIVEN TRANSFORMERS
According to Model-Driven Development (MDD), soft-

ware should be modeled at a high-level of abstraction and
transformers - software components specialized in convert-
ing source models into target models - should be provided to
automatically map input models into source code for some
specific platform or technology. This mapping is tipically
based on a set of transformation rules (TR) [17].

In spite of its benefits, there is still a large gap between
MDD specifications and their software implementations. In
fact, MDD depends on transformers, but it does not suggest
how to construct transformers and that is where considering
TR as an early aspect may contribute.

The TR pluggability principle requires the transformer’s
software architecture to be continuously modified to deal
with new transformation definitions. More specifically the
pluggability principle demands TR to be connected to a
transformer without impacting the transformer’s software
architecture while at the same time providing transparency
to the software users.

Thus, the transformers architecture must be designed con-

sidering the pluggability principle. Treating TR as an aspect
from the earliest phases of the transformers engineering im-
proves the capability of their architecture to support changes
in the TR set.

There are some works in literature dealing with transform-
ers architecture issues. AndroMDA is an open source MDD
framework developed for multiple target platforms based on
the concept of cartridge. The cartridges consist of one or
more files combined in a Java archive (jar), a cartridge de-
scription XML file and one or more code templates [19].
A cartridge provides a metamodel, a set of TR, and code
templates to define how UML models are transformed into
specific platform code. It defines transformations for web
platforms, such as Spring, JSF, Hibernate, Struts, and oth-
ers [15].

However, it is necessary to have deep knowledge of the
AndroMDA architecture to specialize a cartridge. In our
proposal, the user only needs to be aware of (1) the object
that encapsulates the source model; and (2) how to con-
struct TR. Our “cartridge” is a skeleton. Thus, just a few
completions are necessary and there is no need to cope with
technological issues (such as AspectJ).

The openArchitectureWare (oAW) is a tool under the
Eclipse Modeling Project (EMP) [13]. Models are imported
in XMI format, and there are files and Java classes that per-
form transformations. A cartridge is expressed as an “.oaw”
file. When changes are required, it is necessary to extend
a default transformer (a Java class) to add modifications
in order to cope with the new cartridge. Our approach in-
tends to create TR as an aspect that will be connected to
the transformer in weaving time, which prevents direct code
manipulation.

3. ASPECTS IN MODEL TRANSFORMERS
ENGINEERING

Many tools and frameworks has been created to support
transformations between models. For instance, the Soft-
ware Engineering Research Group of the Federal University
of Goiás, in Brazil, has developed a model-based domain-
specific software development framework to address Enter-
prise Information Systems (EIS) software synthesis based on
high-level conceptual models which specify data, business
rules, and user interface features [2, 4].

Figure 1 shows the main components of the framework’s
architecture. There are five main tiers: user interface, interface-
application, application, business and persistence. Each tier
addresses one concern of the EIS engineering and has its
own TR set, generating corresponding components of the
EIS software. Inversion of Control is an important element
of this architecture since the generated EIS software execu-
tion is controlled by the framework run-time engine.

Complex EIS software for the agriculture domain was suc-
cessfully generated using that framework. However, when
new IS requirements demanded evolutions, the high coupling
of its architecture was revealed. The framework architec-
ture did not address modularization in TR, causing changes
to the framework TR to be difficult and error-prone. The
framework code which dealt with model transformations was
repetitive, spread, replicated and highly coupled throughout
its architecture. Figure 1 illustrates such scenario.

Since each TR set is totally dependent of the framework’s
metamodels, the transformations are quite repetitive. Each

Figure 1: Framework architecture representation
and TR as an aspect.

Figure 2: Framework architecture representation af-
ter refactoring.

source metamodel element is transformed in one correspond-
ing element in a target code (for user interface, or business
rule control, for example). The set of transformations for
each part of the generated code leads to IF-ELSE chains
(relative to each source metamodel element) been repeated
along the framework’s architecture, changing only the con-
dition within the IF statement. Thus, TR are crosscutting
concerns in this architecture due to metamodels dependen-
cies.

A software refactoring of the framework architecture was
initiated, as it is shown in Figure 2. The driving forces
for this refactoring were: 1) to apply Aspect-Oriented Pro-
gramming, benefiting from aspects’ capabilities to modular-
ize crosscutting concerns and code composing [10]; and 2) to
encapsulate TR in aspects since they are variability points
in model transformers components architecture [18, 5] and
crosscuting concerns of the presented framework architec-
ture.

Figure 3 presents the conceptual model that represents
the proposed scenario. The tool responsible for transforming
models is a Transformer, which loads and checks the con-
sistency of a SourceModel. A SourceModel can be loaded
from a file and there is a software component responsible for
handling the received format, that is, receiving the model,
constructing an equivalent Java object and verifying its con-
sistency with the respective metamodel.

An aspect called TransformationAspect advises the trans-
formers’ code. After model loading and checking is com-
pleted, the TransformationDefinition is applied to con-
vert a SourceModel into a TargetModel.

A TransformationDefinition is a set of Transformation-
Rules. TransformationAspect works as a cartridge, analo-
gous to the AndroMDA cartridge (including the similar con-
tent: source metamodel, source model and transformation
definition) [19].

Every SourceModel conforms to a Source Metamodel
and every TargetModel conforms to a Target Metamodel.
A Mapping between elements of both metamodels config-
ures a TransformationRule.

Listings 1 and 2 show, respectively, simplified samples of
a transformer and a transformation aspect code. A trans-
former contains a SourceModel attribute, its access and mod-
ifier methods, and some other methods responsible for per-
forming Source Model load, Source Model checking against
its metamodel, and a main method to simulate the execution
of a transformation.

In our approach, TR and target models are modularized
into an aspect. It is possible to change the TR according to
the platform because aspects technology enables us to access
the transformers context and data transferred in method
calls (parameters originally passed to the method) [7].

In this case, a Source Model is passed to the checkInput-
Model method and, after it finishes its execution, the trans-
formation definition code that was woven into the trans-
formers code converts the source model into a target model
according. After the target model is produced, another soft-
ware component is responsible for exporting it in the desired
format.

Thus, TR become totally pluggable, since a change to a
transformation definition consists of an aspect substitution
to advice the same transformer, but with a new transfor-
mation code into the transform advice body. This approach
results in modularization and pluggability, separating target

technology concerns in distinct aspect bodies.

Listing 1: Transformer’s code
package mddtransformer ;
pub l i c c l a s s Transformer {

pr i va t e SourceModel source ;
p r i va t e SourceMetamodel sourceMeta ;

pub l i c Transformer () {
source = new SourceModel () ;
sourceMeta = new SourceMetamodel () ;

}

pr i va t e SourceModel getSource () { re turn ←↩
t h i s . source ; }

pr i va t e void inputSourceModel () { System . out←↩
. println (”Source model was loaded ”) ; }

/** Check the model aga in s t the r e s p e c t i v e ←↩
model . */

pr i va t e void checkInputModel (SourceModel s) ←↩
{
/** Code that perform checks . */

}

pub l i c s t a t i c void main (String [] args){
Transformer t = new Transformer () ;
t . inputSourceModel () ;
t . checkInputModel (t . getSource ()) ;

}
}

Listing 2: Transformation Aspect code
package mddtransformer ;
pub l i c aspect TransformationAspect {

pointcut transform (SourceModel s) : execution←↩
(* * . * . checkInputModel (SourceModel)) &&←↩
args (s) ;

after (SourceModel s) : transform (s){
TargetModel target ;
TargetMetamodel targetMeta ;
TransformationDefinition t ;

// I t uses source model to convert i t in ←↩
a ta rg e t model us ing t rans fo rmat ion ←↩
d e f i n i t i o n and

// ta rg e t metamodel .

//TRANSFORMATIONS GOES HERE

// After transform , i t d e l i v e r the t a rg e t←↩
model

t h i s . outputTargetModel () ;
}

pub l i c void outputTargetModel () {
// d e l i v e r i e s the ta r g e t model
System . out . println (”Target model ←↩

produced ”) ;
}

}

TR are specified as a Java IF-ELSE chain (referenced
as direct model manipulation [11]), the default solution to
transform models. Nevertheless, we are investigating the
use of emerging formats to specify TR, such as MOFScript

Figure 3: MDD and Aspect components after framework refactoring

1, Velocity 2, ATL 3, QVT 4, and XSLT 5.
All the TR are encapsulated into one aspect, what reduces

scattering, tangled and repetitive code and increases evolv-
ability and maintainability of the framework. This enabled
the pluggability required by MDD.

Thus, the experience acummulated with this refactoring
indicates TR as a recommended early aspect for the model-
driven transformers engineering and the transformers call as
crosscutting concerns in frameworks that use MDD.

4. CONCLUSIONS
This paper showed how the composition capabilities of

AOP can be used to weave transformation definitions in a
model-driven transformers’ architecture. This is a contri-
bution to early aspects research since transformation defini-
tions can be considered as aspects since the earliest phases
of a model-driven transformers engineering.

Our initial results confirm that AOSD is a suitable paradigm
to address modularization and separation of concerns prob-
lems in MDD. These results enforce the tendency that the
scientific community has reported of migrating aspects from
solutions to non-functional requirements to non-trivial re-
quirements and variability points modularization [9, 8].

This proposal benefits the software industry and their in-
vestments since business changes, which reflect in market
pressures and technologies evolutions, could be well man-
aged with aspects, changing the target technology in an easy
and maintainable way.

Finally, the main contribution of this paper is to reveal a
new concern in MDD that can be treated as an aspect since
the earliest phases of a model-driven transformers engineer-
ing.

1http://www.eclipse.org/gmt/mofscript/
2http://velocity.apache.org/
3http://www.eclipse.org/atl/
4http://www.omg.org/spec/QVT/1.0/
5http://www.w3.org/TR/xslt

Additionally, this paper presents a discussion about model-
driven application frameworks. Since there is no a reference
architecture for such kind of software, treating transformer
invocation as a crosscutting concern and candidate aspect is
conceivable.

5. ACKNOWLEDGMENTS
The first author would like to thanks CAPES (Brazilian

Coordination for Improvement of Higher Education Person-
nel), for the finantial support. The authors would also like
to thank the Informatics Institute which provided the infra-
structure and resources that fostered this research work.

6. REFERENCES
[1] V. Abdelzad and F. S. Aliee. A Method Based on

Petri Nets for Identification of Aspects. In Proc. of
Workshop on Early Aspects in AOSD 2010, 2010.

[2] A. C. Almeida, G. Boff, and J. L. Oliveira. A
Framework for Modeling, Building and Maintaining
Enterprise Information Systems Software. In
Proceedings of XXIII Brazilian Symposium on
Software Engineering, pages 115–125, 2009. Fortaleza,
Brazil.

[3] E. Baniassad, P. C. Clements, J. Araujo, A. Moreira,
A. Rashid, and B. Tekinerdogan. Discovering early
aspects. IEEE Softw., 23:61–70, January 2006.

[4] G. Boff and J. L. de Oliveira. Modeling,
implementation and management of business rules in
information systems. INFOCOMP Journal of
Computer Science, pages 17 – 28, 2010. ISSN:
1807-4545.

[5] R. Bonifácio and P. Borba. Modeling scenario
variability as crosscutting mechanisms. In Proceedings
of the 8th ACM international conference on
Aspect-oriented software development, AOSD ’09,
pages 125–136, New York, NY, USA, 2009. ACM.

[6] C. Duan and J. Cleland-Huang. A Clustering
Technique for Early Detection of Dominant and

Recessive Cross-Cutting Concerns. In Proceedings of
the Early Aspects at ICSE: Workshops in
Aspect-Oriented Requirements Engineering and
Architecture Design, EARLYASPECTS ’07, pages 1–,
Washington, DC, USA, 2007. IEEE Computer Society.

[7] J. D. Gradecki and N. Lesiecki. Mastering AspectJ:
Aspect-Oriented Programming in Java. John Wiley &
Sons, Inc., New York, NY, USA, 2003.

[8] I. Groher and M. Voelter. Aspect-Oriented
Model-Driven Software Product Line Engineering. In
S. Katz, H. Ossher, R. France, and J.-M. Jézéquel,
editors, Transactions on Aspect-Oriented Software
Development VI, volume 5560 of Lecture Notes in
Computer Science, pages 111–152. Springer Berlin /
Heidelberg, 2009. 10.1007/978-3-642-03764-14.

[9] A. Kellens, K. D. Schutter, T. D’Hondt, V. Jonckers, and
H. Doggen. Experiences in modularizing business rules into
aspects. In Proceedings of 24th IEEE International
Conference on Software Maintenance (ICSM 2008),
September 28 - October 4, 2008, Beijing, China, pages
448–451, 2008.

[10] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J. M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Akşit and S. Matsuoka, editors,
Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[11] K. Ma and B. Yang. A Hybrid Model Transformation
Approach Based on J2EE Platform. Education Technology
and Computer Science, International Workshop on,
3:161–164, 2010.

[12] E. A. Nasser and H. S. Hamza. Towards a
Domain-Oriented Approach for Identifying Aspects in
Software Requirements. In Proceedings of Workshop on
Early Aspects at AOSD 2010, 2010.

[13] openArchitectureWare.org. openarchitectureware.org -
official openarchitectureware homepage. Available at:
<http://www.openarchitectureware.org/>. Last Access:
25th Oct 2010, 2009.

[14] A. Rashid, P. Sawyer, A. M. D. Moreira, and J. a. Araújo.
Early Aspects: A Model for Aspect-Oriented Requirements
Engineering. In Proceedings of the 10th Anniversary IEEE
Joint International Conference on Requirements
Engineering, RE ’02, pages 199–202, Washington, DC,
USA, 2002. IEEE Computer Society.

[15] B. L. Romano, G. Braga e Silva, A. Marques da Cunha,
and W. I. Mour ao. Applying MDA development approach
to a hydrological project. In ITNG ’10: Proceedings of the
2010 Seventh International Conference on Information
Technology: New Generations, pages 1127–1132,
Washington, DC, USA, 2010. IEEE Computer Society.

[16] P. Sánchez, A. Moreira, L. Fuentes, J. a. Araújo, and
J. Magno. Model-driven development for early aspects. Inf.
Softw. Technol., 52:249–273, March 2010.

[17] B. Selic. The Pragmatics of Model-Driven Development.
IEEE Software, 20:19–25, 2003.

[18] M. Völter and I. Groher. Handling variability in model
transformations and generators. In Proc. of Workshop on
Domain Specific Modelling, 2007.

[19] P. Wittman. MDA using AndroMDA. In:
<http://www.wittmannclan.de/ptr/cs/mdaandromda.pdf >
, 2010.

