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Abstract. These pages contain a short overview on the state of the art of effi-

cient numerical analysis methods that solve systems of multivariate polynomial
equations. We focus on the work of Steve Smale who initiated this research

framework, and on the collaboration between Stephen Smale and Michael

Shub, which set the foundations of this approach to polynomial system–solving,
culminating in the more recent advances of Carlos Beltrán, Luis Miguel Pardo,

Peter Bürgisser and Felipe Cucker.

1. The modern numerical approach to polynomial system solving

In this paper we survey some of the recent advances in the solution of polynomial
systems. Such a classical topic has been studied by hundreds of authors from many
different perspectives. We do not intend to make a complete historical description
of all the advances achieved during the last century or two, but rather to describe
in some detail the state of the art of what we think is the most successful (both
from practical and theoretical perspectives) approach. Homotopy methods are used
to solve polynomial systems in real life applications all around the world.

The key ingredient of homotopy methods is a one–line thought: given a goal
system to be solved, choose some other system (similar in form, say with the same
degree and number of variables) with a known solution ζ0, and move this new
system to the goal system, tracking how the known solution moves to a solution of
the goal. Before stating any notation, we can explain briefly why this process is
reasonable: if for every t ∈ [0, 1] we have a system of equations ft (f0 is the system
with a known solution, f1 is the one we want to solve), then we are looking for a path
ζt, t ∈ [0, 1], such that ft(ζt) = 0. As long as the derivative dft(ζt) is invertible for
all t we can continue the solution from f0 to f1, by the implicit function theorem.
Now we have various methods to accomplish this continuation. We can slowly
increment t and use iterative numerical solution methods such as Newton’s method
to track the solution or we may differentiate the expresion ft(ζt) = 0 and solve for
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d/(dt)(ζt) = ζ̇t. Then, we can write our problem as an initial value problem:

(1.1)

{
ζ̇t = Dft(ζt)

−1ft(ζt)

ζ0 known

Systems of ODEs have been much studied and hence this is an interesting idea:
we have reduced our original problem to a very much studied one. One can just
plug in a standard numerical ODE solver such as backward Euler or a version of
Runge–Kutta’s method. Even then, in practice, it is desirable to, from time to time,
perform some steps of Newton’s method z → x−Dft(x)−1ft(x) to our approxima-
tion zt of ζt, to get closer to the path (ft, ζt). After some testing and adjustment
of parameters, this näıve idea can be made to work with impressive practical per-
formance and there are several software packages which attain spectacular results
(solving systems with many variables and high degree) in a surprisingly short run-
ning time, see for example [35, 7, 56, 36]

From a mathematical point of view, there are several things in the process we
have just described that need to be analyzed: will there actually exist a path ζt
(maybe it is only defined for, say, t < 1/2)? what is the expected complexity of
the process (in particular, can we expect average polynomial running time in some
sense)? what “simple system with a known solution” should we start at? how
should we join f0 and f1, that is what should be the path ft?

In the last few decades a lot of progress has been made in studying these ques-
tions. This progress is the topic of this paper.

2. A technical description of the problem

We will center our attention in Smale’s 17–th problem, which we recall now.

Problem 1. Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a uniform
algorithm?

We have written in bold the technical terms that need to be clarified.
In order to understand the details of the problem and the solution suggested

in Section 1, we need to describe some important concepts and notation in detail.
Maybe the first one is our understanding of what a “solution” is: clearly, one
cannot expect solutions of polynomial systems to be rational numbers, so one can
only search for “quasi–solutions” in some sense. There are several definitions of
such a thing, the most stable being the following one (introduced in [50], see also
[33, 34]):

Definition 1. Given a polynomial system, understood as a mapping f : Cn → Cn,
an approximate zero of f with associated (exact) zero ζ is a vector z0 ∈ Cn such
that

‖zk − ζ‖ ≤
1

22k−1
‖z0 − ζ‖, k ≥ 0,

where zk is the result of applying k times Newton’s operator z 7→ z −Df(z)−1f(z)
(note that the definition of approximate zero implicitly assumes that zk is defined
for all k ≥ 0.)

The power of this definition is that, as we will see below, given any polynomial
system f and any exact zero ζ ∈ Cn, approximate zeros of f with associated zero
ζ exist whenever Df(ζ) is an invertible matrix.
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Recall that our first goal is to transform the problem of polynomial system solving
into an implicit function problem or an ODE system like that of (1.1). There exist
two principal reasons why the solution of such a system can fail to be defined for
all t > 0: that the function defining the derivative is not everywhere defined (this
corresponds naturally to Dft(ζt) not being invertible), and that the solution escapes
to infinity. The first problem seems to be more delicate and difficult to solve, but
the second one is actually very easily dealt with: we just need to define our ODE in
a compact manifold, instead of just in Cn. The most similar compact manifold to
Cn is P(Cn+1), and the way to take the problem into P(Cn+1) is just homogenizing
the equations.

Definition 2. Let f : Cn → Cn be a polynomial system, that is f = (f1, . . . , fn)
where fi : Cn → C is a polynomial of degree some di,

f(x1, . . . , xn) =
∑

α1+···+αn≤di

a(i)
α1,...,αn

xα1
1 · · ·xαn

n .

The homogeneous counterpart of f is h : Cn+1 → Cn defined by h = (h1, . . . , hn)
where

h(x0, x1, . . . , xn) =
∑

α1+···+αn≤di

a(i)
α1,...,αn

x
di−

∑n
i=1 αi

0 xα1
1 · · ·xαn

n .

We will talk about such a system h simply as an homogeneous system.

Note that if ζ is a zero of f then (1, ζ) is a zero of the homogeneous counter-
part h of f . Reciprocally, if ζ = (ζ0, ζ1, . . . , ζn) is a zero of h and if ζ0 6= 0, then
(ζ1/ζ0, . . . , ζn/ζ0) is a zero of f . Thus, the zeros of f and h are in correspondence
and we can think of solving h and then recovering the zeros of f (this is not a com-
pletely obvious process when we only have approximate zeros, see [15].) Moreover,
it is clear that for any complex number λ ∈ C and for x ∈ Cn+1 we have

h(λx) = Diag(λd1 , . . . , λdn)h(x),

and thus the zeros of h lie naturally in the projective space P(Cn+1).
As we will be working with homogeneous systems and projective zeros, we need

a definition of approximate zero in the spirit of Definition 1 which is amenable
to a projective setting. The following one, which uses the projective version [43]
of Newton’s operator, makes the work. Here and throughout the paper, given a
matrix or vector A, by A∗ we mean the complex conjugate transpose of A, and by
dR(x, y) we mean the Riemannian distance from x to y, where x and y are elements
in some Riemannian manifold.

Definition 3. Given an homogeneous system h, an approximate zero of h with
associated (exact) zero ζ ∈ P(Cn+1) is a vector z0 ∈ P(Cn+1) such that

dR(zk, ζ) ≤ 1

22k−1
dR(z0, ζ), k ≥ 0,

where zk is the result of applying k times the projective Newton operator z 7→
z − Dh(z) |−1

z⊥
h(z) (again, the definition of approximate zero implicitly assumes

that zk is defined for all k ≥ 0.) Here, by Df(z) |z⊥ we mean the restriction of the
derivative of h at z, to the (complex) orthogonal subspace z⊥ = {y ∈ Cn+1 : y∗x =
0}.
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It is a simple exercise to verify that (projective) Newton’s method is well defined,
that is the point it defines in projective space does not depend on the representative
z ∈ Cn+1 chosen for a point in projective space.

A (projective) approximate zero of h is thus a projective point such that the
successive iterates of the projective Newton operator quickly approach an exact
zero of h. Thus finding an approximate zero is an excellent output of a numerical
zero–finding algorithm to solve h.

Because we are going to consider paths of systems {ht}t∈[a,b], it is convenient
to fix a framework where one can define these nicely. To this end, we consider the
vector space of homogeneous polynomials of fixed degree s ≥ 1:

Hs = {h ∈ C[x0, . . . , xn] : h is homogeneous of degree s}.
It is convenient to consider an Hermitian product (and the associated metric) on
Hs. A desirable property of such a metric is the unitary invariance, namely, we
would like to have an Hermitian product such that

〈h, g〉Hs = 〈h ◦ U, g ◦ U〉Hs , ∀ U ∈ Un+1,

where Un+1 is the group of unitary matrices of size n+1. Such property was studied
in detail in [45]. It turns out that there exists a unique (up to scalar multiplication)
Hermitian product that satisfies it, the one defined as follows:

〈
∑

α0+···+αn=s

a(i)
α1,...,αn

xα0
0 · · ·xαn

n ,
∑

α0+···+αn=s

b(i)α1,...,αn
xα0

0 · · ·xαn
n 〉Hs =

∑
α0+···+αn=s

α0! · · ·αn!

s!
a(i)
α1,...,αn

b
(i)
α1,...,αn ,

where · just means complex conjugation. Note that this is just a weighted version
of the standard complex Hermitian product in complex affine space.

Then, given a list of degrees (d) = (d1, . . . , dn), we consider the vector space

H(d) =

n∏
i=1

Hdi .

Note that an element h of H(d) can be seen both as a mapping h : Cn+1 → Cn or as
a polynomial system, and can be identified by the list of coefficients of h1, . . . , hn.
We denote by P(H(d)) the projective space associated to H(d), by N the complex
dimension of P(H(d)) (so the dimension of H(d) is N + 1) and we consider the
following Hermitian structure in H(d):

〈h, g〉 =

n∑
i=1

〈hi, gi〉Hdi
, ‖h‖ = 〈h, h〉1/2.

This Hermitian product (and the associate Hermitian structure and metric) is also
called the Bombieri–Weyl or the Kostlan product (structure, metric). As usual,
this Hermitian product in H(d) defines an associated Riemannian structure given
by the real part of 〈·, ·〉. We can thus consider integrals of functions defined on
H(d).

We denote by S the unit sphere in H(d), and we endow S with the inherited
Riemannian structure from that of H(d). Then, P(H(d)) has a natural Riemannian
structure, the unique one making the projection S → P(H(d)) a Riemannian sub-
mersion. That is the derivative of the projection restricted to the normal to the
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fibers is an isometry. We can thus also consider integrals of functions defined in S or
P(H(d)). We can now talk about probabilities in S or P(H(d)): given a measurable
(nonnegative or integrable) mapping X defined in S or P(H(d)), we can consider its
expected value:

ES(X) =
1

ν(S)

∫
S
X(h) dh or EP(H(d))(X) =

1

ν(P(H(d)))

∫
P(H(d))

X(h) dh,

where we simply denote by ν(E) the volume of a Riemannian manifold E. Simi-
larly, one can talk about probabilities in H(d) according to the standard Gaussian
distribution compatible with 〈·, ·〉: given a measurable (nonnegative or integrable)
mapping X defined in H(d), its expected value is:

EH(d)
(X) =

1

(2π)N+1

∫
H(d)

X(h)e−‖h‖
2/2 dh.

We can now come back to Problem 1 and see what do each of the terms in that
problem mean: Smale himself points out that one can just solve homogeneous
systems (as suggested above). We still have a few terms to clarify:

• found approximately. This means finding an approximate zero in the
sense of Definition 3.
• on the average, in polynomial time. This now means that, if X(h)

is the time needed by the algorithm to output an approximate zero of the
input system h, then the expected value of X is a quantity polynomial in
the input size, that is polynomial in N . The number of variables, n, and the
maximum of the degrees, d, are smaller than N , and hence one attempts
to get a bound on the expected value of X, as a polynomial in n, d,N .
• uniform algorithm. Smale demands an algorithm in the Blum–Shub–

Smale model [21, 20], that is exact operations and comparisons between
real numbers are assumed. This assumption departs from the actual per-
formance of our computers, but it is close enough to be translated to perfor-
mance in many situations. Uniform means that the same algorithm works
for all (d) and n.

3. Geometry and condition number

We can now set up a geometric framework for homotopy methods. Consider the
following set, usually called the solution variety:

(3.1) V = {(h, ζ) ∈ P(H(d))× P(Cn+1) : h(ζ) = 0}.

This set is actually a smooth complex submanifold (as well as a complex algebraic
subvariety) of P(H(d))×P(Cn+1), see [20], and is clearly compact. It will be useful
to consider the following diagram.

(3.2)

V
π1 ↙ ↘ π2

P(H(d)) P(Cn+1)

It is clear that π−1
1 (h) is a copy of the zero set of h. Reciprocally, for fixed ζ ∈

P(Cn+1), the set π−1
2 (ζ) is the vector space of polynomial systems that have ζ as a

zero.
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Let Σ′ ⊆ V be the set of critical points of π1 and Σ = π1(Σ′) ⊆ P(H(d)) the set
of critical values of π1. It is not hard to prove that:

• π1 restricted to the set V \ π−1
1 (Σ) is a (smooth) D–fold covering map,

where D = d1 · · · dn is the Bezóut number.
• Σ′ = {(h, ζ) ∈ V : Dh(ζ) |ζ⊥ has non–maximal rank}. In that case, we say

that ζ is a singular zero of h. Otherwise, we say that ζ is a regular zero of
h.

This means, in particular, that the homotopy process described above can be carried
out whenever the path of systems lies outside of Σ:

Theorem 4. Let {ht : t ∈ [a, b]} be a C1 curve in P(H(d)) \ Σ and let ζ be a

zero of ha. Then, there exists a unique lift of ht through π1, that is a C1 curve
(ht, ζt) ∈ V such that ζa = ζ. In particular, ζb is a zero of hb. Moreover, the lifted
curve satisfies:

(3.3)
d

dt
(ht, ζt) =

(
ḣt, Dht(ζt) |−1

ζ⊥t
ḣt(ζt)

)
.

Finally, the set Σ ⊆ P(H(d)) is a complex proper algebraic variety, thus it has real
codimension 2 and the projection of most real lines in H(d) to P(H(d)) does not
intersect Σ.

In the case the thesis of Theorem 4 holds we just say that ζa can be continued
to a zero ζb of ha. One can be even more precise:

Theorem 5. Let {ht : t ∈ [a, b]} be a C1 curve in P(H(d))\Σ and let ζ be a zero of
ha. Then, every zero ζ of ha can be continued to a zero of hb, defining a bijection
between the D zeros of ha and those of hb.

Remark 6. Even if ht cross Σ some solutions may be able to be continued while
others may not.

The (normalized) condition number [45] is a quantity describing “how close to
singular” a zero is. Given h ∈ H(d) and z ∈ P(Cn+1), let

(3.4) µ(f, z) = ‖f‖‖(Dh(z) |z⊥)−1Diag(‖z‖di−1d
1/2
i )‖2,

and µ(f, z) = +∞ if Dh(z) |z⊥ is not invertible. Sometimes µ is denoted µnorm

or µproj but we prefer to keep the more simple notation here. One of the most
important properties of µ is that it is an upper bound for the norm of the (locally

defined) implicit function related to π1 in (3.2). Namely, let (ḣ, ζ̇) ∈ T(h,ζ)V where
(h, ζ) ∈ V is such that µ(h, ζ) < +∞. Then,

(3.5) ‖ζ̇‖ ≤ µ(h, ζ)‖ḣ‖, µ(h, ζ) ≥
√
n.

We also have the following result.

Theorem 7 (Condition Number Theorem,[45]).

µ(h, ζ) =
1

sin (dR(h,Σζ))
,

where dR is the Riemannian distance in P(H(d)) and

Σζ = {h ∈ P(H(d)) : h(ζ) = 0, and Dh(ζ) |ζ⊥ is not invertible}.
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Note that this is a version of the classical Condition Number Theorem of linear
algebra (see Theorem 27 below). The existence of approximate zeros in the sense
of Definition 3 above is also guaranteed by this condition number, as was noted in
[45]. More precisely:

Theorem 8 (µ–Theorem, [45]). There exists a constant u0 > 0 (u0 = 0.17586
suffices) with the following property. Let (h, ζ) ∈ V and let z ∈ P(Cn+1) satisfy

dR(z, ζ) ≤ u0

d3/2 µ(h, ζ)
.

Then, z is an approximate zero of h with associated zero ζ.

4. The complexity of following a homotopy path

The sentence “can be continued” in the discussion of Section 3 can be made
much more precise, by defining an actual path–following method. It turns out that
the unique method that has actually been proved to correctly follow the homotopy
paths and at the same time achieve some known complexity bound is the most
simple one, which only uses the projective Newton operator, and not an ODE
solver step.

Problem 2. It would be an interesting project to compare the overall cost of using a
higher order ODE solver to the projective Newton–based method we describe below.
Higher order methods or even predictor–corrector methods may require fewer steps
but be more expensive at each step so a total cost comparison is in order. Some
experience indicates that higher order methods are rarely cheaper, if ever. See [23,
33, 34].

More precisely, the projective Newton–based homotopy method is as follows.
Given a C1 path {ht : a ≤ t ≤ b} ⊆ P(H(d)), and given za an approximate zero of
ha with associated (exact) zero ζa, let t0 > 0 be “small enough” and let

za+t0 = za − (Dha+t0(za) |z⊥a )−1ha+t0(za),

that is za+t0 is the result of one application of the projective Newton operator
based on ha+t0 to the point za. If za is an approximate zero of ha and t0 is small
enough, then za can be close enough to the actual zero ζa+t0 of ha+t0 to satisfy
Theorem 8 and thus be an approximate zero of ha+t0 as well. Then, by definition
of approximate zero, za+t0 will be half–closer to ζa+t0 than za. This leads to an
inductive process (choosing t1, then t2, etc. until hb is reached) that, analysed
in detail, can be made to work and actually programmed. The details on how to
choose t0 would take us too far apart from the topic, so we just give an intuitive
explanation: if we are to move from (ha, ζa) to (ha+t0 , ζa+t0) we must be sure
that we are far enough from Σ′ to have our algorithm behaving properly. As the
condition number essentially measures the distance to Σ′, it should be clear that
the bigger the condition number, the smaller step t0 we can take. This idea lead to
the following result (see [49] for a weaker, earlier result):

Theorem 9 ([44]). Let (ht, ζt) ⊆ V \ Σ′, t ∈ [a, b] be a C1 path. If the steps
t0, t1, . . . are correctly chosen, then an approximate zero of hb is reached at some

point, namely there is a k ≥ 1 such that
∑k
i=0 ti = b− a (k is the number of steps

in the inductive process above.) Moreover, one can bound

k ≤ dCd3/2Lκe,
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where d is the maximum of the degrees in (d), C is some universal constant, and

(4.1) Lκ =

∫ b

a

µ(ht, ζt)‖(ḣt, ζ̇t)‖ dt

is the condition lenght of the path (ht, ζt). Moreover, the amount of arithmetic
operations needed in each step is polynomial in the input size N , and hence the
total complexity of the path–following procedure is a quantity polynomial in N and
linear in Lκ

There exist several ways to algorithmically produce the steps t0, t1, . . . in this
theorem (and indeed the process has been programmed in two versions [12, 13],)
but the details are too technical for this report, see [8, 25, 27]. We also point out
that, if the path we are following is linear, i.e. ht = (1− t)h0 + th1, and if the input
coordinates are rational numbers, then all the operations can be carried out over
the rationals without a dramatic increase of the bit size of intermediate results, see
[13].

Note that since Lκ is a length it is independent of the C1 parametrization of the
path. If we specify a path of polynomial systems in H(d) then we project the path
of polynomials and solutions into V to calculate the length. We may project from
H(d) to S first and reparametrize if we wish. For example, we project the straight
line segment ht = (1−t)g+th for 0 ≤ t ≤ 1 into S and reparametrize by arc–length.
If ‖g‖ = ‖h‖ = 1 the resulting curve is

ht = g cos(t) +
h− 〈h, g〉g
‖h− 〈h, g〉g‖

sin(t)

which is an arc of great circle through g and h. If 0 ≤ t ≤ dR(g, h), then the arc
goes from g to h. Here dR(g, h) is the Riemannian distance in S between g and h
which is the angle between them.

5. The problem of good starting points

We now come back to the original question in Smale’s 17-th problem. Our plan
is to analyse the complexity of an algorithm that we could call “linear homotopy”:
choose some g ∈ S, ζ ∈ P(Cn+1) such that g(ζ) = 0 (we will call (g, ζ) a “starting
pair”). For input h ∈ S, consider the path contained in the great circle :

(5.1) ht = g cos(t) +
h− 〈h, g〉g
‖h− 〈h, g〉g‖

sin(t), t ∈ [0, dR(g, h)].

Then, use the method described in Theorem 9 to track how ζ0 moves to ζdR(g,h), a
zero of hdR(g,h) = h, thus producing an approximate zero of h. We call this linear
homotopy (maybe a more appropriate name would be “great circle homotopy”)
because great circles are projections on S of segments in H(d).

Assuming that the input h is uniformly distributed on S, we can give an upper
bound for the average number of arithmetic operations needed for this task (that
is, the average complexity of the linear homotopy method) by a polynomial in N
multiplied by the following quantity:

1

ν(S)

∫
h∈S

∫ dR(g,h)

0

µ(ht, ζt)‖(ḣt, ζ̇t)‖ dt dS,



POLYNOMIAL SYSTEM SOLVING 9

where ht is defined by (5.1) and ζt is defined by continuation (the fact that ht∩Σ =
∅, and thus the existence of such ζt, is granted by Theorem 4 for most choices of
g, h). It is convenient to replace this last expected value by a similar upper bound:

A1(g, ζ) =
1

ν(S)

∫
h∈S

∫ π

0

µ(ht, ζt)‖(ḣt, ζ̇t)‖ dt dS.

Note that we are just replacing the integral from 0 to dR(g, h) by the distance from
0 to π.

We thus have:

Theorem 10. Let (g, ζ) ∈ V. The average complexity of linear homotopy with
starting pair (g, ζ) is bounded above by a polynomial in N multiplied by A1(g, ζ).

This justifies the following definition:

Definition 11. Fix some polynomial1 p ∈ R[x, y, z]. We say that (g, ζ) is a good
starting pair w.r.t. p(x, y, z) if A1(g, ζ) ≤ p(n, d,N) (which implies that the average
number of steps of the linear homotopy is O(d3/2p(n, d,N)).) From now on, if

nothing is said, we assume p(x, y, z) =
√

2πxz. Thus, (g, ζ) ∈ V is a good initial

pair if A1(g, ζ) ≤
√

2πnN .

So, if a good initial pair is known for all choices of n and the list of degrees (d),
then the total average complexity of linear homotopy is polynomial in N . In other
words, finding good starting pairs for every choice of n and (d) gives a satisfactory
solution to Problem (1).

In [49] the following pair2 was conjectured to be a good starting pair (for some
polynomial p(x, y)) :

(5.2) g(z) =


d

1/2
1 zd1−1

0 z1,
...

d
1/2
n zdn−1

0 zn

, ζ = (1, 0, . . . , 0).

To this date, proving this conjecture is still an open problem. Some experimental
data supporting this conjecture was shown in [12]

5.1. Choosing initial pairs at random: an Average Las Vegas algorithm
for problem (1). One can study the average value of the quantity A1(g, ζ) de-
scribed above. Most of the results in this section are based in the fact that the
expected value of the square of the condition number is relatively small. This was
first noted in [46], then this expected value was computed exactly in [16]:

Theorem 12. Let h ∈ S be chosen at random, and let ζ be chosen at random, with
the uniform distribution, among the zeros of h. Then, the expected value of µ2(h, ζ)
is at most nND. More exactly:

Eh∈S

 ∑
ζ:h(ζ)=0

µ(h, ζ)2

 = DN

(
n

(
1 +

1

n

)n+1

− 2n− 1

)
≤ nND.

1Because n, d ≤ N , we could just talk about a one variable polynomial p(x) and change
p(n, d,N) to p(N) in the following definition. However, we prefer here to be a bit more precise.

2The pair conjectured in [49] does not contain the extra d
1/2
i factors. There is, however, some

consensus that these extra factors should be added, for with these factors the condition number

µ(g, ζ) = n1/2 is minimal.
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In particular, in the case of one homogeneous polynomial of degree d (i.e. n = 1,)
we have:

Eh∈S

 ∑
ζ:h(ζ)=0

µ(h, ζ)2

 = d(d+ 1).

Now we use some arguments which are very much inspired by ideas from integral
geometry, one of the main contributions of Lluis Santaló to XX century mathemat-
ics. We can try to compute the expected value of A1(g, ζ). Although this can be
done directly (see [18],) it is easier to first consider an upper bound of A1: let us
note from (3.5) that

(5.3) A1(g, ζ) ≤
√

2

ν(S)

∫
h∈S

∫ π

0

µ(ht, ζt)
2 dt dS.

So, we have

Eg∈S

 ∑
ζ:g(ζ)=0

A1(g, ζ)

 ≤ Eg∈S

 ∑
ζ:h(ζ)=0

√
2

ν(S)

∫
h∈S

∫ π

0

µ(ht, ζt)
2 dt dS.

 =

√
2 Eg,h∈S×S

∫
f∈Lg,h

∑
ζ:f(ζ)=0

µ(f, ζ)2

 ,

where Lg,h is the half–great circle in S containing g, h, starting at g and going to
−g (we have to remove from this argument the case h = −g but this is unimportant
for integration purposes.) Note that we can define a measure and more generally
a concept of integral in S as follows: given any measurable function q : S→ [0,∞),
its integral is

(5.4) Eg,h∈S×S

(∫
f∈Lg,h

q(f)

)
.

Now, this last formula describes an invariant (with respect to the group of sym-
metries of S, that can be identified with the unitary group of size N + 1 or with
the orthogonal group of size 2N + 2) measure in S and is thus equal to a multiple
of the usual measure in S. In words, averaging over S or over great circles in S is
the same, up to a constant. The constant is easy to compute by considering the
constant function q ≡ 1. What we get is:

Eg∈S

 ∑
ζ:g(ζ)=0

A1(g, ζ)

 ≤ π√
2

Eh∈S

 ∑
ζ:h(ζ)=0

µ(h, ζ)2

 .

After this argument is made rigorous, we have (see [14, 15] for earlier versions of
the following result:)

Theorem 13 ([16]). Let g ∈ S be chosen at random with the uniform distribution,
and let ζ be chosen at random, with the uniform (discrete) distribution among the
roots of g. Then, the expected value of A1(g, ζ) is at most π√

2
nN . In particular, for

such a randomly chosen pair (g, ζ), with probability at least 1/2 we have A1(g, ζ) ≤√
2πnN , that is, (g, ζ) is a good starting pair3.

3Note that we are computing there the average of A1 not that of the integral of µ2 as in [16].

From (5.3), the constant
√

2 has to be added to the formula in [16] in this context.
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The previous result would be useless for describing an algorithm (because choos-
ing a random zero of a randomly chosen g ∈ S might be a difficult problem) without
the following one.

Theorem 14 ([16]). The process of choosing a random g ∈ S and a random zero
ζ of g can be emulated by a simple linear algebra procedure.

The details of the linear algebra procedure of Theorem 14 require the introduc-
tion of too much notation. We just describe the process in words: one has to choose
a random n × (n + 1) matrix M with complex entries, compute its kernel (a pro-
jective point ζ ∈ P(Cn+1)) and consider the system g ∈ S that has ζ as a zero and
whose linear part is given by M . A random higher–degree term has to be added to
g, and then linear and higher–degree terms must be correctly weighted. This whole
process has running time polynomial in N . We thus have:

Corollary 15. The linear homotopy algorithm with the starting pair obtained as
in Theorem 14 has average complexity4 Õ(N2).

The word “average” in Corollary 15 must be understood as follows. For an input
system h, let T (h) be the average running time of the linear homotopy algorithm,
when (g, ζ) is randomly chosen following the procedure of Theorem 14. Then, the

expected value of T (h) for random h is Õ(N2). This kind of algorithm is called
Average Las Vegas, the “Las Vegas” term coming from the fact that a random
choice has to be done. The user of the algorithm plays the role of a Las Vegas
casino, not of a Las Vegas gambler: the chances of winning (i.e. getting a fast
answer to our problem) are much higher than those of loosing (i.e. waiting for a
long time before getting an answer.)

Some of the higher moments of A1(g, ζ) have also been proved to be small. For
example, the second moment (thus, also the variance) of A1(g, ζ) is polynomial in
N , as the following result shows:

Theorem 16 ([18]). Let 2 ≤ k < 3. Then, the expectation of A1(g, ζ)k satisfies

E
(
A1(g, ζ)k

)
<∞.

Moreover, let 2 ≤ k < 3− 1
2 lnD . Then, the expectation E

(
A1(g, ζ)k

)
satisfies,

E
(
A1(g, ζ)k

)
≤ 22k+k/2+4 e πkn3k−4N2D4k−8 lnD.

In particular, E(A1(g, ζ)2) ≤ 512eπ2n2N2 lnD.

We have been concentrating on finding one zero of a polynomial system. But
we could find k zeros 0 ≤ k ≤ D by choosing k different random initial pairs using
Theorem 14. This process is known from [16] to ouput every zero of the goal system
h with the same probability 1/D, if h 6∈ Σ. Another option is to choose some initial
system g which has k known zeros, and simultaneously continuing the k homotopy
paths with the algorithm of Theorem 9. In the case of finding all zeros the sum of
the number of steps to follow each path, is by Theorem 9 and (3.5) bounded above
by a constant times

d3/2

∫ dR(g,h)

0

∑
ζt:ht(ζt)=0

µ(ht, ζt)
2 dt.

4We use here the Õ(X) notation: this is the same as O(X log(X)c) for some constant c, that
is logarithmic factors are cleaned up to make formulas look prettier.



12 CARLOS BELTRÁN AND MICHAEL SHUB

So for the great circle homotopies we have been discussing an analogous of Theorem
13 holds:

Theorem 17 ([16]). Let g ∈ S be chosen at random with the uniform distribution.

Then, the expected value of
∫ dR(g,h)

0

∑
ζt:ht(ζt)=0 µ(ht, ζt)

2 dt is at most π
2nND. In

particular, for such a randomly chosen g, with probability at least 1/2 we have∫ dR(g,h)

0

∑
ζt:ht(ζt)=0 µ(ht, ζt)

2 dt ≤ πnND, that is, the linear homotopy for finding

all zeros starting at g takes at most a constant times d3/2nND steps to output all
zeros of h, on the average.

Note that in general, one cannot write down all the D zeros of g to begin with,
so Theorem 17 does not immediately yield a practical algorithm.

We point out that, even for the case n = 1, no explicit descriptions of pairs (g, ζ)
satisfying A1(g, ζ) ≤ dO(1) are known. Of course, no explicit polynomial g ∈ S is
known in that case satisfying the claim of Theorem 17. An attempt to determine
such a polynomial lead to some progress in the understanding of elliptic Fekete
points, see Section 8.

5.2. The roots of unity combined with a method of Renegar: a quasi–
polynomial time deterministic algorithm for problem (1). One can also
ask for an algorithm for Problem (1) which does not rely on random choices (a
deterministic algorithm). The search of a deterministic algorithm with polynomial
running time for Problem (1) is still open, but a quasi–polynomial algorithm is
known since [25].

This algorithm is actually a combination of two: on one hand, we consider the
initial pair

(5.5) g =


1√
2n

(xd10 − x
d1
1 )

...
1√
2n

(xd10 − xdnn )

, ζ = (1, . . . , 1)

Then, we have:

Theorem 18 ([25]). The projective Newton–based homotopy method with initial
pair (5.5) has average running time polynomial in N and nd, where d is the maxi-
mum of the degrees.

Theorem 18 is a consequence of the following stronger result:

Theorem 19 ([25]). The projective Newton–based homotopy method with initial
pair (g, ζ) ∈ V has average running time polynomial in N and in max{µ(g, η) :
g(η) = 0}.

Theorem 18 follows from Theorem 19 and the fact that µ(g, η) ≤ 2(n + 1)d for
g given by (5.5) for every zero η of g.

For small (say, bounded) values of d, the quantity nd is polynomial in n and
thus polynomial in N , but for big values of d the quantity nd is not bounded
by a polynomial in N , and thus Theorem 18 does not claim the existence of a
polynomial running time algorithm. However, it turns out that there is a previously
known algorithm, based on the factorization of the u–resultant, that has exponential
running time for small degrees, but polynomial running time for high degrees (this
may seem contradictory, but it is not: when the degrees are very high, the input
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size is big, and thus bounding the running time by a polynomial in the input size
is sometimes possible in this case.) More precisely:

Theorem 20 ([41, 25]). There is an algorithm with average running time poly-
nomial in N and D that, on input h ∈ P(H(d)) \ Σ, outputs an approximate zero
associated to every single exact zero of h.

Note that D is usually exponential in n, but as suggested above, if the degrees
are very high compared to n, then D can be bounded above by a polynomial in the
input size N and thus the algorithm of Theorem 20 becomes a polynomial running
time algorithm.

An appropriate combination of theorems 18 and 20, using the homotopy method
of Theorem 18 for moderately low degrees and the symbolic–numeric method of
Theorem 20 for moderately high degrees (or, simply, running both algorithms for
every input and stopping whenever one of them finishes,) turns out to be quasipoly-
nomial for every choice of n and (d) . Indeed:

Theorem 21 ([25]). The average (for random h ∈ S) running time of the following
procedure is O(N log logN ): on every input h ∈ P(H(d)) \ Σ, run simultaneously the
algorithms of theorems 18 and 20, stopping the computation whenever one of the
two algorithms gives an output.

Note that the running time of this algorithm is thus quasi–polynomial in N .
Moreover, the algorithm is deterministic because it does not involve random choices.

5.3. Homotopy paths based in the evaluation at one point. Another ap-
proach to construct homotopies was considered in [50] and generalized in [4]. Given

h ∈ H(d) and ζ ∈ P(Cn+1), consider g = h− ĥζ , where ĥζ ∈ H(d) is defined as

ĥζ(z) = Diag

(
〈z, ζ〉di
〈ζ, ζ〉di

)
h(ζ).

Then, g(ζ) = 0. So, we consider the homotopy ht = (1− t)g + th = h− (1− t)ĥζ .
We continue the zero ζ from h0 = g to h1 = h. For any fixed ζ, for example
ζ = e0 = (1, 0, . . . , 0), the homotopy may be continued for almost all h ∈ H(d). Let

K(h, ζ) = number of steps sufficient to continue ζ to a zero of h.

Then,

Theorem 22 ([4]).

Eh∈H(d)
(K(h)) ≤ Cd3/2Γ(n+ 1)2n−1

(2π)Nπn

∫
h∈H(d)

 ∑
η:h(η)=0

µ(h, η)2

‖h‖2
Θ(h, η)

 e−‖h‖
2/2 dh,

where

Θ(h, η) =

∫
ζ∈B(h,η)

(‖h‖2 − T 2)1/2

T 2n−1
Γ(T 2/2, n)eT

2/2 dζ,

T = ‖Diag(‖ζ‖−di))h(ζ)‖,

and Γ(α, n) =
∫ +∞
α

tn−1e−t dt is the incomplete gamma function.
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In Theorem 22, B(h, η) is the basin of η, which we now define. Suppose η is
a non–degenerate zero of h ∈ H(d). We define the basin of η, B(h, η), as those

ζ ∈ P(Cn+1) such that the zero ζ of g = h − ĥζ continues to η for the homotopy
ht = (1− t)g + th. We observe that the basins are open sets.

Not much is known about E(K). Might it be polynomial in N? Is it even finite?
See [4] for precise questions and motivations. Here is one:

Problem 3. For h ∈ H(d) \ Σ, are the volumes of all the basins of h equal?

6. The condition Lipschitz–Riemannian structure

Let us know turn our sight back to (4.1). If we drop the condition number
µ(ht, ζt) from that formula, we get

L =

∫ b

a

‖ḣt, ζ̇t)‖ dt,

that is simply the length of the path (ht, ζt) in the solution variety V, taking on V
the natural metric: the one inherited from that of the product P(H(d))× P(Cn+1).
The formula in (4.1) can now be seen under a geometrical perspective: Lκ is just the
length of the path (ht, ζt) when V is endowed with the conformal metric obtained
by multiplying the natural one by the square of the condition number. Note that
this new metric is only defined on W = V \ Σ′. We call this new metric the
condition metric in W. This justifies the name condition length we have given
to Lκ. Theorem 9 now reads simply as follows: the complexity of following a
homotopy path (ht, ζt) is at most a small constant cd3/2 times the length of (ht, ζt)
in the condition metric. This makes the condition metric an interesting object of
study: which are the theoretical properties of that metric? given p, q ∈ W, what is
the condition length of the shortest path joining p and q?

The first thing to point out is that µ is not a C1 function, as it involves a matrix
operator norm. However, µ is locally Lipschitz. Thus, the condition metric is not a
Riemannian metric (usually, one demands smoothness or at least C1 for Riemann-
ian metrics,) but rather we may call it a Lipschitz–Riemannian structure. This
departs from the topic of most available books and papers dealing with geometry
of manifolds, but there are still some things we can say. It is convenient to take a
tour to a slightly more general kind of problems; that’s the reason for the following
section.

6.1. Conformal Lipschitz–Riemann structures and self–convexity. Let M
be a finite–dimensional Riemannian manifold, that is a smooth manifold with a
smoothly varying inner product defined at the tangent space to each point x ∈ M,
let us denote it 〈·, ·〉x. Let α : M → [0,∞) be a Lipschitz function that is there
exists some constant K ≥ 0 such that

|α(x)− α(y)| ≤ KdR(x, y), ∀x, y ∈ M,

where dR(x, y) is the Riemannian distance from x to y. Then, consider on each
point x ∈ M the inner product 〈·, ·〉α,x = α(x)〈·, ·〉x. Note that this need no longer
be smoothly varying with x, for α(x) is just Liptschitz. We call such a structure
a (conformal) Lipschitz–Riemannian structure in M, and call it the α–structure.
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The condition length of a C1 path γ(t) ⊆ M, a ≤ t ≤ b, is just

Lα(γ) =

∫ b

a

‖γ(t)‖α,γ(t) dt =

∫ b

a

〈γ(t), γ(t)〉1/2α,γ(t) dt

The distance between any to points p, q ∈ M in this α–structure is defined as

(6.1) dα(p, q) = inf
γ(t)⊆V

Lα(γ), p, q ∈ M,

where the infimum is over all C1 paths with γ(0) = p, γ(1) = q.
A path γ(t), a ≤ t ≤ b is called a minimizing geodesic if Lα(γ) = dα(γ(a), γ(b))

and ‖γ̇(t)‖α,γ(t) ≡ 1, that is if it minimizes the length of curves joining its extremal
points and if it is parametrized by arc–length. Then, a curve γ(t) ⊆ M, for t in some
(possibly unbounded) interval I is a geodesic if it is locally minimizing, namely if
for every t in the interior of I there is some interval (a, b) ⊆ I containing t and such
that γ |[a,b] is a minimizing geodesic.

Each connected component of the set M with the metric given by dα is a path
metric space, and it is locally compact because M is a smooth finite–dimensional
manifold. We are in a position to use Gromov’s version of the classical Hopf–Rinow
theorem [32, Th.1.10], and we have:

Theorem 23. Let M and α be as in the discussion above. Assume additionally
that M is connected and that (M, dα) is a complete metric space. Then:

• each closed, bounded subset is compact,
• each pair of points can be joined by a minimizing geodesic.

Theorem 23 gives us sufficient conditions for conformal Lipschitz–Riemannian
structures to be “well defined” in the sense that the infimum of (6.1) becomes a
minimum. We can go further:

Theorem 24 ([11]). In the notation above, any geodesic is of class C1+Lip, that is
it is C1 and has a Lipschitz derivative.

See [22] for an early version of Theorem 24 and for experiments related to this
problem.

One often thinks of the function α as some kind of “squared inverse of the
distance to a bad set”, so for each connected component of M the set (M, dα) will
actually be complete.

A natural property to ask about is the following: given p, q ∈ M, and given a
geodesic γ(t) such that γ(a) = p, γ(b) = q, does α attain its maximum on γ in the
extremes? Namely, if we think on α as some kind of squared inverse to a bad set,
do we have to get closer to the bad set than what we are in the extremes?

Example 25. A model to think of is Poincaré half–plane with the metric given by
the usual scalar product in R2 ∩ {y > 0}, multiplied by y−2. Geodesics then become
just portions of vertical lines or half–circles with center at the axis y = 0. It is clear
that, to join any two points, the geodesic does not need to become closer to the bad
set {y = 0}.

We can ask for more: we say that α is self–convex (an abbreviation for self–log–
convex) if for any geodesic γ(t), the following is a convex function:

t 7→ log(α(γ(t))).
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Note that this condition is stronger than just asking for t 7→ α(γ(t)) to be convex,
and thus stronger than asking for the maximum of α on γ to be at the extremal
points.

6.2. Convexity properties of the condition number. We have the following
result:

Theorem 26 ([10]). Let k ≥ 1 and let N ⊆ Rk be a C2 submanifold without
boundary of R2. Let U ⊆ Rn \ N be the biggest open set all of whose points have
a unique closest point in N. Then, the function α(x) = distance(x,N)−2 is self–
convex in U .

Note that Theorem 26 is a more general version of Example 25, where the hori-
zontal line {y = 0} is changed to a submanifold N.

A well–known result usually attributed to Eckart and Young [31] and to Schmidt
and Mirsky (see [54]) relates the usual condition number of a full rank rectangular
matrix to the inverse distance to the set of rank–deficient matrices:

Theorem 27 (Condition Number Theorem of linear algebra). Let A ∈ Cmn be a
m × n matrix for some 1 ≤ m ≤ n. Let σ1(A), . . . , σm(A) be its singular values.
Then,

σm(A) = distance(A, {rank–deficient matrices}).
In particular, in the case of square maximal rank matrices, this we can rewrite
this as ‖A−1‖ = distance(A, {rank–defficient matrices})−1, that is the (unscaled)
condition number ‖A−1‖ equals the inverse of the distance from A to the set of
singular matrices. We more generally call σ−1

m (A) the unscaled condition number
of a (possibly rectangular) full–rank matrix A.

One feels tempted to conclude from theorems 26 and 27 that the function send-
ing a full–rank complex matrix A to the squared inverse of its smallest singular
value (i.e. to the square of its unscaled condition number) should be self–convex.
Indeed, one cannot apply Theorem 26 because the set of rank–deficient matrices
is not a C2 manifold, and because the distance to it is for many matrices (more
precisely: whenever the multiplicity of the smallest singular value is greater than
1) not attained in a single point. It takes a considerable effort to prove that the
result is still true:

Theorem 28 ([11]). The function defined in the space of full–rank m×n matrices,
1 ≤ m ≤ n, as the squared inverse of the unscaled condition number, is self–convex.

Note that this implies that, given any two complex matrices A,B of size m× n,
and given any geodesic γ(t), a ≤ t ≤ b in the α–structure defined in

Cmn \ { rank–deficient matrices}

by α(C) = σm(C)−2 such that γ(a) = A, γ(b) = B, the maximum of α along γ is
α(A) or α(B).

Note that, if a similar result could be stated for the α–structure defined by
(h, ζ) 7→ µ(h, ζ)2 in W, we would have quite a nice description of how geodesics in
the condition metric of W are. Proving this is still an open problem:

Problem 4. Prove or disprove µ2 is a self–convex function in W.
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Note that from Theorem 7, the function µ2 is not exactly the squared inverse of
the distance to a submanifold, but it is still something similar to that. This makes
it plausible to believe that Problem 4 has an affirmative answer. A partial answer
is known:

Theorem 29 ([11]). The function h 7→ µ2(h, e0) defined in the set {h ∈ P(H(d)) :
h(e0) = 0} is self–convex. Here, e0 = (1, 0, . . . , 0).

7. Condition geodesics and the geometry of W

Although we do not have an answer Problem 4, we can actually state some
bounds that give clues on the properties of the geodesics in the condition structure
in W. More precisely:

Theorem 30 ([17]). For every two pairs (h1, ζ1), (h2, ζ2) ∈ W, there exists a curve
γt ⊆ W joining (h1, ζ1) and (h2, ζ2), and such that

Lκ(γt) ≤ 2cnd3/2 + 2
√
n ln

(
µ(h1, ζ1)µ(h2, ζ2)

n

)
,

c a universal constant.

In the light of Theorem 9, this means that if one can find geodesics in the
condition structure inW, one would be able to follow these paths in very few steps:
just logarithmic in the condition number of the starting pair and the goal pair.

Corollary 31. A sufficient number of projective Newton steps to follow some path
in W starting at the pair (g, e0) of (5.2) to find an approximate zero associated to
a solution ζ of a given system h ∈ P(H(d)) is

cd3/2

(
nd3/2 +

√
n ln

(
µ(h, ζ)√

n

))
,

c a universal constant.

Note that only the logarithm of the condition number appears in Corollary 31.
Thus, if one could find an easy way to describe condition geodesics in W, the
average complexity of approximating them using Theorem 9 would involve just
the expectation of the average of ln(µ), not that of µ2 as in Theorem 12. As a
consequence, the average number of steps needed by such an algorithm would be
O(nd3 lnN). See [18, Cor. 3] for a more detailed statement of this fact. At this
point we ask a rather naive, vague question:

Problem 5. May homotopy methods be useful in solving linear systems of equa-
tions? Might using geodesics help as in Corollary 31 and the comments above?

Large sparse systems are frequently solved by iterative methods and the condition
number plays a role in the error estimates. So Problem (5) has some plausibility.

Remark 32. There is an exponential gap between the average number of steps
needed by linear homotopy O(d3/2nN) and those promised by the condition geodesic–
based homotopy (which stays at a theoretical level by now, because one cannot eas-
ily describe those geodesics). This exponential gap occurs frequently in theoretical
computer science. For example NP–complete problems are solvable in simply ex-
ponential time but polynomial with a witness. The estimates for homotopies with
condition geodesics may likely serve as a lower bound for what can be achieved.
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Also, properties of geodesics as we learn them can inform the design of homotopy
algorithms.

There is more we can say about the geometry (and topology) of W, by studying
the Frobenius condition number in W , which is defined as follows:

µ̃(h, ζ) = ‖h‖ ‖Dh(ζ)† Diag(‖ζ‖di−1d
1/2
i )‖F , ∀(h, ζ) ∈W,

where ‖ · ‖F is Frobenius norm (i.e. Trace(L∗L)1/2 where L∗ is the adjoint of L)
and † is Moore-Penrose pseudoinverse.

Remark 33. The Moore-Penrose pseudoinverse L† : F → E of a linear operator
L : E→ F of finite dimensional Hilbert spaces is defined as the composition

(7.1) L† = iE ◦ (L |Ker(L)⊥)−1 ◦ πImage(L),

where πImage(L) is the orthogonal projection on image L, Ker(L)⊥ is the or-
thogonal complement of the nullspace of L, and iE is the inclusion. If A is a
m × (n + 1) matrix and A = UDV ∗ is a singular value decomposition of A,
D = Diag(σ1, . . . , σk, 0, . . . , 0) then we can write

(7.2) A† = V D†U∗, D† = Diag(σ−1
1 , . . . , σ−1

k , 0, . . . , 0).

In [19] we prove that µ̃ is an equivariant Morse function defined in W with a
unique orbit of minima given by the orbit B of the pair of (5.2) under the action of
the unitary group (U, (h, ζ)) 7→ (h ◦ U∗, Uζ).

The function A1(g, ζ) or even its upper bound (up to a
√

2 factor) estimate 5

B1(g, ζ) =
1

ν(S)

∫
h∈S

∫ π

0

µ(ht, ζt)
2 dt dS

is an average of µ2 in great circles. This remark motivates the following

Problem 6. Is A1(g, ζ) or B1(g, ζ) also an equivariant Morse function whose only
critical point set is a unique orbit of minima?

If so, due to symmetry considerations, it is the orbit through the conjectured
good starting point (5.2). Here, one may want to replace the condition number µ in
the definition of B1 with a smooth version such as the Frobenius condition number.
A positive solution to this problem solves our main problem: the conjectured good
initial pair (5.2) is not only good but even best.

Because the Frobenius condition number is an equivariant Morse function, the
homotopy groups of W are equal to those of B, that can be studied with standard
tools from algebraic topology. In the case that n > 1, for example, we get:

π0(W) = {0}
π1(W) = Z/aZ
π2(W) = Z
π3(W) = πk(SUn+1) (k ≥ 3),

where SUn+1 is the set of special unitary matrices of size n + 1, a = gcd(n, d1 +
· · ·+ dn − 1) and Z/aZ is the finite cyclic group of a elements.

In particular, we see that if all the d′is are equal then a = 1 and W is simply
connected; in particular, any curve can be continously deformed into a minimizing

5see (5.3).
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geodesic. See [19] for more results concerning the geometry of W. We can also
prove a lower bound similar to the upper bound of Theorem 30:

Theorem 34. let α : [a, b] → W be a C1 curve. Then, its condition length is at
least

1

d3/2
√
n+ 1

∣∣∣∣ln(µ(α(a))

µ(α(b))

)
− ln

√
n+ 1

∣∣∣∣ .
Remark 35. We have written Theorem 34 using the condition metric as defined in
this paper. The original result [19, Prop. 11] was written for the so–called smooth
condition length, obtained by changing µ to µ̃ in the definition of the condition
length. This change produces the

√
n+ 1 factors in Theorem 34.

In his article [52], Smale suggests that the input size of an instante of a numerical
analysis problem should be augmented by logW (y) where W (y) is a weight function
“... to be chosen with much thought...” and he suggests that “ the weight is to
resemble the reciprocal of the distance to the set of ill–posed problems.” That is
the case here. The condition numbers we have been using are comparable to the
distance to the ill–posed problems and figure in the cost estimates. It would be
good to develop a theory of computation which incorporates the distance to ill–
posedness, or condition number and distance to ill-posedness in case they may not
be comparable, (and precision in the case of round–off error) more systematically
so that a weight function will not require additional thought. For the case of linear
programming Renegar [42] accomplished this. It is our main motivating example
as well as the work we have described on polynomial systems. The book [26] is the
current state of the art. The geometry of the condition metric will to our mind
intervene in the analysis. If floating point arithmetic is the model of arithmetic used
then ill-posedness will include points where the output is zero as well as points where
the output is not Lipschitz. This section has been developed in discussions with
Jean Pierre Dedieu and his colleagues Guillaume Cleze and Paola Boito.

8. The univariate case and elliptic Fekete points

Let us now center our attention in the univariate case, that, once homogenized,
turns out into the case of degree d homogeneous polynomials in two variables. One
can then compute explicitly:

µ(h, ζ) = d1/2‖‖h‖‖(Dh(ζ) |ζ⊥)−1‖ζ‖d−1.

If we are given a univariate polynomial f(x) and a complex zero z of f , we can also
use the following more direct (and equivalent) formula for µ(h, ζ) where h is the
homogeneous counterpart of f and ζ = (1, z) :

µ(h, ζ) =
d1/2(1 + |z|2)

d−2
2

|f ′(z)|
‖h‖.

It was noted in [46] that the condition number is related to the classical problem
of finding elliptic Fekete points, which we recall now in its computational form (see
[9] for a survey on the state of art of this problem.)

Given d different points x1, . . . , xd ∈ R3, let X = (x1, . . . , xd) and

E(X) = E(x1, . . . , xd) = −
∑
i<j

log ‖xi − xj‖
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be its logarithmic potential. Sometimes E(X) is denoted by E0(X), E(0, X) or
VN (X). Let S(1/2) be the Riemann sphere in R3, that is the sphere of radius 1/2
centered at (0, 0, 1/2), and let

md = min
x1,...,xd∈S(1/2)

E(x1, . . . , xd)

be the minimum value of E . A minimising d–tuple X = (x1, . . . , xd) is called a set
of elliptic Fekete points 6.

The computational problem of finding elliptic Fekete points is another of the
problems in Smale’s list 7.

Smale’s 7th problem [53]: Can one find X = (x1, . . . , xd) such that

(8.1) E(X)−md ≤ c log d, c a universal constant.

The first clue that this problem is hard comes from the fact that the value of md

is not known, even to O(d). A general technique (valid for Riemannian manifolds)
given by Elkies shows that

md ≥
d2

4
− d log d

4
+O(d).

Wagner [57] used the stereographic projection and Hadamard’s inequality to get
another lower bound. His method was refined by Rakhmanov, Saff and Zhou [38],
who also proved an upper bound for md using partitions of the sphere. The lower
bound was subsequently improved upon by Dubickas and Brauchart [30], [24]. The
following result summarizes the best known bounds:

Theorem 36. Let Cd be defined 8 by

md =
d2

4
− d log d

4
+ Cdd.

Then,

−0.4375 ≤ lim inf
d 7→∞

Cd ≤ lim sup
d7→∞

Cd ≤ −0.3700708...

The relation of this problem to the condition number relies in the fact that sets of
elliptic Fekete points are naturally “well separated”, and are thus good candidates
to be the zeros of a “well–conditioned” polynomial, that is a polynomial all of whose
zeros have a small condition number. In [46] Shub and Smale proved the following
relation between the condition number and elliptic Fekete points.

Theorem 37 ([47]). Let ζ1, . . . , ζd ∈ P(C2) be a set of projective points, and con-
sider them as points in the Riemann sphere S(1/2) with the usual identification
P(C2) ≡ S(1/2). Let h be a degree d homogeneous polynomial such that its zeros
are ζ1, . . . , ζd. Then,

max{µ(h, ζi) : 1 ≤ i ≤ d} ≤
√
d(d+ 1) eE(ζ1,...,ζd)−md .

6Such a d–tuple can also be defined as a set of d points in the sphere which maximize the

product of their mutual distances.
7Smale thinks on points in the unit sphere, but we may think on points in the Riemann sphere,

as the two problems are equivalent by sending (a, b, c) ∈ S(1/2) to 2(a, b, c)− (0, 0, 1).
8The result in the original sources is written for the unit sphere, we translate it here to the

Riemann sphere.
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In particular, is x1, . . . , xd are a set of elliptic Fekete points, then

max{µ(h, ζi) : 1 ≤ i ≤ d} ≤
√
d(d+ 1).

Remark 38. Let Re and Im be, respectively, the real and complex part of a com-
plex number. Here is alternative, equivalent definition for h and the ζi. Instead
of considering projective points in P(C2) we may just consider a set of complex
numbers z1, . . . , zd ∈ C. Then, for 1 ≤ i ≤ d, we can define ζi ∈ S as

(8.2) ζi =

(
Re(zi)

1 + |zi|2
,
Im(zi)

1 + |zi|2
,

1

1 + |zi|2

)T
∈ S(1/2), 1 ≤ i ≤ d,

f as the polynomial whose zeros are z1, . . . , zd, and h as the homogeneous counter-
part of f .

There exists no explicit known way of describing a sequence of polynomials
satisfying max{µ(h, ζ) : h(ζ) = 0} ≤ dc, for any fixed constant c and d ≥ 1.
Theorem 37 implies that, if a d–tuple satisfying (8.1) can be described for any d,
then such a sequence of polynomials can also be generated. From Theorem 19, such
h′s are good starting points for the linear homotopy method, both for finding one
root and for finding all roots. So, solving the elliptic Fekete points problem solves
the starting point problem for n = 1. The reciprocal question is: does solving the
starting point problem for n = 1 help with the Fekete point problem?

Problem 7. Suppose n = 1 and g ∈ S minimizes
∑
ζ:g(ζ)=0 µ(g, ζ)2. Do ζ1, . . . , ζd

(the zeros of g, seen as points in S(1/2)) solve Smale’s 7–th problem?

We have seen in Theorem 12 that the condition number of (h, ζ) where h is
chosen at random and ζ is uniformly chosen at random among the zeros of h, grows
polynomially in d. Then, Theorem 37 suggests that spherical points associated with
zeros of random polynomials might produce small values of E . We can actually put
some numbers to this idea. First, one can easily compute the average value of E
when x1, . . . , xd are chosen at random in S(1/2), uniformly and independently with
respect to the probability distribution induced by Lebesgue measure in S(1/2):

EX∈S(1/2)dE(X) =
d2

4
− d

4
.

By comparing this with Theorem 36, we can see that random choices of points in
the sphere already produce pretty low values of the minimal energy. One can prove
that random polynomials actually produce points which behave better with respect
to E :

Theorem 39 ([3]). Let n = 1 and h ∈ S be chosen at random w.r.t. the uniform
distribution in S. Let ζ1, . . . , ζd ∈ S(1/2) be the zeros of h. Then, the expected
value of E(ζ1, . . . , ζd) equals

d2

4
− d log d

4
− d

4
.

By comparing this with Theorem 36, we conclude that spherical points coming
from zeros of random polynomials agree with the minimal value of E , to order
O(d). This result fits into a more general (yet, less precise) kind of result related
to random sections on Riemann surfaces, see [58, 59].
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9. The algebraic eigenvalue problem

The double fibration scheme proposed in (3.2) has been – at least partly – suc-
cessfully used in other contexts. For example, in [1] a similar projection scheme

(9.1)

Veig = {(A, λ, v) ∈ P(Cn2+1)× P(Cn) : Av = λv}
π1 ↙ ↘ π2

P(H(d)) P(Cn+1)

was used to study the complexity of a homotopy–based eigenvalue algorithm, ob-
taining the following:

Theorem 40. An homotopy algorithm can be designed that continues an eigenvalue–
eigenvector pair (λ0, v0) of a n×n matrix A0 to one (λ1, v1) of another matrix A1,
the number of steps bounded above by

c

∫ 1

0

‖(Ȧ, λ̇, v̇)‖µeig(A, λ, v) dt,

c a universal constant. Here, µeig is the condition number 9 for the algebraic eigen-
value problem , defined as

(9.2) µeig(A, λ, v) = max
{

1, ‖A‖F ‖πv⊥(λIn −A) |−1
v⊥
‖
}
,

where ‖A‖F = trace(A∗A)1/2 is the Frobenius norm of A.

Of course, we do not intend to summarize here the enormous amount of methods
and papers dealing with the eigenvalue problem (see [54] for example). We just
point out that there exists no proven polynomial–time algorithm for approximating
eigenvalues (although different numerical methods achieve spectacular results in
practice.) See [29] for some statistics about the QR (and Toda) algorithms for
symmetric matrices. We don’t know a good reference for the more difficult general
case. Unshifted QR is not the fast algorithm of choice. The QR algorithm with
Francis double shift executed on upper Hermitian matrices should be the gold
standard.

Problem 8. Does the QR algorithm with Francis double shift fail to attain con-
vergence on an open subset of upper Hessenberg matrices?

See [6] for open sets where Rayleigh quotient iteration fails, and [5] for a proof
of convergence for normal matrices as well as a good introduction to the dynamics
involved.

Theorem 40 can probably be used in an analysis similar to that of Section 5
to complete a complexity analysis. Note that the integral in Theorem 40 is very
similar in spirit to that of (4.1). This allows to introduce a condition metric in
Veig. Some of the results in previous sections can be adapted to this new case. For
example, an analogous of Theorem 30 holds (i.e. short geodesics exist,) see [2].

The eigenvalue problem and the problem of finding roots of a polynomial in
one variable are, of course, connected. Given an n × n matrix A we may com-
pute the characteristic polynomial of A, p(z) = det(zI − A) and then solve p(z).
The zeros of p(z) are the eigenvalues of A. Trefethen and Bau [55] write “This

9A quantity similar in spirit to the condition number µ for the polynomial system solving
problem.
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algorithm is not only backward unstable but unstable and should not be used”.
Indeed when presented with a univariate polynomial p(z) to solve numerical linear
algebra packages may convert the problem to an eigenvalue problem by consid-
ering the companion matrix of p(z) and then solve the eigenvalue problem. If
p(z) = zd + ad−1z

d−1 + · · ·+ a0 the compainon matrix is

0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

...
. . .

. . .
...

...
...

. . .
. . . 0 −ad−2

0 · · · · · · 0 1 −ad−1


,

which is already in upper Hessenberg form. So conceivably Francis double shifted
QR may fail to converge on an open set of companion matrices?

Let us recall that the condition number of a polynomial and root is a property
of the output map as a function of the input. So doesn’t depend on the algorithms
to solve the problem. This motivates the following

Problem 9. What might explain the experience of numerical analysts, relating the
polynomial solving methods versus that of eigenvalue solving? Might the condition
number of the eigenvalue problem have small average over the set of n×n matrices
with a given characteristic polynomial?

Finally, if we consider the equation Av = λv an equation in unknowns λ and v,
it is a set quadratic equation. So, we have n quadratic equations in n unknowns.
By Bezout’s theorem, after we homogenize, we expect 2n roots counted with mul-
tiplicity. But there are only n eigenvalues. In [1, 2] it is shown that the use of
multihomogeneous Bezóut theorem yields the correct zero count for this problem.
Thus, a reasonable thing to do is to introduce a new variable α and consider the
bilinear equation Aαv = λv which is bilinear in (α, λ) and v.

Problem 10 (see [28]). Prove an analogue of Theorem 40 in the general multiho-
mogeneous setting.
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