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Abstract. The paper intends to introduce into topics relevant in real and complex
number complexity theory. This is done in a survey style. Taking as starting point the
computational model introduced by Blum, Shub, and Smale the following issues are
addressed: Basic results concerning decidability and NP-completeness, transfer results
of open questions between different models of computation, structural complexity inside
NPR, computational universality, and probabilistically checkable proofs over the real
and complex numbers.

1 Introduction

Complexity theory as a mathematical discipline is a relatively young subject. In a systematic
way it was basically developed since the 1970’s in Theoretical Computer Science based on
the Turing machine as underlying model of computation. This led to a theory nowadays basi-
cally devoted to study complexity issues of discrete problems over finite structures. Problem
instances are coded by sequences of bits and the complexity of algorithms is measured by
counting the number of elementary bit operations necessary. It seems that Turing himself
was as well interested in complexity and accuracy issues of numercial algorithms. He also
addressed an idealized model in which floating-point numbers are used as kind of entities and
was working on notions like the conditioning of a problem [95].

In contrast to the observation that complexity theory often is considered as a discipline in
computer science mathematicians have designed and analyzed algorithms already since cen-
turies. Some of the most important and prominent ones were developed long before computers
existed. Their inventors certainly had as well an intuition about complexity issues, though
often under other perspectives. Think about algorithms like Gaussian elimination, Newton’s
method and notions like the order of convergence in numerical analysis, or algorithms for
deciding the existence of complex solutions of a polynomial system related to Hilbert’s Null-
stellensatz.

Algorithms located in more classical areas of mathematics usually work with objects from
uncountable continuous domains like the real or complex numbers, respectively. Often the
number of basic arithmetic operations and test operations reflecting the underlying structure
are of major interest. One then disregards the influence of round-off errors and uses an ide-
alized model that computes with real or complex numbers as entities. This allows to focus
on algebraic properties of problems and algorithms solving them. One of the first formaliza-
tions of such a viewpoint in complexity theory has been worked with in the area of Algebraic
Complexity Theory [21] and can be traced back at least to the 1950’s. Models of computation
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used there are algebraic circuits and straight line programs. In 1989, Blum, Shub and Smale
introduced a model of computation now called the BSS model, see [15, 14]. It gives a general
approach to computability over rings and fields with a particular emphasis on R and C. When
considered over the finite field Z2 it results in the classical Turing machine model, whereas
over fields like the real or complex numbers it gives a uniform model generalizing the ones
previously used in algebraic complexity theory.

Let us mention that different models of computation have become more and more inter-
esting in recent years both in computer science and mathematics. Think about such diverse
models as Neural Networks [43], Quantum Computers [73], Analog Computers [91], Biological
Computers [38] to mention a few. Beside in algebraic complexity the BSS model is also used
as underlying computational model in the area of Information Based Complexity in which
algorithms for numerical problems without complete information are studied [99, 100]. Com-
putational models dealing with real numbers are also studied in Recursive Analysis. Here,
objects like real numbers or real functions are coded in a certain way by Cauchy sequences
leading to notions like that of a computable real (already introduced by Turing) and com-
putable real number functions. The theory arising from this approach is focussing more on
stability of real number algorithms and thus different from the setting of this paper. For
introduction and some additional diverse discussions on the question which model to use in
what situation we refer the reader to the following literature: [12, 18, 48, 86, 98, 99].

In this paper the Blum-Shub-Smale model builds the main topic of interest. The intention
is to give an introduction into problems and methods relevant in real number complexity
theory. The paper is organized as follows. Section 2 starts with a motivating example from
kinematics that leads to several interesting questions in complexity, both with respect to
the classical Turing and the real/complex number model. These problems are outlined and
lead to a formal introduction of the real number model in the following section. There, basic
complexity classes as well as the concept of NPR-completeness are introduced and some first
results are presented. We then focus on structural complexity theory for the real and complex
numbers by discussing three different topics: Transfer results between different computational
models, analysis of the structure inside NPR and NPC along the lines of a classical result by
Ladner in the Turing model, and recursion theory over the reals. The rest of the paper then
focusses on Probabilistically Checkable Proofs PCPs. The PCP theorem by Arora et al. [3, 2]
was a cornerstone in Theoretical Computer Science giving a new surprising characterization
of complexity class NP and haveing tremendous applications in the area of approximation
algorithms. After introducing the main ideas behind probabilistically checkable proofs we
give a detailed proof of the existence of long transparent proofs for NPR and NPC. Then, we
outline how one can obtain a real analogue of the PCP theorem along the lines of a more
recent proof of the classical PCP theorem by Dinur [33].

The paper is written in a survey kind style. We do not cover all the interesting work that
has been done since introduction of the Blum-Shub-Smale model about 20 years ago. Instead,
the focus will be on topics the authors have also worked on themselves. With one exception
dealing with long transparent proofs we most of the time do not present full proofs of the
results treated. Instead it is tried to give the reader a feeling of the ideas behind such proofs,
some more detailed and some not. More interested readers will easily find all details in the
cited literature. Finally, we expect the reader to have a basic knowledge of classical complexity
theory and the theory of NP-completeness [39], [1]. This is not crucial for understanding the
flow of ideas, but we frequently refer to the Turing model in order to pinpoint similarities and
differences between real number and classical complexity theory.
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2 A motivating example

A typical problem in kinematics asks for finding suitable mechanisms that fulfill given motion
tasks. Having chosen a mechanism which in principle can solve the problem the dimensions
of the mechanism’s components have to be determined. In its mathematical formulation this
often leads to solving polynomial systems. As example of such a motion synthesis task consider
the following one. Construct a mechanism which is able to generate a rigid body motion such
that some constraints are satisfied. Constraints, for example, could be certain positions that
have to be reachable by the mechanism. Figure 1 shows a typical example in which the point
P has to be guided through given positions.

Fig. 1. Synthesis-task “Motion generation for five precision poses”

The engineer’s task is to choose a suitable mechanism being able to solve the task. Then,
its precise dimensions have to be determined. Here it often is desirable to perform a complete
synthesis, i.e., to find all possible realizations of a synthesis task. This gives the engineer the
possibility to choose particular mechanisms optimized with respect to additional criteria not
reflected in the mathematical description, and to fine-tune. A class of mechanisms suitable
for the above task are so-called Stephenson mechanisms, one example of which is shown in
Figure 2.

In order to define the motion of a plane in relation to a fixed base, a ξ − η-system with
origin P shall be attached to the moving plane. Similarly, a x− y-system shall be attached to
the base A0. Then the planar rigid body motion can be defined by certain poses of the ξ− η-
system with respect to the x−y-system. Having chosen the kind of mechanism that is suitable
to solve the problem (structural synthesis), in the dimensional synthesis step the unknown
kinematic dimensions of the chosen mechanism have to be calculated. Mathematically, the
problem leads to a polynomial system that has to be solved either over the real or the
complex numbers depending on the formalization. Though both the number of variables
and the degrees of the involved equations remain moderate, computing a complete catalogue
of solutions in many cases already is demanding. Note that of course not all solutions of
the resulting polynomial system are meaningful from an engineering point of view. A first
complete dimensional synthesis for Stephenson mechanisms has been performed in [82], for a
general introduction to solution algorithms for such kinematic problems see [90].

An important numerical technique to practically solve polynomial systems are homotopy
methods. Here, the basic idea for solving F (x) = 0 is to start with another polynomial system
G that in a certain sense has a similar structure as F . The idea then is to build a homotopy
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Fig. 2. Six-bar Stephenson-1I mechanism

between G and F and follow the zeros of G numerically to those of F . A typical homotopy
used is the linear one H(x, t) := (1 − t) · G(x) + t · F (x), 0 ≤ t ≤ 1. In order to follow this
approach the zeros of the starting system should be easily computable.

Homotopy methods for solving polynomial systems are a rich source for many interesting
and demanding questions in quite different areas. Their analysis has seen tremendous progress
in the last 20 years and is outside the scope of this survey. There will be contributions in
this volume by leading experts (which the authors of the present paper are not!) in the area,
see the articles by C. Beltrán, G. Malajovich, and M. Shub. In addition, we point to some of
the deep results obtained and recommend both the other contributions in this volume and
the cited literature as starting point for getting deeper into homotopy methods: [84, 83, 9, 24].
Note that [84] is only the first of a series of five papers by the same authors that stands at
the beginning of the many results on the above questions obtained in the last two decades.

For the purposes of the present paper we are just interested in some particular aspects
arising from the above discussions. They lead into different directions of complexity theory,
both with respect to the classical Turing model and real number complexity theory. In the rest
of this section we discuss a problem resulting from the above approach that leads to a hard
combinatorial optimization problem in classical complexity theory. The following sections
then deal with the problem to decide solvability of such polynomial systems; as we shall see
this is a task at the heart of real and complex number complexity theory.

For the moment let us at the moment restrict ourselves to considering polynomial systems
of the form F : Cn 7→ Cn, F := (f1, . . . , fn) over the complex numbers. Here, each component
polynomial fi is supposed to have a degree di ∈ N. Since the system has as many equations
as variables it is canonically solvable. For a successful application of homotopy methods the
choice of the starting system G is of huge importance. One aspect is that if the zero structure
of G significantly differs (for example, with respect to its cardinality) from that of the target
system F , then many zeros from G are followed in vain, thus wasting computation time. A
common idea for choosing G therefore is to get as far as possible the same number of zeros
as F . There are different ways to estimate the number of complex zeros that a canonical
system F : Cn → Cn has. A first classical result is Bézout’s theorem which upper bounds

the number of isolated zeros by d :=
n∏
i=1

di. Though this number can be easily calculated

and a system G with d many isolated zeros is easily found, the disadvantage is that it often
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drastically overestimates the number of zeros of F . A prominent example is the computation
of eigenvalues and -vectors of an (n, n)-matrix M , formulated via the polynomial system
Mx− λx = 0, ‖x‖2 − 1 = 0 in variables (x, λ) ∈ Cn+1. The Bézout number is exponential in
n, whereas clearly only n solutions exist.

To repair this disadvantage one might try to use better bounds for the number of solutions.
A famous theorem by Bernstein [11] determines for generic systems the exact number of zeros
in (C∗)n. Though giving the exact number applying this theorem algorithmically suffers from
another aspect. In order to compute this bound one has to calculate so-called mixed volumes.
The latter is a computational problem that is expected to be even much harder than solving
problems in NP because in suitable formulations it leads to #P -hard problems.1 Thus at
least in general one has to be careful whether to compute this bound for the target system F
in order to construct G.

A third approach has been used as well, relying on so-called multi-homogeneous Bézout
numbers, see [54] for more. Here, the idea is to obtain better estimates by first partitioning the
problem’s variables into groups and then applying Bézout’s theorem to each group. In many
cases like the eigenvalue problem mentioned above the resulting bound is much closer to the
true number of zeros than it is the case for the Bézout number. However, the question then
again is how difficult it is to find an optimal grouping of the variables such that the resulting
upper bound is minimal. Though we deal with solving numerically systems of polynomials over
the complex numbers, the above question leads to a typical problem about a combinatorial
optimization problem and thus into the framework of classical complexity theory. This is due
to the structure of multi-homogeneous Bézout numbers. More precisely, the optimal grouping
mentioned above only depends on the support of the given system, i.e., the structure of
monomials with non-zero coefficients. It is not important how these coefficients look like. As
consequence, the problem changes to a purely combinatorial one. The question of how difficult
it is to compute the optimal variable partitioning has been answered in [59] which gives a
hardness result for the problem. It is therefore sufficient to focus on particular polynomial
systems, namely systems F := (f1, . . . , fn) = 0 in which all fi have the same support. More
precisely, consider n ∈ N, a finite A ⊂ Nn and a polynomial system

f1(z) =
∑
α∈A f1αz

α1
1 zα2

2 · · · zαn
n , . . . , fn(z) =

∑
α∈A fnαz

α1
1 zα2

2 · · · zαn
n ,

where the fiα are non-zero complex coefficients. Thus, all fi have the same support A.
A multi-homogeneous structure is a partition of {1, . . . , n} into k subsets (I1, . . . , Ik) , Ij ⊆
{1, . . . , n}. For each such partition we define the block of variables related to Ij as Zj =
{zi|i ∈ Ij}; the corresponding degree of fi with respect to Zj is dj := max

α∈A

∑
l∈Ij

αl. It is the

same for all polynomials fi because all have the same support.

Definition 1. a) The multi-homogeneous Bézout number with respect to support A and par-
tition (I1, . . . , Ik) is the coefficient of

∏k
j=1 ζ

|Ik|
j in the formal polynomial (d1ζ1 + · · ·+dkζk)n,

which is

Béz(A, I1, . . . , Ik) =
(

n
|I1| |I2| · · · |Ik|

) k∏
j=1

d
|Ij |
j

Here, we assume the fi to be not yet homogeneous with respect to variable group Zj ; otherwise,
replace dj’s exponent by |Ij | − 1.

1 A bit more information about the class #P can be found at the end of section 4.
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b) The minimal multi-homogenous Bézout number for a system having support A is

min
I partition

Béz(A, I)

It is known that this minimal number bounds the number of isolated solutions in a suit-
able product of projective spaces and trivially is never worse than the Bézout number, see
[57] for a proof. Unfortunately, as it is the case with Bernstein’s bound computing such an
optimial partition is a hard task. Even if one would be satisfied with only approximating the
minimal multi-homogeneous Bézout number using an efficient Turing algorithm this is not
likely possible. More precisely, the following holds:

Theorem 1 ([59]). a) Given a polynomial system F : Cn → Cn there is no polynomial time
Turing-algorithm that computes the minimal multi-homogeneous Bézout number unless P =
NP.

b) The same holds with respect to the task of efficiently approximating the minimal multi-
homogeneous Bézout number within an arbitrary constant factor of the minimum.

Proof. As mentioned already above the task of computing the best variable partition is a
purely discrete one because its definition only depends on the discrete structure of the support
of the given system. The proof thus shows that an efficient algorithm for any of the two
mentioned tasks would result in an efficient algorithm for the 3-coloring problem in graph
theory. This problem is well known to be NP-complete in discrete complexity theory. Relating
graph coloring with the problem at hand is done by assigning to a given graph G over vertex
set V monomials that have the vertices of G as its variables and reflect the presence of edges
and triangles in G. Doing this appropriately will result in a polynomial system whose mimimal
multi-homogeneous Bézout number equals C := (3n)!

n!n!n! in case the graph has a 3-coloring and
otherwise is at least 4

3C. This gives claim a). For the non-approximability result one performs
a similar construction which allows to blow up the factor 4

3 to an arbitrary constant. For
this construction, a multiplicative structure of the multi-homogeneous Bézout numbers is
exploited. 2

In practice this means that one has to decide whether one would prefer a longer precompo-
tutation for getting a better starting system either by using mixed volumes or by determining
a suitable multi-homogeneous structure or abstains from such a precomputation. Choosing a
random starting system also in theory is an important alternative here, see [9].

Finally note that multi-homogeneous Bézout numbers also play some role outside the
realm of polynomial equation solving. An example is given in [32], where the number of roots
is used to bound geometrical quantities such as volume and curvature which is applied to the
theory of Linear Programming.

The discussion in this section intended to show the wide range of interesting questions
arising from different areas related to polynomial system solving. In engineering, many tasks
can be formalized using such systems. Solving them then leads to demanding problems in
many different disciplines, ranging from algebraic geometry over numerical analysis to algo-
rithm design and complexity theory. Being the focus of the present paper we concentrate on
complexity theory. Above we have seen a question arising from polynomial system solving
and being located in the framework of combinatorial opimization. This is a typical area of
interest in classical discrete complexity theory, where also (non-)approximability results like
the one given in Theorem 1 are studied, see [4, 46, 47, 52].

However, taking into account domains like R and C over which the systems are to be solved
nearby other questions arise: Can we design deterministic algorithms that decide whether a
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general such system has a solution at all in the respective domain? General here in particular
means that we do not longer relate the number of variables and polynomials. If such decision
algorithms exist what is the intrinsic complexity of this problem, i.e., can we give good
lower and upper bounds on the running time of such algorithms? Is there a way to compare
related problems with respect to their complexity? These are also typical questions in classical
complexity theory when dealing with a class of problems. Since we are interested in real and/or
complex number instances the Turing model seems at least not appropriate to deal with all
above questions. Also the homotopy methods mentioned above usually are formulated in a
framework in which real numbers are considered as entities and complexity is measured, for
example, in terms of Newton steps that are applied to follow the homotopy.

This led Blum, Shub, and Smale [15] to introduce a computational model formalizing
algorithms over quite general domains together with a related complexity theory. This model
will be the central one considered in this paper. In the next section we give a short summary
of its definition, focussing on the real and complex numbers as underlying domains.

3 The real number model by Blum, Shub, and Smale

As already mentioned when dealing with algorithms over uncountable structures like R and
C as they often occur in many areas of mathematics it is quite natural to formulate such
algorithms in a computational model which disregards the concrete representation of objects
in modern computers. Then the real or complex numbers to compute with are considered
as entities and each elementary operation on such numbers is supposed to take unit time.
Of course, this does not mean that issues related to such a number representation are not
important in algorithm design and analysis. But if one focusses on certain aspects of a com-
putational problem, for example, on the number of basic arithmetic operations intrinsically
necessary to solve it, this abstraction makes sense. One important new aspect for the algo-
rithmic treatment of algebraic problems is to place them into the framework of a uniform P
versus NP question. This has also inspired a lot of further interesting new questions in the
area of algebraic complexity, see [21, 20].

In 1989 Blum, Shub, and Smale [15] introduced a formal framework that allows to carry
over important concepts from classical complexity theory in the Turing machine model to
computational models over a large variety of structures. For computations over the real and
complex numbers they obtained an analogue of the currently most important open question
of classical complexity theory, namely the P versus NP problem. We remark that the Blum-
Shub-Smale model was introduced over general ring structures; in case the underlying ring is
the finite field Z2 it gives back the classical Turing model.

We now give a brief introduction into the model, its main complexity classes and then
turn to the above mentioned version of a P versus NP question. Full details can be found in
[14]. We give the basic definitions for real number computations; they easily extend to other
structures.

Definition 2. A (real) Blum-Shub-Smale (shortly: BSS) machine is a Random Access Ma-
chine over R. Such a machine has a countable number of registers each storing a real number.
It is able to perform the basic arithmetic operations {+,−, ∗, :} together with branch instruc-
tions of the form: is a real number x ≥ 0? These operations are performed on the input
components and the intermediate results; moreover, there is a finite number of constants from
the underlying domain used by the algorithm. They are called machine constants. In addi-
tion, there are instructions for direct and indirect addressing of registers. A BSS machine M
now can be defined as a directed graph. Each node of the graph corresponds to an instruc-
tion. An outgoing edge points to the next instruction to be performed; a branch node has two
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outgoing edges related to the two possible answers of the test. Such a machine handles finite
sequences of real numbers as inputs, i.e., elements from the set R∞ :=

⋃
k∈N Rk. Similarly,

after termination of a computation it outputs an element from R∞ as result.

A machine does not necessarily terminate for each of the suitable inputs. For computations
over other structures one has to adjust the set of operations that can be performed accordingly.
For example, when computing with complex numbers there is no ordering available, therefore
tests are of the form: is a complex number z = 0? In a more formal treatment of the model
one additionally has to specify how inputs are presented to the machine in form of a start
configuration and how a terminal configuration leads to the output. This can easily be done
by specifying a set of registers in which an input is placed and others where the result of a
computation has to be delivered. However, being almost straightforward we skip to go through
the related formalism and refer instead once more to [14].

The problems we are mainly interested in are decision problems.

Definition 3. A set A ⊆ R∞ is called real decision problem. It is called decidable if there
is a real BSS algorithm that decides it, i.e., given an input x ∈ R∞ the algorithm terminates
with result 1 in case x ∈ A and result 0 otherwise.

The problem is semi-decidable if the algorithm stops for all x ∈ A with result 1 but
computes forever for inputs x 6∈ A. Similarly for complex decision problems.

Before turning to complexity issues one natural question in computability theory is whe-
ther there exist decision problems that cannot be decided at all by an algorithm in the
respective model.

Definition 4 (Real Halting Problem). The real Halting Problem HR is the following
decision problem: Given a code cM ∈ R∞ of a real BSS machine M and an x ∈ R∞, does
machine M stop its computation on input x?

The Halting Problem was one of the first that has been shown to be undecidable in the
real number model in [15]. There are further problems shown to be undecidable by simple
topological arguments. Recall that the Mandelbrot setM is defined as the set of those c ∈ C
whose iterates under the map z 7→ z2 + c remain bounded when starting the iteration in
z = 0.

Theorem 2 ([15]). The following problems are undecidable in the real number model: The
real Halting problem HR, the problem Q to decide whether a given real number is rational, the
Mandelbrot set M seen as subset of R2. Moreover, HR,Q and the complement of M in R2

are semi-decidable.
In the complex BSS model, the corresponding complex version of the Halting problem is

undecidable. The same holds for deciding the integers Z. Both problems are semi-decidable.

Proof. For proving undecidability of HR in a first step one constructs a universal BSS machine,
i.e, a machine U that takes as its input pairs (cM , x), where cM ∈ R∞ codes a BSS machine
M as element in R∞ and x ∈ R∞ is an input for this machine M . Machine U on such an
input simulates the computation of M on x. The computational model is strong enough to
guarantee U ’s existence, though the precise construction is tedious. Now, undecidability is
otained by a typical diagonalization argument in which x is taken to be cM . Semi-decidability
easily follows from performing U ’s computation. If the universal machine halts the input
belongs to HR by definition, otherwise not. The argument over C is the same.

For the other two real number problems undecidability follows from the topological struc-
ture of the respective problems. First, every semi-decidable set in R∞ is an at most countable
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union of semi-algebraic sets.2 This follows from the algebraic structure of the basic operations
allowed in algorithms. Both the complement of Q in R and the Mandelbrot set are known not
to be such a countable union, so it follows these that sets cannot be semi-decidable. But since
decidability of a problem A is equivalent to semi-decidability of both A and its complement
both problems can neither be decidable. Semi-decidability of Q is straightforward by enumer-
ating Q, that of R2 \ M follows immediately from M’s definition: As soon as an iterate of
an input c ∈ R2 in absolute value becomes larger than 2 this c belongs to M’s complement.
This condition as well characterizes the complement.

As to undecidability of the integers over C another frequently used topological argument
is helpful. Consider a potential machine deciding the problem. Then any input x∗ that is
algebraically independent of the extension field obtained when joining the complex machine
constants to Q must be branched along the not-equal-alternative of each test node. This
computation path must be finite. But the set of inputs that are branched at least once along
an equal-alternative is finite by the fundamental theorem of algebra. Thus there must exist
integers for which the machine uses the same computation path and gives the same result as
for x∗. On such integers the decision is false and the machine has to fail. 2

The above statements for Q and Z are closely related to so called definability issues in
real and algebraically closed fields, see [16]. We shall exploit similar arguments again below
when analyzing computationally universal problems in section 4.3.

Next, algorithms should be equipped with a time measure for their execution. As usual,
in order to then classify problems with respect to the running time needed to solve them one
also has to define the size of an instance. The time consumption is considered as function in
the input size. The intuitive approach for measuring the algebraic complexity of a problem
described at the beginning of this section is now made more precise as follows.

Definition 5. Let M be a real BSS machine. The size of an element x ∈ Rk is sizeR(x) := k.
The cost of each basic operation is 1. The cost of an entire computation is the number of
operations performed until the machine halts. The (partial) function from R∞ to R∞ computed
by M is denoted by ΦM . The cost of M ’s computation on input x ∈ R∞ is also called its
running time and denoted by TM (x). If ΦM (x) is not defined, i.e., M does not terminate on
x we assign the running time TM (x) :=∞.

Most of the well known Boolean time-complexity classes can now be defined analogously
over the reals. We give a precise definition of the two main such classes.

Definition 6 (Complexity classes, completeness).

a) A problem A ⊆ R∞ is in class PR (decidable in polynomial time over R) iff there exist a
polynomial p and a real BSS machine M deciding A such that TM (x) ≤ p(sizeR(x)) ∀x ∈
R∞.

b) A is in NPR (verifiable in non-deterministic polynomial time over R ) iff there exist a
polynomial p and a real BSS machine M working on input space R∞ × R∞ such that
(i) ΦM (x, y) ∈ {0, 1} ∀x ∈ R∞, y ∈ R∞

(ii) ΦM (x, y) = 1 =⇒ x ∈ A
(iii) ∀x ∈ A ∃y ∈ R∞ ΦM (x, y) = 1 and TM (x, y) ≤ p(sizeR(x))

c) A problem A in NPR is NPR-complete iff every other problem in NPR can be reduced
to it in polynomial time. Polynomial time reducibility from problem B to problem A
means: There is a polynomial time computable function f : R∞ → R∞ which satisfies:

2 A semi-algebraic set in Rn is a finite Boolean combination of sets defined as solution of finitely
many polynomial equalities and inequalities.
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∀x ∈ R∞ : x ∈ B ⇔ f(x) ∈ A. This type of reduction is also called polynomial time many
one reduction.

d) The corresponding definitions over C lead to classes PC,NPC, and NPC-completeness.

When talking about a problem A ∈ NPR, for an input x ∈ A the y whose existence is
required in part b,ii) above can be seen as a proof of x’s membership in A. The definition
then requires that correctness of this proof can be checked efficiently in the size of x. Below
we often use the phrase that on input x machine M guesses a proof y for establishing x ∈ A.

The definition directly implies that PK is included in NPK for K ∈ {R,C}. The currently
most important open question in real and complex number complexity theory is whether
these inclusions are strict. This is easily seen to be equivalent to the existence of already one
single NPK-complete problem which does not belong to the corresponding class PK.

The following closely related two problems turn out to be extremely important for the
entire theory and will occur in one or the other form throughout the rest of this paper.

Definition 7. Let K be a field of characteristic 0.
a) The Hilbert-Nullstellensatz problem is the problem to decide whether a given system of

polynomial equations

p1(x1, . . . , xn) = 0 , . . . , pm(x1, . . . , xn) = 0,

where all pi are polynomials in K[x1, . . . , xn] has a common solution in Kn.
We denote the problem by QPSK for Quadratic Polynomial Systems if, in addition, all pi

have a total degree bounded by 2.
b) If K = R the feasibility problem 4-FEASR is the task to decide whether a polynomial

f ∈ R[x1, . . . , xn] of total degree at most 4 has a zero in Rn.

We shall see that the above problems in the BSS models over R and C, respectively, take
over the role of the famous 3-SAT problem in the Turing model.

Example 1. The following problems are easily seen to belong to the respective class NP over
R or C.

a) QPSK belongs to NPK for K ∈ {R,C}, 4-FEASR belongs to NPR. In all cases the
verification procedure guesses a common zero of the given system or the given polynomial,
respectively. The polynomials then are evaluated in this point and it is finally checked whether
the guess actually was a zero. The (algebraic) size of the guess equals the number of variables
the polynomials depend on. The evaluation procedure obviously only needs a number of
arithmetic steps and tests that is polynomially bounded in the input size of the system. For
the latter we take a dense representation, i.e., also zero-coefficients for monomials not present
contribute to the size by 1. This in principle could be done differently, but here we want to
avoid discussions about sparse polynomials.

As an easy example of a polynomial time reduction note that QPSR straightforwardly is
reducible to 4-FEASR by defining an instance of the latter as the sum of the squared degree-
2-polynomials of the given QPSR instance. Obviously, over C this reduction does not work
correctly.

b) Another example of a problem in NPR is the Linear Programming problem LPR. Here,
the input is a real (m,n)-matrix A together with a vector b ∈ Rm. The question to decide is
whether there is a real solution x ∈ Rn satisfying A · x ≤ b. The input size is O(mn + m),
a verification proof once again guesses a potential solution x and then verifies whether it
solves the system. The problem, when restricted to rational input data and considered in the
Turing model, is known to be decidable in polynomial time. This is the well known result
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implied by the ellipsoid and the interior-point methods. The running time of those algorithms,
however, are polynomial in the input size only because the discrete input size is larger than
the algebraic one, taking into account the bit-length necessary to represent the rational data.
It is a major open question in the theory of Linear Programming whether a polynomial time
algorithm also exists in the real number model [88].

By introducing slack variables and reducing the number of variables per equation to at
most 3 by using additional variables, the real Linear Programming problem is polynomial time
reducible to QPSR. Even though it is currently open whether LPR ∈ PR it is not expected
that the problem becomes much harder in terms of complexity classes it belongs to, for
example, becoming NPR-complete. This would have strange consequences [62]. So LPR might
well be a kind of intermediate problem between PR and NPR-complete ones. However, even
the theoretical existence of such ’intermediate’ problems is currently open. We comment on
this point once again below after Theorem 18.

In order to justify the importance of the NPR-completeness notion first it has to be shown
that such problems exist.

Theorem 3 ([15]). For K ∈ {R,C} the Hilbert-Nullstellensatz problem QPSK is NPK-
complete. Over the reals the same holds for 4-FEAS.

Proof. The proof in principle follows the structure of the one for Cook’s theorem, i.e., the proof
of NP-completeness of the 3-SAT problem in the Turing model. However, certain adjustments
to the framework are needed. Given a problem A ∈ NPR, a BSS machine M witnessing this
membership, and an input x ∈ R∞ a quadratic polynomial system has to be constructed
that is solvable if and only if x ∈ A. The system is obtained by representing M ’s possible
computation on x and a suitable guess y by a rectangular matrix. Rows represent the time
steps of M during computations, columns represent the registers in which input, guess and
intermediate results are stored. Given the polynomial running time of M this matrix has
polynomial size only. Now for each assignment to the matrix with real numbers one tries
to express by polynomial equations that the first row’s assignment corresponds to the input
configuration for M on x, each row’s assignment implies that of the next row by applying
a computational step of M , and the last row-assignment indicates that M ’s computation is
accepting. Then x ∈ A if and only if a suitable assignment of the matrix exists if and only if
the generated QPSR instance is solvable. 2

An important difference between NPR and its discrete counterpart NP is the fact that
the guess y in the above definition of NPR is taken from an uncountable space. This is very
much different to the classical setting where the search space for a correct membership proof
is an element in {0, 1}∗, i.e., a finite bitstring. Since the length of the guess is polynomially
bounded in the length of the input, over finite alphabets the search space is finite, implying
that each problem in NP is decidable in simply exponential time. Over the reals and the
complex numbers this turns out to be true as well relying on much deeper results.

Theorem 4. Let d ∈ N and let A be a (basic) semi-algebraic set that is given as

A := {x ∈ Rn|pi(x)∆i0, 1 ≤ i ≤ s} ,

where each pi is a polynomial of degree at most d with real coefficients and ∆i ∈ {=, 6=,≥, >}.
Then emptiness of A can be decided by an algorithm in the BSS model that runs in

O
(
(s · d)O(n)

)
arithmetic steps, i.e., in simply exponential time.

A similar statement is true for the complex numbers. It follows that both all problems
in NPR and in NPC can be decided by a BSS algorithm of the respective model in simply
exponential time.
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The proof of this theorem is out of the scope of this paper. It is a special case of Quantifier
Elimination (the existential quantifiers are removed by the decision procedure), a question
having a long tradition for real and algebraically closed fields. The first procedure for general
quantifier elimination in these structures was given by Tarski [92]. Then, startin in the 1970’ies
research has focussed on getting better complexity estimates, until finally for existentially
quantified problems simply exponential complexity bounds could be established. Significant
contributions to the complexity of such methods have been made, for example, in [7, 42, 44,
79]. The above result in this particular form if taken from [79]. Once again, with M. Giusti
and J. Heintz two experts in complexity aspects of elimination theory will contribute with
related issues to this volume, so the interested reader should consult their articles.

Thus we arrived at some first cornerstones in BSS complexity theory. There are problems
that are algorithmically undecidable in the model. And there is a reasonable theory of efficient
algorithms and hard problems in form of the PR versus NPR question. Its importance is
justified by the existence of natural NPR-complete problems, and all such problems can be
decided within the algorithmic framework in simply exponential time. It is currently not
known whether more efficient algorithms exist. Similar statements are true in the complex
number model. In the following sections we shall discuss several structural questions taking
their starting points in the above results.

4 Structural Complexity

In this section we exemplify typical methods and questions analysed in structural complexity
theory for the BSS model over R and C on the basis of three thematic areas. These topics
include transfer theorems, the structure inside NPR, and recursion theory on R.

4.1 Transfer principles for P versus NP

One of the research lines from the beginning of real and complex number complexity theory
was to study similarities and differences between classical complexity theory for the Turing
model dealing with finite alphabets and complexity theory in alternative than discrete struc-
tures. Defining literally the main problem whether the classes P and NP coincide is an easy
task once the underlying model has been specified, but this of course does not automatically
make the question interesting. Nevertheless, it fortunately turned out to be the case that sev-
eral non-trivial problems arise in such alternative models. The most prominent one certainly
again is the P versus NP question, this time over R and C.

It is natural to wonder whether the answer(s) to this question are related for different
structures. More generally, it seems interesting to combine major open complexity theoretic
question in one computational model with related questions in another. Ideally, this enlarges
the tools of methods that could be used to attack such open problems. Results following this
guideline are usually called transfer theorems. This subsection intends to highlight some such
transfer results relating different versions of the BSS model with classical complexity theory.

Of course in general it is not clear what difficulties one meets when studying a problem
over continuous domains which literally is similar to the respective question in the Turing
model. Sometimes, an easy solution over the reals is possible due to other arguments that
can be exploited. Sometimes, a deep analysis combines different models, and sometimes, new
interesting questions arise which do not have a significant counterpart in the discrete world.
All of that has been observed, and the present section tries to outline some results into these
directions.
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Note that we saw already one good example where a literally similar question needs much
more efforts to be solved in the real number model. The decidability of all problems in class
NPR mentioned in the previous section relies on the non-trivial task to perform quantifier
elimination in real closed fields. And obtaining a comparable time bound to the discrete
world, where NP trivially can be decided in simple exponential time, becomes even more
difficult.

An opposite example where a question being extremely difficult in the Turing setting
turned out to be much easier in the BSS framework is the following early result by Cucker
on non-parallelizability of the class PR. The real number class NCR used in the statement
intuitively is defined as those decision problems in PR that can be parallelized. This means
they can be solved using a polynomial number of BSS machines working in parallel which
but all running in poly-logarithmic time only. The theorem states that not all problems in
PR can be parallelized that way.

Theorem 5 ([29]). NCR ( PR

Proof. The proof relies on an irreducibility argument by defining a decision problem whose
solution requires to compute an irreducible polynomial of exponential degree. It is then shown
that this computation basically cannot be split into different parallel branches. 2

The above argument relies on the structure of irreducible varieties over R. Thus, it cannot
be applied to the analogue question for the Turing model. It is still is one of the major open
problems in classical complexity theory.

Comparing different models is most interesting when dealing with problems that somehow
can be considered in both models. This often can be achieved by restricting the set of input
instances. An important example is the Hilbert Nullstellensatz problem. Given a system of
polynomial equations as input on the one hand side can be considered as problem for both
NPR and NPC, depending on the set of coefficients. Solvability accordingly can be required
either over the reals or the complex numbers. If we restrict coefficients to be rationals or
integers the question as well makes sense in the Turing model, even when asking for real
solutions. Moreover, if one is interested in {0, 1}-solutions this can be forced by binding each
single variable x through an additional equation x · (x− 1) = 0. Note that also in the Turing
model it is an NP-complete task to decide whether a system of quadratic equations with
integer coefficients has a real or complex solution, respectively.

Thus, for a comparison of these models an important question to solve is: Suppose, the real
(or complex) QPS problem could be decided by an efficient algorithm. Could this algorithm
somehow be turned into a Turing algorithm such that the changed algorithm turns out to
be efficient as well for the discrete variant of QPS? Clearly, a main aspect for attacking
this question is whether the potentially real or complex machine constants which the given
algorithm uses could be replaced somehow in order to obtain a Turing algorithm. This topic of
replacement of machine constants has turned out to be extremely interesting and demanding.
In the results below such a replacement in one or the other way always is crucial. The resulting
effects can be quite different. For some tasks constants can be replaced without much harm
to complexity aspects, for some others such a replacement introduces new aspects like non-
uniformity of algorithms, and there are situations where it remains an open question whether
a replacement is possible.

A first deep result dealing with such issues was given in [13]. Here, the QPS problem is
studied over arbitrary algebraically closed fields of characteristic 0. The proof of Theorem 3
shows that QPS defined accordingly is complete for the corresponding class NP in all such
fields. Thus it is natural to ask whether an answer to any of the related P versus NP problems
would have implications for the other fields as well. In fact, this is true.
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Theorem 6 ([13]). For all algebraically closed fields K of characteristic 0 the P versus
NP question has the same answer in the BSS model over K, i.e., either in all these fields
NPK = PK or in all such fields PK is strictly contained in NPK.

Proof. The theorem’s first proof in [13] performs the elimination of constants using number
theoretic arguments. We outline an alternative proof given by Koiran [51] which is based on
results on quantifier elimination. A first observation using the introductory remarks before the
statement of the theorem shows that a central problem to consider is QPS over the algebraic
closure Q̄ of the rational number field. Since each field K under consideration has to contain
Q̄ it suffices to analyse the QPS problem over K and over Q̄. There are then two directions to
prove; the first asserts that the existence of an efficient algorithm for a hard problem over K
implies the same for a hard problem over Q̄. This is the more difficult statement. The converse
direction states that an efficient algorithm for the Hilbert Nullstellensatz problem in Q̄ can
be lifted to one for the same problem over K. It is true by well known results from model
theory, basically applying the so called strong transfer principle for the theory of algebraically
closed fields. This was first done by Michaux [72]. Since its proof does not rely on techniques
for eliminating machine constants we do not go into more details here.

Let us thus focus on the other direction. Note that a QPS instance with coefficients from
Q̄ has a solution over K if and only if it has a solution over Q̄. This follows from Hilbert’s
Nullstellensatz. Below we choose K := C, but the arguments remain basically the same for
any other K.

Suppose then there were an efficient algorithm solving QPS over C, i.e., proving PC = NPC.
This algorithm also solves QPS over Q̄ efficiently, but in order to conclude PQ̄ = NPQ̄ the
algorithm is not allowed to use constants from K\Q̄. Suppose the potential decision algorithm
uses transcendental constants; with a moderate technical effort one can additionally assume
without loss of generality that all these machine constants are algebraically independent. For
the computation on a fixed input from Q̄ one can view each equality test performed by the
algorithm as a polynomial with coefficients in Q̄ that is evaluated in the set of transcendental
machine constants. Thus, no such algebraic equality test is answered positively in a reasonably
small neighborhood of the set of machine constants. Consequently, for all such points the
machine computes the same yes-no answers. The task is then to find a rational point in such
a neighborhood. A clever application of the complexity statements behind Theorem 4 for C
guarantees such points to exist and being not too large. ’Not too large’ here means that they
can be computed fast enough starting from the constant 1 by a machine working over Q̄.
Thus, replacement of transcendental constants by efficiently computable algebraic ones can
be accomplished and an efficient algorithm for the NPQ̄-complete problem QPS is found. 2

The theorem unfortunately does not solve the P versus NP problem in any of those
structures but just guarantees the currently unknown answer to be the same for all related
fields. The next transfer theorem discussed relates the P versus NP question in the complex
BSS model with randomized complexity classes in classical complexity. Here, the well known
class BPP denotes decision problems L that can be solved by randomized polynomial time
algorithms allowing a small two-sided error, i.e., the procedure might fail both on elements in
L and its complement with a small constant probability. BPP thus stands for bounded error
probability polynomial time. The precise placement of class BPP in discrete complexity theory
with respect to its relations to P and NP is a major open problem. Though recent results have
led to the reasonable possibility that BPP equals P, it is not even known whether BPP is a
proper subset of the set of problems that can be solved in non-deterministic exponential time,
see [1]. The next result shows an interesting connection between the complex BSS model and
BPP. The main ingredients for its proof were independently given by Koiran [49] and Smale
[87], though in the cited sources the theorem seems not outspoken explicitly.
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Theorem 7 ([49, 87]). Suppose PC = NPC in the complex number BSS model, then NP ⊆
BPP in the Turing model.

Proof. Once again, the main idea is to extract from an efficient complex algorithm for QPSC a
randomized Turing algorithm for a suitable NP-complete variant of QPS. In order to replace
non-rational constants used by the given algorithm randomization enters at two places. First,
relying once more on arguments like those used in the previous theorem one tries to find
small rational constants that could be used instead of the original ones. These constants are
chosen by random from a large enough set and their appropriateness with high probability
is established by using the famous Schwartz-Zippel Lemma [103]. However, even if the new
rational coefficients work fine, it might be the case that intermediate results produced in the
initial PC algorithm get too large when counting bit-operations in the Turing model. This is
solved by doing all computations modulo randomly chosen integers located in a suitable set.
For most of them the computation then still works correctly, but now running in polynomial
time as well in the Turing model. 2

Even though the relation between BPP and NP is currently unknown nobody expects
NP ⊆ BPP to be true. The inclusion would have dramatical consequences concerning com-
plxeity classes above NP, and here foremost the collapse of the so called polynomial hierarchy.
So if one could prove that this hierarchy does not collapse in classical complexity theory it
would follow PC 6= NPC in the complex number model.

The two previous results are not known to hold for the real numbers as well. The attempt to
obtain transfer results here seems to meet more obstacles. We shall encounter this phenomenon
once again in the next subsection. It is then natural to first consider restrictions of the real
number model in order to figure out whether more could be said for such restricted models.
In addition, this might shed more light on where the difficulties lie.

The first such restriction considered here is called additive BSS model. The difference
with the full real model is that only additions and subtractions are allowed as arithmetic
operations. For the following discussion we also restrict ourselves to so called constant-free
additive algorithms, i.e., there are no other machine constants used than 0 and 1. Nevertheless
note that for an NPaddR verification algorithm it is still allowed to work with real guesses.
Similar results as those described below can be obtained as well if arbitrary constants are
allowed. We comment on that at the end of this subsection.

In the additive model classes PaddR and NPaddR are defined analogously to the full model.3

Algorithms in the additive model still can work with inputs being vectors of real numbers.
However, when inputs are restricted to stem from {0, 1}∗, each additive computation can be
simulated with only polynomial slow down by a Turing machine. This is true because the sizes
of intermediate results in such a computation cannot grow too much, in contrats to the case
in the full model when repeated squaring of a number is performed. The following theorem
by Fournier and Koiran shows that proving lower bounds in the additive model is of the same
difficulty as in classical complexity theory.

Theorem 8 ([36]). It is P = NP in the Turing model if and only if it holds PaddR = NPaddR
in the additive (constant-free) model over R.

Proof. In a first step one analyzes the power of additive machines on discrete languages. For
L ⊆ R∗ one denotes it Boolean (i.e., discrete) part as BP (L) := L∩ {0, 1}∗, and similarly for
entire complexity classes. The above argument on a moderate growing of intermediate results

3 In literature the constant-free classes usually are denoted with an additional superscript 0. We
skip that here in order to minimize the notational overhead.
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implies the equality BP (PaddR ) = P. The analogue equality BP (NPaddR ) = NP is true as well,
though for proving it one first has to show that guessing real components in a verification
proof can be replaced by guessing small rational components. This is only known to be true
in the additive model, for the full BSS model it is an open question and conjectured to be
false. These observations suffice to show the easier direction, namely that PaddR = NPaddR
implies P = NP. The difficult one is the converse, and as usual we only outline the main
proof ingredients. Suppose that P = NP. The idea is to show that any problem in NPaddR
can be efficiently decided by an additive machine which has access to a discrete oracle for
NP. The latter means that the algorithm is allowed to generate questions to a classical NP-
complete problem and gets a correct answer at unit cost.4 Since we assume P = NP such an
oracle device can be replaced by an efficient algorithm in the Turing model, which of course is
efficient as well in the additive model. This would yield the assertion. The design of this oracle
algorithm is the heart of the proof. It relies on a deep result by Meyer auf der Heide [70, 71]
on point location for arrangements of hyperplanes. This result establishes how to construct
non-uniformly a so called linear decision tree for solving the point location problem. The
proof shows how this algorithm can be made uniform if an NP oracle is available. We only
outline it very roughly here. Given a problem L ∈ NPaddR the non-deterministic additive
algorithm generates an exponential family of hyperplanes describing membership in L. These
hyperplanes arise from accepting computations, and since it suffices to guess small rational
numbers only in non-deterministic algorithms the coefficients of those hyperplanes remain
small rational numbers. Moreover, the set of hyperplanes decomposes the respective part of
the input space Rn into regions each of which either belongs to L or its complement. The main
part of the proof now shows that an additive machine which is allowed to use a classical NP
oracle can solve the following task: For an input x ∈ Rn it computes a set S described by few
affine inequalities with small coefficients such that x ∈ S and S is either completely contained
in L or in its complement. The construction of S needs Meyer auf der Heide’s results in a
clever way, using at several stages the oracle. The final decision whether S ⊆ L or not again
is decided by means of the NP oracle. 2

The theorem shows that there are deep relations between major open questions in classical
complexity theory and real number models. If additive machines are allowed to use real
constants similar results have been proved in the same paper [36] relying on results from [50,
30]. Basically the use of such constants introduces non-uniformity for discrete problems, that is
Boolean parts of the class PaddR when constants can be used turn out to equal the class P/poly
in the Turing model; the latter defines problems that can be decided efficiently by additional
use of a moderate non-uniformity, see also below. The same is true for NPaddR and leads to a
corresponding version of the previous theorem. Note that further restricting the model, for
example by only allowing equality branches and therefore considering R as unordered vector
space does not lead to a similar transfer result. In such a model the corresponding class P
provably is a proper subclass of NP, see [61].

Of course, it is challenging to extend connections to discrete complexity like the ones
shown above to the full real number model as well.

4.2 Inside NPR and NPC

The problems to be considered in this subsection as well require to deal with the machine
constants of algorithms and how to replace them by more suitable ones. This time, however,
the goal will not be to replace arbitrary constants by rational ones. Instead, a family of

4 Oracle algorithms will be considered once more in Section 4.3.
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constants used non-uniformly should be replaced by a single fixed set of machine constants.
Before understanding the task and how the replacement in some situations can be achieved
we introduce the problem to be studied now.

Starting point of the investigations is the following classical result by Ladner [53], which
in the Turing model analyzes the internal structure of complexity class NP in case P 6= NP
is supposed to be true:

Theorem 9 ([53]). Suppose NP 6= P. Then there are problems in NP \ P which are not
NP-complete under polynomial time many-one reductions.

Proof. The proof relies intrinsically on the countability of both the family {P1, P2, . . .} of
polynomial time Turing machines and the family {R1, R2, . . .} of polynomial time reduction
machines in the Turing model. A diagonalization argument is performed to fool one after the
other each machine in the two sets. This is briefly done as follows. Given an NP-complete
problem L one constructs a problem L̃ ∈ NP such that all machines Ri fail to reduce L to L̃ on
some input and all machines Pi fail to decide L̃ correctly on some input. Towards this aim the
definition of L̃ proceeds dimension-wise while intending to fool step by step P1, R1, P2, R2, . . ..
In order to fool an Pi the language L̃ is taken to look like L for inputs of sufficiently large
size. Conversely, in order to fool reduction algorithm Ri for sufficiently many of the following
input-sizes L̃ is defined to look like an easy problem. Both steps together imply that none
of the machines Pi, Ri works correctly for the new language L̃. Finally, a typical padding
argument guarantees L̃ ∈ NP.

Extensions of Ladner’s result can be found, for example, in [81].

Considering computational models over uncountable structures like R and C the above
diagonalization argument - at least at a first sight - fails since the corresponding algorithm
classes become uncountable. So it is not obvious whether similar statements hold for NPR
and/or NPC. We shall now see that studying this question in the extended framework leads
to interesting insights and new open problems.

As it was the case in the previous subsection also for Ladner’s problem the complex
BSS model is easier to handle than the real model. The first Ladner like result in the BSS
framework in [58] was shown for the complex classes PC and NPC:

Theorem 10 ([58]). Suppose NPC 6= PC. Then there are problems in NPC \ PC which are
not NPC-complete under polynomial time many-one reductions in the complex number BSS
model.

Proof. The proof relies on Theorem 6 from the previous subsection. It will be crucial to
transfer the question from the uncountable structure C of complex numbers to the countable
one Q̄, the algebraic closure of Q in C.

In a first step we answer Ladner’s problem positively in the BSS model over Q̄. This can
be done along the lines of the classical proof sketched above since both families of algorithms
mentioned therein are countable. Let L̃ be the diagonal problem constructed.

In order to apply Theorem 6 some observations are necessary. They all are immediate
consequences of Theorem 3 and Tarski’s Quantifier Elimination for algebraically closed fields
of characteristic 0. First, the Hilbert Nullstellensatz decision problem is NPK-complete in
the BSS model over K for K ∈ {Q̄,C}. The strong transfer principle mentioned already in
the proof of Theorem 6 implies that an instance over Q̄ is solvable over C if and only if it
is as well solvable already over Q̄. Since the Hilbert Nullstellensatz problem can be defined
without additional complex constants Theorem 6 can be applied. This allows to lift the
diagonal problem L̃ from Q̄ to C such that the lifted problem has the same properties there.
Thus, Ladner’s theorem holds as well over the complex numbers. 2
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Since Theorem 6 is not known to be true for the real number model the above proof cannot
be applied to show Ladner’s result for NPR. Thus a new idea is necessary. If we could group
an uncountable set of real algorithms into a countable partition, then may be one could at
least construct diagonal problems for such a partition. But how should a reasonable partition
look like?

This idea was first considered by Michaux who introduced the notion of basic machines
in [72].

Definition 8. A basic machine over R in the BSS-setting is a BSS-machine M with rational
constants and with two blocks of parameters. One block x stands for a concrete input instance
and takes values in R∞, the other block c represents real constants used by the machine and
has values in some Rk (k ∈ N fixed for M).

Basic machines for variants of the BSS model are defined similarly.

Basic machines split the discrete skeleton of an original BSS machine from its real machine
constants. That is done by regarding those constants as a second block of parameters. Fixing
c we get back a usual BSS machine M(•, c) that uses the same c as its constants for all input
instances x. Below, when we speak about the machine’s constants we refer to the potentially
real ones only.

Basic machines give rise to define a non-uniform complexity class P/const for the different
model variants we consider. The non-uniformity is literally weaker than the well-known P/poly
class from classical complexity theory since the non-uniform advice has fixed dimension for
all inputs. In P/poly it can grow polynomially with the input size.

Definition 9 ([72]). A problem L is in class PR/const if and only if there exists a polynomial
time basic BSS machine M and for every n ∈ N a tuple c(n) ∈ [−1, 1]k ⊂ Rk of real constants
for M such that M(•, c(n)) decides L for inputs up to size n.

Similarly for other models.

Note that in the definition c(n) works for all dimensions ≤ n. The reason for this becomes
obvious below. Note as well that assuming all machine constants to be bounded in absolute
value is no severe restriction; if a larger constant should be used it can be split into the sum of
its integer part and its non-integral part. The integer part then is taken as rational machine
constant, thus belonging to the discrete skeleton.

The class P/const turned out to be important in unifying Ladner like results in different
models and to get as well a (weaker) real version. The class of basic machines clearly is
countable as long as the particular choice of machine constants is not fixed. Thus, in principle
we can diagonalize over P/const decision and reduction machines in the different models.

Theorem 11 ([10]). Suppose NPR 6⊆ PR/const. Then there exist problems in NPR\PR/const
not being NPR-complete under PR/const reductions.

Similarly for the other model variants.

Proof. The proof again uses the usual padding argument along the classical line. The main
new aspect, however, is the necessity to establish that for each basic machine M which is
supposed to decide the intended diagonal problem L̃ an input-dimension where M ’s result
disagrees with L̃’s definition can be computed effectively. The condition that M disagrees with
L̃ for all possible choices of machine constants can be expressed via a quantified first-order
formula. Deciding the latter then is possible due to the existence of quantifier elimination
algorithms in the respective structures. 2
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Since the assumption of Theorem 11 deals with PR/const instead of PR it gives a non-
uniform version of Ladner’s result. Note that because of PR ⊆ PR/const the theorem’s impli-
cation also holds for uniform reductions. In order to achieve stronger versions one next has
to study the relation between the classes P and P/const. If both are equal, then a uniform
version of the theorem follows.

At this point some model theory enters. Very roughly, a structure is called recursively
saturated if for each recursive family of first-oder formulas {ϕn(c)|n ∈ N} with free variables
c the following holds: if each finite subset of formulas can be commonly satisfied by a suitable
choice for c, then the entire family is satisfiable.5

Theorem 12 ([72],[10]). In recursively saturated structures it is P = P/const.

Proof. Let L be a language in P/const and M the respective basic machine. The proof ba-
sically is a combination of the definition of saturation with a reasonable description of M ’s
behaviour on instances up to a given dimension. This description, being folklore in BSS the-
ory, gives the recursive family {ϕn(c)}n of formulas required, where n stands for the input
dimension and the free variables c for the machine constants taken for the basic machine M .
Saturation then implies that a single choice for the machine constants can be made which
works for all dimensions. This choice turns M into a uniform polynomial time algorithm for
L. 2

As a consequence, Ladner’s results holds uniformly over structures like {0, 1} and C which
are well known to be recursively saturated. Thus, Ladner’s original result as well as Theorem
10 are reproved.

However, since R is not recursively saturated – take as family ϕn(c) ≡ c > n for c ∈ R –
the theorem’s consequence does not apply to R. So once again the above technique does not
give a uniform analogue of Ladner’s result over the reals and additional ideas seem necessary.
Due to its importance for the above questions Chapuis and Koiran in [26] have undertaken
a deep model-theoretic analysis of P/const and related classes. They argue that for the full
real model already the equality PR = PR/1 is highly unlikely unless some major complexity
theoretic conjecture is violated. Here, PR/1 is defined by means of basic machines which use
a finite number of uniform and a single non-uniform machine constant only. Nevertheless,
for the reals with addition and order (additive model) they were able to show once again
PaddR = PaddR /const and thus

Theorem 13 ([26]). Suppose NPaddR 6= PaddR . Then there are problems in NPaddR \PaddR which
are not NPaddR -complete.

Their proof for showing the inclusion PaddR /const ⊆ Padd
R once more makes use of the

moderate growth of intermediate results in an additive computation. This allows to bound
the size of and compute efficiently and uniformly for each input dimension n a set of rational
machine constants c(n) such that the given PaddR /const-machine works correctly on R≤n if c(n)

is taken as vector of constants.
This idea is one of the starting points to extend the result to yet another variant of the full

real number model named restricted model in [66]. In this model, the use of machine constants
is restricted in that all intermediate results computed by a restricted algorithm should only
5 Recursiveness here is understood in the Turing sense and just requires that one should be able to

enumerate the formulas without using additional machine constants. In the present applications
the formulas of the family always represent computations of certain basic machines up to a certain
dimension. By ’hiding’ constants from the underlying computational structure as variables it follows
that such a family satisfies the recursiveness assumption. For more details see [72]
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depend linearly on the machine constants. In contrast to additive machines input variables
can be used without limitation, i.e., they can be multiplied with each other. The motivation of
considering this model is that it is closer to the original full real BSS model than the additive
one. As one indication for this fact note that the NPR-complete feasibility problem QPS over
R is NPrc

R -complete as well in the restricted model, where the superscript rc is used to denote
respective complexity classes in the restricted model. Since Theorem 11 holds as well here the
main task once more is to analyze the relation between Prc

R and Prc
R /const.

Theorem 14 ([66]). It is Prc
R = Prc

R /const. As a consequence, supposing QPS 6∈ NPrc
R there

exist non-complete problems in NPrc
R \ Prc

R .

Proof. Crucial for showing Prc
R = Prc

R /const is a certain convex structure underlying the set
of suitable machine constants. Given a problem L ∈ Prc

R /const and a corresponding basic
machine M using k constants define En ⊂ Rk as set of constants that can be used by M in
order to decide L∩R≤n correctly. It can be shown that without loss of generality the {En}n
build a nested sequence of bounded convex sets. If the intersection of all En is non-empty any
point in it can be taken as uniform set of machine constants and we are done. Thus suppose
the intersection to be empty. The main point now is to establish by a limit argument in affine
geometry the following: There exist three vectors c∗, d∗, e∗ ∈ Rk such that for all n ∈ N and
small enough µ1 > 0, µ2 > 0 (µ2 depending on µ1 and both depending on n ) machine M
correctly decides L ∩ R≤n when using c∗ + µ1 · d∗ + µ2 · e∗ as its constants. This is sufficient
to change M into a polynomial time restricted machine that decides L and uses c∗, d∗, e∗ as
its uniform machine constants. 2

Let us summarize the methods described so far in view of the main open problem in this
context, namely Ladner’s result for NPR. The diagonalization technique used above allows
some degree of freedom as to how to define PR/const. This means that we can put some
additional conditions onto the set of constants that we allow for a fixed dimension to work.
To make the diagonalization work there are basically two aspects that have to be taken into
account. First, the resulting class has to contain PR. Secondly, the conditions we pose on the
constants have to be semi-algebraically definable without additional real constants. Playing
around with suitable definitions might be a way to attack Ladner’s problem as well in the full
real number model. However, for a problem L in PR/const the topological structure of the
set of suitable constants is more complicated since now each branch results in a (potentially
infinite) intersection of semi-algebraic conditions. Then one has to study how the topology of

the sets
N⋂
i=1

Ei evolves for increasing N. For example, could one guarantee the existence of say

a semi-algebraic limit curve along which one could move from a point c∗ into an En? In that
case, a point on the curve might only be given by a semi-algebraic condition. As consequence,
though one would likely not be able to show PR/const ⊆ PR may be at least a weaker uniform
version of Ladner’s result could be settled.

To finish this subsection let us refer the interested reader to [19], where similar questions
concerning Ladner like results are studied in Valiant’s model of computation.

4.3 Recursion theory

Whereas so far the focus was on decidable problems, in this subsection we consider problems
of increased computational difficulty, i.e., undecidable ones in the BSS model. Recursion
theory which deals with degrees of undecidability certainly was one of the main topics that at
the beginning stimulated research in classical computability theory, see [75]. For alternative
models it is in particular interesting with respect to the so called area of hypercomputation,
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i.e., whether there are (natural) computational devices that are more powerful than Turing
machines and thus violate the famous Church-Turing hypothesis. For an introduction to
hypercomputation and an extended list of references see [91], and [102] for a particular focus
on real hypercomputation.

The real Halting Problem HR was already mentioned earlier. We consider it here in the
following version: Given a code cM ∈ R∞ of a real BSS machine M , does this machine stop its
computation on input 0? The problem was the first that has been shown to be undecidable in
the real number model in [15]. We now deal with the following question: Are there problems
which in a reasonable sense are strictly easier than HR yet undecidable? In the Turing model
this was a famous question asked by Post in 1944 and solved about 15 years later independently
by Friedberg and Muchnik, see [89]. Nevertheless, until today there is no natural problem with
this properties known in the Turing model. We shall see that the question turns out to be
much easier (though not trivial) in our framework. A second question to be discussed then is
that of finding as well more natural problems that are equivalent to HR, i.e., have the same
degree of undecidability. Finally, aspects of bounded query computation are treated briefly.

Before explaining some of the results obtained we have to be more specific on what should
be understood under terms like easier and equivalent if we deal with computability issues.
As above with NPR-completeness this again is formalized using special reductions, this time
focussing on computability only instead of complexity.

Definition 10. A real decision problem A ⊆ R∞ is Turing reducible to another problem
B ⊆ R∞ iff there exists an oracle BSS machine M working as follows. For inputs x ∈ R∞
M works like a normal BSS machine except that it additionally has repeatedly access to an
oracle for B. In such an oracle state the machine queries the oracle whether a previously
computed y ∈ R∞ belongs to B and gets the correct answer in one step. After finitely many
steps (normal and oracle) M stops and gives the correct answer whether x belongs to A or
not.

Turing reducibility gives a straightforward way to compare undecidable problems. If A
can be decided by an oracle machine using B as oracle but not vice versa, then A is strictly
easier than B. If both are Turing reducible to each other they are said to be equivalent. Note
that all problems below (i.e., easier than) or equivalent to HR at least are semi-decidable:
there is an algorithm which halts exactly for inputs from the problem under consideration.
This follows from the existence of a Turing reduction and semi-decidability of HR. Problems
equivalent to HR are also called computationally complete for the real BSS model.

Now our first question, the real version of Post’s problem reads: Is there a semi-decidable
problem A which is neither decidable nor reducible from HR?

Theorem 15 ([68]). The rational numbers Q represent an undecidable decision problem
which is strictly easier than HR. Thus, there is no real BSS oracle machine that decides HR
by means of accessing Q as oracle.

Proof. Undecidability of Q was already shown in Theorem 2. The same arguments give un-
decidability of the real algebraic numbers A. The main step now is to show that Q is strictly
easier than A. Note that this implies the result because A easily can be decided by a machine
accessing HR as oracle. So if the statement was false, i.e., HR would be Turing reducible to Q,
transitivity of the reduction notion implies that A should also be decidable using Q as oracle.

Assume to the contrary that M is an oracle algorithm deciding A by means of accessing Q.
The arguments used to get a contradiction combine some elementary topology and number
theory similar to those used in the proof of Theorem 2. Topology enters for dealing with
inequality branches of M , whereas number theory is used for branches caused by queries
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to the Q-oracle. Since all intermediate results computed by M are rational functions in the
input it turns out to be crucial for analysing the outcome of oracle queries to see how a
rational function maps algebraic numbers to rationals. The main observation is the following:
Suppose f is a rational function computed by M as oracle query for an input x ∈ R, i.e.,
M asks whether f(x) ∈ Q. If f maps a large enough yet finite set of algebraic numbers to
Q, then f will map all algebraic numbers of a large enough degree to a non-rational real.
Consequently, such an oracle query is not able to distinguish any algebraic number of large
enough degree from a transcendental number. Using this fact together with basic continuity
and counting arguments one can conclude that an oracle machine for A accessing Q will
always fail on certain algbraic numbers. Thus, M cannot work correctly. 2

The above proof actually can be extended to get an infinite family of problems that are
all strictly easier than HR but pairwise incomparable with respect to Turing reductions. Thus
there is a rich structure between decidable problems and computationally complete ones in
the real BSS model. Similar results have been obtained in [40] for the additive BSS model,
whereas [28] studies related questions for higher levels of undecidability above HR. Degrees
of undecidability in the BSS model are as well studied in [101] and [25].

Having solved Post’s problem we turn to the question whether there are other problems
beside HR being computationally universal in the BSS model. In the Turing model several
very different problems turned out to be such examples. To mention some of the most promi-
nent ones there is Post’s Correspondence Problem [77] which asks for matching a finite set of
strings according to some rules, Hilbert’s 10th problem [60] which asks for solvability of dio-
phantine equations, and the word problem in finitely presented groups [17, 74]. The problems
considered so far in BSS theory naturally have a very strong connection to semi-algebraic
geometry because of the underlying set of operations implying that all intermediate results
in an algorithm are related to rational functions. So it is demanding to find other significant
problems in the theory which basically are not problems in semi-algebraic geometry. We shall
now discuss that a suitable variant of the discrete word problem is such an example. Note
that the first two of the above mentioned problems do not provide such examples. The Post
Correspondence Problem by nature has strong discrete aspects as a kind of matching prob-
lem, whereas a real analogue of Hilbert’s 10th problem, i.e., deciding real solvability of a real
polynomial system is decidable by quantifier elimination.

To understand the word problem let us start with an easy discrete example. Suppose we
are given a formal string bab2ab2aba in a free group 〈{a, b}〉 generated by the two generators
a, b. Here, xi denotes the i-fold repetition of element x, and concatenation represents the
group operation. Now we add some relations between certain elements of the freely generated
group. That way a quotient group of the original free group is obtained. For example, assume
the equation ab = 1 to hold. It is then easy to see that the given element in the resulting
quotient group represents b2. But it cannot be reduced to 1 in this group. However, if as well
the relation a4 = a2 holds, then the given word in the resulting new quotient group does
represent the neutral element 1.

This leads to the definition of the word problem.

Definition 11. a) Let X denote a set. The free group generated by X, denoted by (〈X〉, ◦),
is the set (X ∪ X−1)∗ of all finite sequences w̄ = xα1

1 · · ·xαn
n with n ∈ N, xi ∈ X,

αi ∈ {−1,+1}, equipped with concatenation ◦ as group operation subject to the rules

x ◦ x−1 = 1 = x−1 ◦ x, x ∈ X , (1)

where x1 := x and 1 denotes the empty word, that is, the unit element.
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b) A group (G, •) is called finitely presented if G ∼= 〈X〉/〈R〉〈X〉 =: 〈X|R〉 is (isomorphic to)
the quotient of a free group 〈X〉 with finite set of generators X and the normal subgroup
〈R〉〈X〉 of 〈X〉 generated by the finite set R ⊆ 〈X〉.

c) The word problem for 〈X|R〉 is the task of deciding, given w̄ ∈ 〈X〉, whether w̄ = 1 holds
in 〈X|R〉.

Intuitively, R describes finitely many rules “r̄ = 1”, r̄ ∈ R additional to those necessarily
satisfied in a group. The famous work of Novikov and, independently, Boone establishes
the existence of a finitely presented group 〈X|R〉 whose associated word problem is many-one
reducible by a Turing Machine from the discrete Halting Problem H and thus computationally
complete in the Turing model. The result is interesting in linking a purely algebraic problem
with recursion theory. Since algebra of course is not restricted to discrete groups it is natural
to ask whether similar relations can be established between other groups and BSS recursion
theory. In the following we shall outline that this indeed is possible.

A natural generalization of Definition 11 to the real number setting is obtained by allowing
the sets X and R to become uncountable. Formally, this is expressed by considering sets
X := {xr}r of abstract generators indexed with real vectors r ranging over some subset
of R∞, and similarly for the relations R. Then interesting word problems arise by putting
restrictions on these sets in R∞. For sake of notational simplicity we identify X with the sets
in R∞ the corresponding r’s belong to, and similarly for R and the rules.

Definition 12. Let X ⊆ R∞ and R ⊆ 〈X〉 ⊆ R∞. The elements in 〈X〉 are coded as
elements in R∞. The tuple (X,R) is called a presentation of the real group G = 〈X|R〉.
This presentation is algebraically generated if X is BSS-decidable and X ⊆ RN for some
N ∈ N. G is termed algebraically enumerated if R in addition is BSS semi-decidable; and
if R is BSS-decidable we call G algebraically presented. The word problem for the presented
real group G = 〈X|R〉 is the task of BSS-deciding, given w̄ ∈ 〈X〉, whether w̄ = 1 holds in G.

Example 2 ([69]). The following three examples should clarify the above notions. The first
two give different presentations 〈X|R〉 of the additive group (Q,+) of rational numbers with
decidable word problem, whereas the third has an undecidable word problem due to its
connection to deciding Q in R.

i) X =
{
xr : r ∈ Q

}
, R =

{
xrxs = xr+s : r, s ∈ Q

}
;

ii) X = {xp,q : p, q ∈ Z, q 6= 0},
R =

{
xp,qxa,b = x(pb+aq,qb) : p, q, a, b ∈ Z

}
∪
{
xp,q = x(np,nq) : p, q, n ∈ Z, n 6= 0

}
;

iii) X = {xr : r ∈ R}, R =
{
xnr = xr, xr+k = xr : r ∈ R, n ∈ N, k ∈ Z

}
.

Case ii) yields an algebraic presentation, i) is not even algebraically generated, but iii) is
algebraically presented. The word problem is trivially decidable for i) because after embedding
the task into (R,+) one can simply compute on the indexes and check whether the result is
0. Also for ii) it is decidable by a similar argument. For iii) the word problem is undecidable
because it holds xr = x0 ⇔ r ∈ Q. Note, however, that case iii) by means of Theorem 15 does
not provide a group for which the word problem is computationally universal.

It is not hard to establish that for all algebraically enumerated groups the corresponding
word problem is semi-decidable in the BSS model. This just requires a folklore argument
based on quantifier elimination. The more interesting result is

Theorem 16 ([69]). There exists an algebraically presented real group H = 〈X|R〉 such that
the real Halting problem HR is reducible to the word problem in H. This word problem thus is
computationally universal for the real BSS model.

23



The proof in a first step embeds the membership problem for any set in R∞ to the word
problem in a suitable group. Then, it proceeds showing that for HR this embedding can be
arranged such that the resulting group is algebraically presented. We skip further details
because they rely on a lot of classical techniques in combinatorial group theory such as HNN
extensions and Britton’s lemma. For more on that see [56] and the full proof in [69].

The theorem is interesting in that it gives a problem computationally significant in the BSS
model over R yet only indirectly related to semi-algebraic features. The list of such problems
at the moment is much smaller than in classical recursion theory and it seems an interesting
topic for future research to find more such problems. Open questions related immediately to
the above theorem are the following. Can the corresponding universality result be established
for algebraically presented groups for which as well the set R of rules comes from a finite
dimensional space Rk? In the construction of the proof it turns out to be crucial that R lives
in R∞, i.e., there have to be included rules for vectors of arbitrarily large dimension. Recall
that in the original result by Boone and Novikov both X and R are finite, and it seems that
a suitable analogue of finiteness in the discrete setting is finite dimensionality of these sets
in the real number framework. Another interesting question is that of finding particularly
structured groups whose respective word problems are universal for complexity classes. One
such task thus would be to find particular algebraically generated groups for which the word
problem is NPR-complete.

To close this section we briefly mention yet another area of recursion theory which has
intensively been studied in the Turing model and only seen some initial considerations in
our framework, namely bounded query computations. Here, the interest is shifted from the
direct consideration of decision problems, i.e., computing the characteristic function χA of
an A ⊆ R∞ to the following type of questions: Given an n ∈ N how many oracle queries
to a set B ⊆ R∞ are needed in order to compute the n-fold characteristic function of A on
n many inputs xi ∈ R∞, 1 ≤ i ≤ n. Different choices of A and B, where also A = B is
possible, give quite different results. An easy example shows that by using binary search for
each semi-decidable set A the n-fold characteristic function can be computed by dlog2 n+ 1e
many calls to an oracle for HR. The following result is much less obvious

Theorem 17 ([67]). Let n ∈ N and consider the n-fold characteristic function χQ
n on Q. Let

B ⊆ R be an arbitrary subset of the reals. Then no BSS oracle machine having access to B
as oracle can compute χQ

n with less many than n queries.

Proof. Suppose such an oracle machine exists it must in a certain way reduce n questions
about Q to at most n− 1 many questions about the arbitrary real set B. Now the main idea
is to arrange the situation for an application of the implicit function theorem for functions
from Rn 7→ Rn−1 . Along the one-dimensional solution curve which the theorem guarantees
to exist the oracle machine then can be shown to necessarily err. 2

The application of classical tools from analysis like the implicit function theorem shows
a significant difference to proofs in the Turing framework. So we expect a lot of interesting
problems to exist in this area which need other methods not available in discrete recursion
theory.

This section aimed to present some challenging questions and techniques in structural
complexity theory for real or complex number computations. The problems treated just reflect
a small fraction of topics studied in the last two decades in this area. We close by pointing
to some more literature.

A prominent class of problems that have been studied intensively in classical complexity
theory are counting problems. This has lead to the definition of a counting analogue of NP

24



denoted by #P and the search for complete problems in that class. Roughly speaking, #P
captures functions that count the number of accepting computations of an NP-algorithm.
Assuming P 6= NP this counting class contains much harder problems than those in NP.
This is justified by Toda’s famous result [93] which says that using an oracle from #P in
deterministic polynomial time computations captures all problems in the so called polynomial
hierarchy, a set conjectured to be much larger than NP. A prominent result by Valiant [96]
shows that the computation of the permanent for a matrix with {0, 1}-entries reflects the
difficulty of this class, i.e., is a #P-complete problem.

In the real number framework counting problems have been extensively studied in several
papers by Bürgisser, Cucker and co-authors. Many of the relevant problems have a strong
algebraic flavour, for example tasks like computing Betti numbers of algebraic varieties. As a
starting point for readers being interested in such questions we just refer to [22, 23]. Analogues
of Toda’s theorem both in real and complex number complexity theory were recently obtained
in [8, 6].

Another branch of complexity theory that was studied in the real number framework
is decsriptive complexity. Here the goal is to describe complexity classes independently of
the underlying computational model. Instead, the logical shape in which a problem can be
expressed reflects the algorithmic complexity sufficient to solve it. The first result into this
direction can be found in [41], where both for PR and NPR such logical characterizations are
given. [31] contains further such results, [63] deals with counting problems from a logical point
of view.

Transfer results, one of the main topics in this section, have as well been analyzed with
respect to other algebraic approaches to complexity, and here foremost Valiant’s complexity
classes VP and VNP, see [97]. This approach focusses on families of polynomials over a
field that have a polynomially bounded degree in the number of their variables and can be
computed by a non-uniform family of small circuits. This constitutes class VP, whereas VNP
essentially is the family of polynomials whose coefficients are functions in VP, though there
might be exponentially many monomials. A notion of reduction then is introduced by using
a projection operator and once again the permanent polynomials turn out to be a complete
family for VNP. This gives another algebraic variant of a P versus NP problem, this time for
VP versus VNP and it is nearby to ask whether this question as well is related to some of
the other problems of that style mentioned before. Readers interested in learning more about
progress being made into this direction are refered to [20] as starting point.

5 Probabilistically checkable proofs over R

For the rest of this paper we shall now turn to the area of probabilistically checkable proofs,
for short PCPs. The PCP theorem first shown by Arora et al. [3, 2] certainly is one of the
landmark results in Theoretical Computer Science in the last two decades. It gives a new
characterization of class NP in the Turing model and had tremendous impact on obtaining
non-approximability results in combinatorial optimization. More recently, an alternative proof
of the theorem was given by Dinur [33].

The first subsection below briefly surveys the classical PCP theorem and its currently
existing proofs. The main part of this section is then devoted to studying PCPs in the BSS
model. We shall give a complete proof of the existence of so-called long transparent proofs
for both NPR and NPC, see [64]. Then, we outline how the full PCP theorem can be shown
to hold as well in these two models.
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5.1 The classical PCP theorem: A short outline

The PCP theorem gives a surprising alternative characterization of the class NP. It is based on
a new point of view concerning the verification procedure necessary to establish membership
of a problem L in class NP. Recall that according to the definition of NP verifying that
an input x belongs to L can be done by guessing a suitable proof y and then verifying by
a deterministic polynomial time algorithm in the size of x that the pair (x, y) satisfies the
property defining L. For example, verifying satisfiability of a given Boolean formula x := φ
in conjunctive normal form can be done by guessing a satisfying assignment y and then
evaluating φ(y). Clearly such a verification algorithm in general must read all components of
y in order to work correctly. Note that for x ∈ L at least one such y has to exist, whereas for
x 6∈ L all potential proofs y have to be rejected.

In the PCP theorem the requirements for the verification procedure are changed. Here is a
brief outline of these new aspects, precise definitions are given in the next subsection. Suppose
membership of x in L should be verified using proof y. The verifier is randomized in that it
first generates a random string. This string and input x are then used to determine a number
of proof components in y it wants to read. This number is intended to be dramatically smaller
than the size of y, actually only constant in the PCP theorem. Finally, using the input, the
random string and those particular proof components the verifier makes its decision whether
to accept or rejct the input. This way there will be a possibility that the verifier comes to a
wrong conclusion, but as long as this probability is not too big this is allowed. PCP(r(n), q(n))
denotes the class of those languages that have a verifier using r(n) random bits and inspecting
q(n) components of the given proof y for inputs x of size n. The PCP theorem states that
PCP(O(log(n)), O(1)) = NP. It thus shows that there exists a format of verification proofs
for languages in NP which is stable in the following sense: If x ∈ L, then there is a proof y
that is always accepted (just as in the original definition of NP); and if x 6∈ L for each proof y
the verifier detects a fault in that proof with high probability by reading a constant number
of components only. The number of components of y to be seen in particular is independent
of the length of the input!

The PCP theorem implies lots of inapproximability results. One of the first such results
states that given a propositional Boolean formula φ in conjunctive normal form having m
clauses, there is no polynomial time algorithm in size φ which for an arbitrary given ε > 0
computes a value k such the maximum number max(φ) of commonly satisfiable clauses of φ
lies within a constant factor of at most 1 + ε, i.e., satisfies max(φ)/k ≤ 1 + ε.

Recall that we saw a similar negative result in Theorem 1, part b). However, that result
was much easier to obtain than the one above which could only be shown as an application
after the PCP theorem was proven. The close relation between PCPs and approximability is
the starting point of Dinur’s proof and will also be important for studying such questions in
the real number setting.

Let us shortly outline the two existing proofs of the PCP theorem. The original one by
Arora et al. is very algebraic in nature. Here, different verifiers are constructed which are
then combined to a single verifier with the desired properties. One of the verifiers used for
the composition needs a large amount of randomness but inspects constantly many proof
components only. It is based on coding a satisfying assignment of a Boolean formula via
certain linear functions. The second verifier uses logarithmic randomness but needs to read
more components. Here the used coding of an assignment is done via multivariate polynomials
of not too high degree. Both verifiers are then cleverly combined by a newly invented technique
called verifier composition to yield a third verifier with the required resources.

The second proof of the PCP theorem given by Dinur [33] in 2005 is more combinatorial
in structure. The basic idea of this proof is to exploit the strong relation between PCPs and

26



(non-)approximability results. More precisely, Dinur’s proof uses an NP-complete problem
called CSP which stands for constraint satisfiability problem; such problems are extensions of
the Boolean satisfiability problem. An instance of the CSP problem consists of a number of
constraints in a finite number of variables taking values in a finite alphabet. The question is
again whether there exists an assignment of the variables that satisfies all constraints. Instead
of directly constructing a verifier for this problem one considers the following approximation
problem: Is there an efficient algorithm which for any given ε > 0 approximates the maximal
number of constraints that are commonly satisfiable within a factor at most 1+ε. Clearly, since
the decision problem is NP-complete computing the maximal number exactly is an NP-hard
problem as well. But it is not clear whether the above optimization task can be accomplished
more easily. This question is intimately related to the PCP theorem as follows. Suppose there
exists a polynomial time reduction from CSP instances to CSP instances such that a satisfiable
CSP instance is mapped to a satisfiable CSP instance and a non-satisfiable CSP instance is
mapped to a CSP instance for which no assignment satisfies more than a certain fixed fraction
of the constraints. Then the PCP theorem would follow from the existence of that reduction.
A verifier for CSP first performs the reduction on an input instance. It then expects the proof
to give an assignment to the variables of the instance resulting from the reduction. Now if
this resulting instance is not satisfiable, then the assignment the proof encodes violates at
least a fixed fraction of the constraints. So the verifier can check the proof by selecting a
constant number of constraints, reading the constantly many values that the proof assigns to
the variables occuring in these constraints, and checking if one of these constraints is violated
by the assignment. Due to the existence of the fixed fraction repeating this test constantly
many times will guarantee that the verifier respects the necessary error bounds.

Dinur’s proof constructs such a polynomial time reduction between CSP instances. There
are two major steps involved in the construction. Given an unsatisfiable set of constraints at
the beginning we only know that at least one among the constraints is not satisfiable together
with the remaining ones. Thus at the beginning we have no constant fraction of unsatisfied
constraints. The first step is an amplification step that increases this fraction by a constant
factor. Repeating it logarithmically many times would yield a constant fraction. However, the
amplification also increases the size of the finite alphabet used. To control this a second step
called alphabet reduction is necessary. This second step as well heavily relies on the existence
of long transparent proofs, i.e., verifiers that accept CSP using a large (super-logarithmic)
amount of randomness and inspecting constantly many proof components. Note that for using
the corresponding verifier, in both proofs its structure is much more important than the values
of the parameters r and q. This is due to the fact that the long-transparent-proof verifier is
applied to instances of constant size only. This as well will be important below in the real
number setting.

This short outline of the classical proof structures should be sufficient here. Similar ideas
will be described much more explicitly in the next subsections in relation to PCPs for the
real and complex BSS model. Complete descriptions of the two classical proofs can be found
in the already cited original papers as well as in [45, 1, 78].

5.2 Verifiers in BSS setting; long transparent proofs

For K ∈ {R,C} consider once again the Hilbert Nullstellensatz decision problem QPSK studied
in previous sections. To show its membership in NPK one can guess a potential solution
y ∈ Kn, plug it into the polynomials of the system and verify whether all equations are
satisfied by y. Clearly, this verification algorithm in general has to inspect all components of
y. So the above question for the discrete satisfiability problem as well makes perfect sense
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here: Can we give another verification proof for solvability of such a system that is much
more stable in the sense of detecting errors with high probability by inspecting only a small
amount of proof components?

This kind of question is made more precise by defining the corresponding verification
procedures as well as the languages in K∗ which are accepted by such verifiers.

Definition 13. Let r, q : N 7→ N be two functions. An (r(n), q(n))-restricted verifier V in the
BSS model over K,K ∈ {R,C} is a randomized BSS algorithm over K working as follows.
For an input x ∈ K∗ of algebraic size n and another vector y ∈ K∗ representing a poten-
tial membership proof of x in a certain set L ⊆ K∗, the verifier in a first phase generates
non-adaptively a sequence of O(r(n)) many random bits (under the uniform distribution on
{0, 1}O(r(n))). Given x and these O(r(n)) many random bits V in the next phase computes
in a deterministic manner the indices of O(q(n)) many components of y. Finally, in the de-
cision phase V uses the input x together with the random string and the values of the chosen
components of y in order to perform a deterministic polynomial time algorithm in the BSS
model. At the end of this algorithm V either accepts or rejects x. For an input x, a guess y
and a sequence of random bits ρ we denote by V (x, y, ρ) ∈ {0, 1} the result of V in case the
random sequence generated for (x, y) was ρ.

The time used by the verifier in the decision phase 3 is also called its decision-time. It
should be polynomially bounded in the size of x.

Remark 1. Concerning the running time of a verifier the following has to be pointed out. In
general, generating a random bit is assumed to take one time unit, and the same applies when
the verifier asks for the value of a proof component. Below in relation to long transparent
proofs we need more than polynomially many random bits. In such a situation the time
for generating a random string would be superpolynomial. We then assume that the entire
random string can be generated at unit cost. Note however that this is of no concern since
the existence of long transparent proofs will be used in the proof of the full PCP theorem
only for instances of constant size and thus the number of random bits is constant as well.
We comment on this point once more after Theorem 18 below.

Using the above notion of a verifier it is immediate to define the languages accepted by
verifiers.

Definition 14. (PCPK-classes) Let K ∈ {R,C} and let r, q : N 7→ N; a decision problem
L ⊆ K∗ is in class PCPK(r(n), q(n)) iff there exists an (r(n), q(n))-restricted verifier V such
that conditions a) and b) below hold:

a) For all x ∈ L there exists a y ∈ K∗ such that for all randomly generated strings ρ ∈
{0, 1}O(r(sizeK(x))) the verifier accepts. In other words:

Pr
ρ
{V (x, y, ρ) = ′accept′} = 1 .

b) If x 6∈ L, then for all y ∈ K∗

Pr
ρ
{V (x, y, ρ) = ′reject′} ≥ 3

4
.

In both cases the probability is chosen uniformly over all strings ρ ∈ {0, 1}O(r(sizeK(x))).

In this section we will discuss the existence of transparent long proofs for problems in NPK
in detail. Our exposition and the given proof below basically follow [64], where this existence
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was shown for NPR. Note however that though the almost same analysis is used it seems
that a longer verification proof is needed than the one given there; so we adapt the required
arguments accordingly. This change nevertheless is of no concern with respect to the role
long transparent proofs play in the full PCP Theorem 21 below. There, they are applied to
constant size inputs only, so the length of a long transparent proof a verifier wants to inspect
is constant anyway. The more important aspect is the structure of the verification proof, see
below.

We shall construct such a verifier for the NPK-complete problem QPSK. The construction
is described for K := R, always pointing out where some care has to be taken when K = C is
considered instead.

The system’s coefficients can be arbitrary real numbers. The verifier will receive the fol-
lowing three objects as input: A family of degree two polynomials, a (possibly incorrect)
proof of the existence of an assignment under which the polynomials evaluate to zero, and
a sequence of random bits. The verifier outputs either ”accept” if it believes the proof to be
correct or ”reject” otherwise. The polynomials and the proof will be in the form of a sequence
of real numbers whereas the random string is a sequence over {0, 1}. Randomness is used to
decide which locations in the proof to query. Since the corresponding addresses can be coded
discretely only discrete randomness is needed.

Throughout this subsection let n denote the number of variables of the input polynomials.
Let P := {p1, . . . , pm} denote the system. All polynomials pi are of degree at most two and

depend on at most three variables. For r ∈ {0, 1}m define P (x, r) :=
m∑
i=1

pi(x)·ri. The following

is easy to see: Let x ∈ Rn be fixed. If x is a common zero of all pi(x), then P (x, r) = 0 for
all r. And if x is no common zero the probability for uniformly taken r that P (x, r) = 0 is
at most 1

2 . We work with P (x, r) in order to capture both the real and the complex case in
common.

Of course, if we want to verify whether an a ∈ Rn solves the system we can neither plug it
into P (a, r) and evaluate because this requires again reading all components of a. We therefore
rewrite P (a, r) as follows:

P (a, r) = E(r) +A ◦ LA(r) +B ◦ LB(r), (1)

where functions E,A,B,LA, and LB have the following properties. A and B are linear
functions with n and n2 many inputs, respectively. The coefficient vectors that represent these
mappings depend on the chosen a only. More precisely,

A : Rn 7→ R such that A(x1, . . . , xn) =
n∑
i=1

ai · xi ∀ x ∈ Rn;

B : Rn2 7→ R such that B(y11, . . . , ynn) =
n∑
i=1

n∑
j=1

ai · aj · yij ∀ y ∈ Rn2

The functions E,LA and LB are linear as well. They take as arguments inputs from
Zm2 := {0, 1}m and give results in the spaces R,Rn and Rn2

, respectively. It is important to
note that these mappings do only depend on the coefficients of the polynomials p1, . . . , pm
but not on a. Therefore, given the system and a random vector r ∈ Zm2 these functions can
be evaluated deterministically without inspecting a component of the verification proof. As
an immediate consequence of equation (1), for evaluating P (a, r) it is sufficient to know two
function values of certain linear functions, namely the value of A in LA(r) ∈ Zn2 and that of
B in LB(r). The verifier expects from the verification proof to contain these two real values.

More precisely, the proof is expected to contain so-called linear function encodings of the
coefficient vectors defining A and B. This means that instead of expecting the proof to just
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write down those vectors we do the following. We define a finite subset D of Rn and require
the proof to contain all values of A(x) := at · x for all x ∈ D; similarly for B and a subset
of Rn2

. In order to work out this idea several problems have to be handled. First, though
A in principle is a linear function over all Rn the verification proof must be finite. It can
only contain finitely many components representing values of A. Among these components
we of course must find those values in arguments that arise as images LA(r) for r ∈ Zm2 .
Secondly, the verifier cannot trust the proof to represent a linear function which maps D to
R. All it can do is to interpret the proof as giving just a function A from D to R and try
to find out if it is linear. Thirdly, even if the functions A and B are indeed linear on their
corresponding domains and encode coefficient vectors a and b the verifier has to find out
whether b is consistent with a, i.e., whether the coefficient vector {bij} defining B satisfies
bij = ai · aj .

To verify all requirements within the necessary resources and error bounds the verifier
tries to realize the following tasks: It expects the proof to provide two function value tables
representing A and B on suitable domains (to be specified). Then first it checks whether
both tables with high probability represent a linear function on the respective domains and
if ’yes’ how to compute the correct values of those functions in a given argument with high
probability. In a second part the verifier checks consistency of the two involved coefficient
vectors with high probability. Finally, it evaluates (1) to check whether the result equals 0.

A correct proof will provide the tables of two linear functions on the appropriate domains
of form A(x) = at ·x and B(x) = bt ·x with vectors a ∈ Rn, b ∈ Rn2

such that bij = ai ·aj , 1 ≤
i, j ≤ n. In this ideal case, equation (1) can be evaluated by reading only two components of
the entire proof, namely one value of A and one of B. If the proof is correct the verifier will
always accept.

Suppose then that the given QPSR instance has no solution. The verifier has to detect this
for any proof with high probability. There are different cases to consider where in the proof
errors can occur. The first such case is the one in which one of the two functions which the
proof provides is in a certain sense far from being linear. The verifier will be able to detect
this with high probability by making only a few queries into the function value table and
then reject. A more difficult situation occurs when the given function is not linear but close
to linear. In this case the verifier’s information about the proof is not sufficient to conclude
that it is not completely correct. To get around this problem a proceeding that aims to self-
correct the values which the proof gives is invoked. For A and B as given in the tables we
shall define self-corrections fA, fB . Assuming that the function value tables are almost linear
will guarantee that these self-corrected functions are linear on the part of the domain which
is important for us. Furthermore, the values of these self-corrected functions can be computed
correctly with high probability at any argument in this part of the domain by making use of
constantly many other values in the table only. In case A is linear fA equals A on the domain
on which it is defined.

We will now carry out the following plan:

1. Define the domains on which we want the verification proof to define functions A and B;
2. check linearity of these functions such that if they are far from linear it will be discovered

with high probability;
3. assuming no contradiction to linearity has been detected so far define the self-corrections
fA and fB ; use these to detect with high probability an error if consistency between the
coefficient vectors of the two linear functions is violated;

4. for random r ∈ Zm2 obtain the correct values of fA(LA(r)) and fB(LB(r)) with high
probability and use these values together with E(r) to evaluate P (a, r). Check whether
the result is zero.
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Appropriate domains for linearity. We will now describe the domain D on which the
values of A should be provided by the proof. The domain on which we want the proof to
define the function B will be constructed analogously.

The function LA : Zm2 → Rn which generates the arguments in which A potentially has to
be evaluated has a simple structure depending on the input coefficients of the polynomials pi.
Written as a matrix its entries are either 0 or such coefficients, i.e., real numbers that constitute
the QPSR instance. Let Λ := {λ1, . . . , λK} denote this set of entries in LA, considered as a
multiset. Since each pi depends on at most 3 variables it is K = O(m). In order to simplify
some of the calculations below we assume without loss of generality that m = O(n); if not
we can add a polynomial number of dummy variables to the inital instance. Thus K = O(n).
Without loss of generality we also assume λ1 = 1. The components of any vector occuring as
argument of A now are 0-1 linear combinations of elements in Λ. We therefore define

X0 := {
K∑
i=1

si · λi | si ∈ {0, 1}}n.

This set contains Zn2 and thus a basis of Rn. If we could guarantee additivity on pairs
taken from X0 as well as scalar multiplicativity with respect to all scalars taken from Λ we
could be sure to work with a correct linear function for our purposes.

Here a first problem occurs: For getting almost surely a linear function A on X0 from a
table for A we need to know and test values of A on a much larger domain X1. So a larger test
domain is needed in order to get a much smaller safe domain, compare [80]. The idea behind
constructing X1 is as follows: We want X1 to be almost closed under addition of elements from
X0. With this we mean that for every fixed x ∈ X0, picking a random y ∈ X1 and adding x to it
results with high probability again in an element in X1. Similarly, X1 should be almost closed
under scalar multiplication with a factor λ ∈ Λ. These properties of X1 will be important in
proving linearity of fA on X0 if A satisfies the tests on X1 to be designed. We remark that
these requirements are more difficult to be satisfied than in the corresponding construction of
a long transparent proof in the Turing model. There, all domains are subsets of some ZN2 and
thus arguments are performed on a highly structured set with a lot of invariance properties
of the uniform distribution. Secondly, there are no scalars other than 0 and 1, so additivity
implies linearity. In the BSS setting some difficulties arise because some of the elements in Λ
can be algebraically independent.

The above motivates the following definition. Let M := {
∏K
i=1 λ

ti
i |ti ∈ {0, . . . , n2}},

M+ := {
∏K
i=1 λ

ti
i |ti ∈ {0, . . . , n2 + 1}} and

X1 :=

 1
α

∑
β∈M+

sβ · β | sβ ∈ {0, . . . , n3}, α ∈M


n

.

We now prove that X1 does indeed have the desired properties. To keep things simple we will
think of elements in X0, X1 (and later also in D) as formal sums of products defining M+.
This means for example that we distinguish elements in X1 which have the same numerical
value because some λi’s in Λ could be the same, but arise from formally different sums.
Such elements are counted twice below when talking about the uniform distribution on the
respective domains. Doing it this way simplifies some counting arguments because we don’t
have to take algebraic dependencies between the λi’s into account.

Lemma 1. Let ε > 0 and n ∈ N such that n ≥ c/ε for a suitable constant c > 0, then the
following holds:
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a) For every fixed x ∈ X0 it is Pr
y∈X1
{y + x ∈ X1} ≥ 1− ε.

Here, the probability distribution is the uniform one on X1, taking into account the above
mentioned way how to count elements in X1.

b) Similarly, for fixed λs ∈ Λ it is Pr
y∈X1
{λs · y ∈ X1} ≥ 1− ε.

c) For fixed λ ∈ Λ it is Pr
α∈M
{α/λ ∈M} ≥ 1− ε.

Proof. For part a) let us focus on a single coordinate j. Then xj is a 0-1 sum of the λi’s. We
have yj of the form 1

α

∑
β∈M+ sβ · β with α ∈M and sβ ≤ n3 for β ∈M+. If the sum for xj

contains a term 1 · λi and the corresponding coefficient of monomial λi in yj is < n3, then
yj + xj also has the required form. Thus for each of the at most K = O(n) many addends
in xj there are n3 out of n3 + 1 choices for the coefficient of the corresponding monomial in
yj that imply xj + yj to be of the required form with respect to this monomial. Since this
argument applies for all n components one obtains

Pr
y∈X1
{y+x ∈ X1} =

(
n3

n3 + 1

)K·n
=
(

1− 1
n3 + 1

)O(n2)

≥︸︷︷︸
Bernoulli

1− O(n2)
n3 + 1

≥ 1− c

n
≥ 1− ε.

For part b) consider an arbitrary fixed λs ∈ Λ together with a random y ∈ X1. Consider
again a fixed component j of y. The α in the representation of this yj has the form

∏K
i=1 λ

ti
i

with ti ∈ {0, . . . , n2}. If the particular exponent ts of λs in this α satisfies ts > 0, then λs · y
will belong to X1 (and for some cases with ts = 0 as well). The probability that ts > 0 and
thus λs · y ∈ X1 is therefore bounded from below by

Pr
y∈X1
{λs · y ∈ X1} =

(
n2

n2 + 1

)n
≥ 1− c

n
≥ 1− ε.

Part c) is trivial. 2

In order to verify (almost) linearity of A on X0 with respect to scalars from Λ a test
is designed that works on arguments of the forms x + y, where x, y ∈ X1 and α · x with
α ∈M,x ∈ X1. The function value table expected from a proof therefore must contain values
in all arguments from the set D := {x + y|x, y ∈ X1} ∪ {α · x|α ∈ M,x ∈ X1}. In the next
subsection a test is designed on D that verifies with high probability linearity of A on X0.

The linearity test and self-correction. As in the previous section we will only describe
how things work for the function A : D → R. In the ideal case this function A is linear and
thus uniquely encodes the coefficient vector a ∈ Rn of the related linear function.

In order to make the formulas look a bit simpler we define the abbreviation Aα(x) :=
A(α · x)/α. We repeat the following test a constant number of times:

Linearity test:

– Uniformly and independently choose random x, y from X1 and random α, β from M ;
– check if A(x+ y) = Aα(x) +Aβ(y).

If all checks were correct the test accepts. Otherwise the test rejects.

Each round will inspect at most three different proof components, namely A(x+y), A(α·x)
and A(β · y). Thus in finitely many rounds O(1) components will be inspected.
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Clearly the linearity test accepts any linear function A with probability 1. For any δ > 0
and ε > 0 we can choose the number of repetitions of the linearity test so large that if

Pr
x,y∈X1,α,β∈M

{A(x+ y) = Aα(x) +Aβ(y)} > 1− δ (2)

does not hold, then the test rejects with probability 1 − ε. The following cases have to be
analyzed. If the linearity test rejects the verifier rejects the proof and nothing more is required.
So suppose the linearity test does not give an error. If (2) is not satisfied, i.e., in particular the
function value table does not come from a linear function, the verifier would err. Luckily it is
easy to show that the probability for this to happen is small. And according to the definition of
the PCPR classes we are allowed to accept incorrect proofs with small probability. It remains
to deal with the only more difficult situation: The linearity test accepts and (2) holds. This
of course does not mean that all values in the table necessarily are the correct ones. If the
verifier asks for a particular such value we must therefore guarantee that at least with high
probability we can extract the correct one from the table. One can get around this problem
by defining a so-called self-correction fA on X1 which can be shown to be linear on X0. This
self-correction looks as follows: For x ∈ X1 define

fA(x) = Majorityy∈X1,α∈M{Aα(x+ y)−Aα(x)}.

Hence fA(x) is the value that occurs most often in the multiset {Aα(x + y) − Aα(x)|y ∈
X1, α ∈ M}. It could be the case that Aα(x + y) is not defined. If this happens we just do
not count this ’value’.

Lemma 2. Under the above assumptions the function fA is linear on X0 with scalars from
Λ, i.e., for all v, w ∈ X0 we have fA(v + w) = fA(v) + fA(w) and for all x ∈ X0, λ ∈ Λ we
have fA(λ · x) = λ · fA(x).

Proof. For arbitrary fixed v ∈ X0 and random x ∈ X1 by Lemma 1 it is x + v ∈ X1 with
probability ≥ 1 − ε assuming n is large enough. Since x 7→ x + v is injective and due to the
use of the uniform distribution in (2) replacing x by x+ v in (2) gives

Pr
x,y∈X1,α,β∈M

{A(x+ v + y) = Aα(x+ v) +Aβ(y)} > 1− δ − ε.

Doing the same with y instead of x yields

Pr
x,y∈X1,α,β∈M

{A(x+ v + y) = Aα(x) +Aβ(v + y)} > 1− δ − ε

and combining these two inequalities results in

Pr
x,y∈X1,α,β∈M

{Aα(x+ v)−Aα(x) = Aβ(v + y)−Aβ(y)} > 1− 2δ − 2ε.

From this it follows that

Pr
x∈X1,α∈M

{fA(v) = Aα(x+ v)−Aα(x)} ≥ 1− 2δ − 2ε. (3)

Similarly, for a fixed w ∈ X0 one obtains

Pr
x∈X1,α∈M

{fA(w) = Aα(x+ w)−Aα(x)} ≥ 1− 2δ − 2ε

and using again the fact that shifting a random x ∈ X1 by a fixed v ∈ X0 does not change
the distribution too much we obtain

Pr
x∈X1,α∈M

{fA(w) = Aα(x+ v + w)−Aα(x+ v)} ≥ 1− 2δ − 3ε. (4)
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Using the above argument a third time, now with v + w instead of v (and thus 2ε instead of
ε) we get

Pr
x∈X1,α∈M

{fA(v + w) = Aα(x+ v + w)−Aα(x)} ≥ 1− 2δ − 4ε. (5)

Combining (3), (4) and (5) it follows

Pr
x∈X1,α∈M

{fA(v + w) = fA(v) + fA(w)} ≥ 1− 6δ − 9ε.

This is independent of both x and α, so the probability is either 0 or 1. Hence, choosing δ
and ε small enough it will be 1 and the first part of the linearity condition is proved.

Concerning scalar multiplicativity let ei ∈ Rn be a unit vector and λ ∈ Λ. Since λ ·ei ∈ X0

one can apply Lemma 1 together with (3) to get

Pr
x∈X1,α∈M

{fA(λ · ei) = Aα/λ(λ · ei + λ · x)−Aα/λ(λ · x)} ≥ 1− 2δ − 4ε.

Since Aα/λ(λ · ei + λ · x)−Aα/λ(λ · x) = λ(Aα(ei + x)−Aα(x)) and by (3)

Pr
x∈X1,α∈M

{fA(ei) = Aα(ei + x)−Aα(x)} ≥ 1− 2δ − 2ε

it follows that
Pr

x∈X1,α∈M
{fA(λ · ei) = λfA(ei)} ≥ 1− 4δ − 6ε.

This is again independent of x and α, so choosing δ and ε small enough yields fA(λ · ei) =
λfA(ei). Finally, given additivity on X0 and scalar multiplicativity for scalars λ ∈ Λ on the
standard basis the claim follows. 2

Checking consistency. If the function value tables for both A and B have been tested
with high probability to be close to unique linear functions fA and fB it remains to deal with
consistency of these two functions. If a ∈ Rn, b ∈ Rn2

are the corresponding coefficient vectors
consistency means that bij = ai · aj . In this subsection it is outlined how to test it.

For any x ∈ X0 and ε > 0 it has been shown how to compute the correct value of fA(x)
with probability 1 − ε by making only a constant number of queries. We can therefore from
now on pretend to simply get the correct values of fA(x) and fB(z). The probabilities of
obtaining an incorrect value at the places where these functions are used are added to the
small probability with which we are allowed to accept incorrect proofs.

For x ∈ Rn, let x⊗x denote the vector y ∈ Rn(n+1)/2 for which yi,j = xi ·xj , 1 ≤ i ≤ j ≤ n.
Now a is consistent with b if and only if for all x ∈ Zn2 it is the case that fA(x)2 = fB(x⊗x).6

This is the property that will be tested. Repeat the following consistency test a constant
number of times:

Consistency test:

– Uniformly choose random x from Zn2 ;
– check if fA(x)2 = fB(x⊗ x).

If in every round of the test the check is correct the verifier accepts, otherwise it rejects.
As with the linearity test the interesting case to deal with is when the verifier accepts the

consistency test with high probability.
6 The appropriate domain on which fB can be shown to be linear in particular contains x ⊗ x for

all x ∈ Zn
2 .
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Lemma 3. With the above notations if the linearity test accepts with probability > 3
4 , then

consistency of a and b holds.

Proof. The proof basically relies on the fact that if two vectors in some RN are different
multiplying both with a random x ∈ ZN2 will give different results with probability at least
1
2 . This is applied to the two linear functions on Rn2

resulting from a⊗ a and b. The same is
true over C. For details see [64].

Putting everything together. The linearity and consistency tests together ensure that
any proof for which the self-corrections fA and fB are not linear on X0 or are not consistent
are rejected with high probability. So the only thing left to do is to verify whether a is indeed
a zero of the polynomial system. This is done by evaluating equation (1). If it evaluates to
zero the verifier accepts, otherwise not.

Summarizing the results of this section we finally get

Theorem 18. For every problem L ∈ NPR there is a verifier working as follows: Given an
instance w of size n the verifier expects a proof of length f(n), where f is doubly exponential
in n. The verifier inspects a constant number of components and accepts L according to the
requirements of Definition 13. It has a decision time that is polynomially bounded in n.

The according statement holds for NPC.

The proof can be adapted word by word for the complex number BSS model. There is
no argument involved that uses the presence of an ordering, except that in the definition of
P (x, r) we avoided to use instead the sum of the squared single polynomials of the system as
could be done over the reals. This would save some small amount of randomness, introducing
at the same time a more complicated polynomial of degree 4.

Recall that the size of D in our proof is doubly exponential in the input size. That was the
reason for including Remark 1 above. Note however that the decisive point behind Theorem
18 is the structure of the verification proof. In the next section we shall see that for the
full PCPR theorem transparent long proofs are invoked in a situation where inputs are of
constant size. Then their structure is more important than the parameter values since the
latter automatically are constant.

5.3 The full PCP theorem

In 2005 Dinur [33] gave an alternative proof for the classical PCP theorem. This proof was
much more combinatorial than the original one by Arora et al. In this subsection we outline
how to transform Dinur’s proof to the BSS model both over R and C. We only sketch the main
ideas and refer to [5] for full proof details. The next subsection then discusses our current
knowledge concerning a potential proof that closer follows the lines of the original one by
Arora et al.

Central aspect of Dinur’s proof is the design of a very particular reduction between in-
stances of a Constraint Satisfiability Problem CSP. The latter is a generalizitaion of the
3-Satisfiability problem. An instance of CSP consists of a collection of constraints over a fi-
nite alphabet and the question is whether all can be satisfied in common by an assignment for
variables taken from the underlying alphabet. The reduction longed for creates a gap in the
following sense. If a given CSP instance is satisfiable so is the one generated by the reduction.
But if the given instance is not satisfiable, then for the one obtained by the reduction at
least a constant fraction of constraints cannot be satisfied in common. This constant fraction
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is the gap. It has been well known early that the existence of such an efficient gap-creating
reduction is equivalent to the PCP theorem. However, before Dinur’s proof it could only be
designed using the PCP theorem.

It is easy to see that for a suitable variant of the QPS problem the existence of a gap
reduction as well would imply the PCP theorem over both R and C. So the strategy is to
adapt Dinur’s proof to the BSS framework. This in fact turns out to be possible. Below we
describe the main ideas for the real number model. Over C nothing changes significantly.

The problem to consider. A problem in the real number model which is similar to the
above mentioned CSP problem is the following variant of the QPSR problem. Here, the way
to look upon a system of polynomial equations is slightly changed.

Definition 15. Let m, k, q, s ∈ N. An instance of the QPSR(m, k, q, s) problem is a set of m
constraints. Each constraint consists of at most k polynomial equations each of degree at most
two. The polynomials in a single constraint depend on at most q variable arrays which have
dimension s, i.e., they range over Rs.

Hence, a single constraint in a QPSR(m, k, q, s)-instance depends on at most qs variables
in R. So if there are m constraints the whole instance contains at most qm arrays and at most
qsm variables. For what follows parameters q and s are most important; q will be chosen to
be 2, i.e., each constraint will depend on 2 variable arrays. Controlling s so that it remains
constant is a crucial goal during the different design steps of the gap reduction. Note that the
problem is NPR-complete for most values of (q, s), for example if q ≥ 2, s ≥ 3.

Definition 16. A QPSR(m, k, q, s)-instance φ is satisfiable if there exists an assignment in
Rmqs which satisfies all of its constraints. A constraint is satisfied by an assignment if all
polynomials occurring in it evaluate to zero. The minimum fraction of unsatisfied constraints,
where the minimum is taken over all possible assignments, is denoted by UNSAT(φ). So if φ
is satisfiable UNSAT(φ) = 0 and if φ is unsatisfiable, then UNSAT(φ) ≥ 1/m.

With a gap reduction we mean an algorithm which in polynomial time transforms a
QPSR(m, k, q, s)-instance φ into a QPSR(m′, k′, q, s)-instance ψ such that there exists a fixed
constant ε > 0 and

– if φ is satisfiable, then ψ is satisfiable and
– if φ is not satisfiable, then UNSAT(ψ) ≥ ε.

Thus either all constraints in the output instance ψ are satisfiable or at least an ε-fraction
is violated, no matter which values are assigned to the variables. Most important, ε is a fixed
constant not depending on the size of the given instances.

The following easy lemma shows the importance of gap-reductions for the PCP theorem:

Lemma 4. Suppose there exists a gap reduction for an NPR-complete QPSR(m, k, q, s) with
a fixed ε > 0. Then the PCPR theorem holds, i.e., NPR = PCPR(O(log n), O(1)).

Proof. The task is to construct a (O(log n), O(1))-verifier V for QPSR(m, k, q, s). Supposing
the existence of a gap-reduction the verifier works as follows on an instance φ. First, it applies
the reduction and computes ψ. As proof of satisfiability of ψ (and thus of φ) it expects an
assignment for the variables of ψ. Then, finitely many times the following is repeated: V selects
at random a constraint in ψ and evaluates it in the given assignment. Since each constraint of
ψ depends on at most qs variables this bounds the number of proof components V reads in a
single round. In case that φ is not satisfiable each assignment violates an ε-fraction of clauses
in ψ. Thus V randomly picks with probability ≥ 1

ε such a constraint for the assignment given
by the proof. Repeating this procedure constantly many times the error probability can be
made arbitrarily small, thus proving the PCPR theorem. 2
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Outline for creating a gap reduction. The goal now is to design such a gap reduction
following Dinur’s original construction. This is done in a number of rounds. Each of them
increases the gap by a factor of at least 2 if the instance on which the round was performed
still had a small gap below a suitable constant εfinal. Since for the original instance φ it holds
that either φ is satisfiable or at least a 1

m -fraction of its constraints is always unsatisfied (i.e.,
one constraint), in principle it suffices to perform a logarithmic in m number of such rounds
in order to create an instance which has a gap of at least εfinal. The number of rounds not
being constant it is important that in a single round the size of the instance grows linearly
only. That way a logarithmic number of rounds creates a polynomial growth in size only.

Each round consists of three steps, a preprocessing, a gap amplification step and a dimen-
sion reduction step. These steps use QPSR-instances with different values for the number q of
variable arrays the constraints of an instance depend on. The two important values for this q
are 2 in the amplification step and a constant Q coming from the constant query complexity
of long transparent proofs.

A round starts on an instance of the problem QPSR(m, k,Q, 1), where Q denotes the
number of queries the verifier of Section 5.2 needs to verify the long transparent proofs.
So in these instances every constraint depends on at most Q arrays of dimension 1, i.e.,
variables ranging over R1. The first main step in a single round is the amplification step
which amplifies the gap. However, this step requires the array dimension to be q = 2 as well
as some nice structure on its input instances. To fulfill these requirements a preprocessing
step is necessary. Though amplification increases the gap it has the disadvantage of enlarging
the dimension of variable arrays. To get finally back arrays of dimension 1 it is necessary to
continue after amplification with a dimension reduction step. For this step long transparent
proofs are crucial.

Both the preprocessing step and the dimension reduction step decrease the gap. Since the
amplification factor can be taken large enough in comparison to the two factors by which
the other steps reduce the gap, in total there will be a sufficient increase of the gap after
logarithmically many rounds.

Preprocessing consists of a number of relatively simple constructions, so we omit this
technical step and just summarize its outcome.

Proposition 1. There exist a constant d ∈ N and a polytime computable reduction from
QPSR instances to QPSR instances such that the following holds. The reduction maps an
instance φ in QPSR(m, k, q, s)-instance to a nice instance ψ in QPSR(3qd2m, k + qs, 2, qs)
such that

- if φ is satisfiable, then ψ is satisfiable;
- if φ is not satisfiable, then UNSAT(ψ) ≥ UNSAT(φ)/(240qd2).

The term nice in the above statement refers to a special structure the resulting instances
exhibit. This structure is related to so-called expander graphs which are heavily used in the
amplification step. Expanders in particular are regular graphs and the parameter d used in
the statement denotes this regularity. Without being too technical below it will be pointed
out what kind of properties of expanders are needed.

The amplification step. As already mentioned amplficiation requires a QPSR(m, k, 2, s)-
instance ψ as input. To such an instance one can canonically attach a constraint graph in which
vertices correspond to variable arrays and edges correspond to the constraints depending on
at most two arrays each. Constraints depending on a single array only give loops in the
constraint graph.
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Starting with an instance ψ obtained at the end of preprocessing a new instance ψt is
constructed as follows. The ultimate goal is to amplify the occurence of a constraint in ψ in
such a way that it influences much more constraints in ψt. Since constraints correspond to
edges in the constraint graph this amplification is obtained by Dinur invoking deep results
about expander graphs. Very roughly, constraints of the new instance collect several con-
straints (edges) of ψ in such a way that each violated old constraint forces violation of many
of the new constraints in which it occurs. In order to make this idea working the structure of
d-regular expander graphs is important.

Here is a brief outline of how the new instance ψt is obtained. Its construction depends
both on the regularity d and an additional freely choosable constant parameter t ∈ N. Both
determine the factor with which the gap is amplified.

The new instance ψt will have the same number of variable arrays but they will be of larger
dimension. For every vertex in the constraint graph of the input instance ψ a new array will
be defined. The dimension of these new arrays will be so large that they can claim values for
all old arrays which can be reached in the constraint graph within at most t+

√
t steps. Since

one of the conditions on the input instance is that its constraint graph is regular of degree d
for some constant d the size of the new arrays is bounded by the constant dt+

√
t+1 · s. So for

every array in the old instance ψ there will be lots of arrays in the new instance ψt that claim
a value for it. Of course these claimed values can be different. In the proof for the classical
case there is the guarantee that at least a certain fraction of the claims will be equal because
of the finite alphabet. In the real number case we do not have this guarantee because there the
”alphabet” is of course infinite. However, this technical problem can easily be circumvented
by adding some consistency requirements to the constraints in the new instance ψt.

The constraints in ψt will be sets of constraints of the old instance ψ together with
consistency requirements as mentioned above. For every path of length 2t+1 in the constraint
graph of ψ a constraint will be added to the new instance ψt. This constraint will depend on the
two arrays corresponding to the endpoints of the path. The new arrays claim values for all old
arrays in a t+

√
t+ 1-neighborhood of the vertex. Therefore, all old arrays related to vertices

in a certain middle segment of such a path get values from the new arrays corresponding
to both end-points. The constraint that we add will express that these claimed values are
consistent and that they satisfy the constraints of the old instance ψ. This finishes the rough
description of how to construct the new instance.

It is easy to see that the construction transfers satisfiability from ψ to ψt. The hard part
of Dinur’s proof is to show that if the input instance ψ is not satisfiable, then the fraction
of unsatisfied constraints in the new instance ψt is increased by a constant factor depending
on t. This is shown by Dinur as follows and basically can be done similarly in the real and
complex number framework. Take any assignment for the new arrays. From this assignment a
plurality assignment is defined for the old arrays. More precisely, perform a random walk of t
steps on the constraint graph starting in the vertex of the old array. Its plurality value is the
assignment that most frequently is claimed for the old array by those new arrays that occur as
an endpoint of such a walk. The further analysis now exploits both the expander properties
of the constraint graph together with an additional structural requirement called niceness
before. It basically addresses the number of loops each vertex in the constraint graph has.
This in a suitable way makes random walks of length t basically look like walks of bit shorter
or longer length. It finally guarantees the quantity UNSAT (ψt) to grow proportionally in√
t · UNSAT (ψ).

The formal statement resulting from the above ideas reads
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Theorem 19. There exists an algorithm which works in polynomial time that maps a nice
QPSR(m, k, 2, s)-instance ψ to a QPSR(d2tm, 2

√
tk + (2

√
t + 1)s, 2,dt+

√
t+1s)-instance ψt and

has the following properties:

– If ψ is satisfiable, then ψt is satisfiable.
– If ψ is not satisfiable and UNSAT(ψ) < 1

d
√
t
, then UNSAT(ψt) ≥

√
t

3520d · UNSAT(ψ).

Dimension reduction. Amplification increases the gap but also the dimension of variable
arrays. However, the latter in the end has to remain constant because it is directly related to
the query complexity. Thus in the final step of a single round the array dimension has to be
reduced. Actually, it can be put down to 1 before the next round starts.

To achieve this aim the structure of transparent long proofs as explained above plays the
decisive role. First, there is a natural close relation between the computation of verifiers and
sets of constraints. To each string of random bits a verifier generates one can associate a
constraint. This constraint expresses the verifier’s computation after the random string has
been generated. It is satisfied if the verifier accepts the proof with the corresponding random
bits. If the input instance of the verifier is satisfiable, then there exists an assignment (i.e., a
proof) which satisfies all of these constraints; and if the input instance is not satisfiable every
assignment violates at least half of the constraints.

Now we apply this viewpoint to the instance ψt generated after amplification. The idea is
to view every constraint in ψt as an input instance for the long transparent proof verifier and
replace this constraint with the set of constraints which we described in the lines above. Note
that a single constraint in ψt still has constant size. It depends on two arrays of dimension
s(t) := dt+

√
t+1 · s. Since the verifier checks this for a concrete assignment within a time

bound depending on the constraint size, all of the derived constraints described above also
are constant in size. It therefore is of no concern that the verifier needs long transparent
proofs; they all still have constant size. More important is the structure of the verifier.

In order to realize this idea for dimension reduction first parts of the preprocessing step are
applied once more; to do so the original constraints in ψt have to be decoupled. This means
that different constraints have to depend on different arrays. It is achieved by using formal
copies. Of course, the intended reduction must carry over satisfiability, so the decoupling of
variables has to be repaired afterwards by introducing consistency constraints.

Now the particular structure of the long transparent proof guarantees that both the orig-
inal constraints in ψ and the consistency constraints can be replaced by constraints that
depend on at most Q variable arrays of dimension 1 each. Here, Q is the query complexity of
the long transparent verifier.

Dimension reduction thus gives

Theorem 20. There exists a reduction which works in polynomial time and maps a
QPSR(m(t), k(t), 2, s(t))-instance ψt to a QPSR(m̂(t),C,Q, 1)-instance ψ̂t, where C,Q are
constants, m̂(t) is linear in m(t) (the multiplication factor being double exponential in s(t))
and the following holds:

– If ψt is satisfiable, then so is ψ̂t and
– if ψt is unsatisfiable, then UNSAT(ψ̂t) ≥ UNSAT(ψt)/(160(d+ 1)2).

The final argument is to apply the above steps a logarithmic in m number of times for a
given QPSR(m, k, q, s)-instance. A suitable choice of t guarantees that the amplification factor
in each round is at least 2. So starting with a fraction of 1

m unsatisfied constraints the gap is
increased to a constant fraction. We finally obtain

39



Theorem 21 (PCP theorem for NPR, [5]). It holds NPR = PCPR(O(log n), O(1)).

All proof details are given in [5]. None of the arguments rely on the ordering available over
the real numbers and so the statement holds as well for the complex number BSS model.

5.4 Almost transparent short proofs

Though we have seen in the previous sections that Dinur’s proof of the PCP theorem can be
adapted to the BSS model another interesting question remains open. Can the real number
PCP theorem be proved as well along the lines of the classical proof by Arora et al.? In this
final section we briefly indicate what is currently known concerning this problem.

The classical proof uses long transparent proofs as well as two additional constructions.
Another verifier is designed that uses a logarithmic amount of randomness and inspects a
polylogarithmic number of components. The ’almost transparent short’ proof that this verifier
requires in addition must obey a certain structure in order to make the final step applicable.
This is a composition step of the two verifiers resulting in the final verifier whose existence
implies the PCP theorem. So far it is possible to construct an almost transparent short proof
for NPR. However, at the time being it is not clear to the authors how to put this verifier into
a more specific structure in order to make the final step working. We comment on this point
at the end.

Let us shortly explain the main ideas in designing this verifier following [65]. Instead
of using tables of linear functions as coding objects for a zero of a polynomial system now
multivariate polynomials of a not too large degree are employed. They are usually called
low-degree polynomials in this framework.

The problem setting. Starting point once again is the QPSR problem in the version of
Definition 7. For it the verifier is constructed. Given the NPR-completeness proof of QPSR in
[15] an instance system P in variables x1, . . . , xn can be further assumed to be of the following
particular form. Each polynomial has one the types below:

Type 1: xi1 − c`, where c` is one among finitely many fixed real constants,
Type 2: xi1 − (xi2 − xi3),
Type 3: xi1 − (xi2 + xi3) or
Type 4: xi1 − (xi2 · xi3).

Here the i1, i2 and i3 do not have to be different. As with the linear encodings used before
we change a bit the viewpoint on an assignment for the system’s variables.

To do this the index set of the variables in P is coded differently. Choose integers h, k such
that hk ≥ n and set H := {1, . . . , h}. Now Hk is used as index set instead of {1, . . . , n}. Thus
a real assignment a ∈ Rn to the variables is a function fa : Hk → R. Next, the way to look
upon the system P is altered. More precisely, for each polynomial in P its type is extracted
by means of using certain characteristic functions for the types.

Towards this end P is seen as a subset of some universe U to be specified; now identify
P with the function χ : U → {0, 1} which maps elements, i.e., polynomials in P to 1 and
elements outside P to 0. Actually, we will first split P in four parts P1, P2, P3 and P4.
Part P1 further splits into finitely many parts P1

` , one for each real coefficient c` of the
system introduced via a polynomial of type 1. A triple (i1, i2, i3) ∈ H3k uniquely identifies
a polynomial in each part. For example, in part P1

` it identifies the polynomial xi1 − c`, in
part P2 it identifies the polynomial xi1 − (xi2 − xi3), and so on. Hence, each part of P can
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be identified with a subset of H3k. The characteristic functions of the respective parts are
denoted by χ1

` , χ
2, χ3, and χ4, respectively.

The solvability question this way is transformed into the question of the existence of a
function fa : Hk → R such that for all (i1, i2, i3) ∈ H3k the following equations hold:

χ1
`(i1, i2, i3) · (f(i1)− c`) = 0 for all `,

χ2(i1, i2, i3) · (f(i1)− (f(i2)− f(i3))) = 0,
χ3(i1, i2, i3) · (f(i1)− (f(i2) + f(i3))) = 0,
χ4(i1, i2, i3) · (f(i1)− (f(i2) · f(i3))) = 0.

Squaring and adding lead to
∑

(i1,i2,i3)∈H3k g(i1, i2, i3) = 0, where g : H3k → R is defined as

g(i1, i2, i3) :=
∑
`

[
χ

(1)
` (i1, i2, i3) · (f(i1)− c`)

]2
+
[
χ(2)(i1, i2, i3) · (f(i1)− (f(i2)− f(i3)))

]2
+

[
χ(3)(i1, i2, i3) · (f(i1)− (f(i2) + f(i3)))

]2
+
[
χ(4)(i1, i2, i3) · (f(i1)− (f(i2) · f(i3)))

]2
.

Summarizing, an assignment a ∈ Rn is a zero of the given system P if and only if the sum∑
(i1,i2,i3)∈H3k g(i1, i2, i3) = 0, where g is defined as above using an encoding fa : Hk → R

for a. The degree of g in each of its variables is d := O(h).

Sum check and low degree extensions. At the moment not much is gained. If the sum is
evaluated term by term there are at least |H|k ≥ n many terms that depend on at least one
value of fa, thus such a direct evaluation would inspect too many proof components. However,
the particular form allows to proceed differently in order to circumvent this problem. The first
step is to apply a well-known technique called sum-check procedure [55] in order to evaluate
the above huge sum more efficiently using randomization. The idea is to express the sum
recursively as iterated sum of univariate polynomials and including an encoding of those
univariate polynomials in the verification proof. More precisely, for 1 ≤ i ≤ 3k one defines
partial-sum polynomials of g as

gi(x1, . . . , xi) :=
∑

yi+1∈H

∑
yi+2∈H

. . .
∑
y3k∈H

g(x1, . . . , xi, yi+1, . . . , y3k).

Note that
∑

r∈H3k

g(r) =
∑
x1∈H

g1(x1) and gi(x1, . . . , xi) =
∑
y∈H

gi+1(x1, . . . , xi, y) for all i.

In order to make the probability analysis of the following procedure working it turns out
that the polynomials g and gi have to be defined on a larger set F 3k, where H ⊂ F (even
though the sum to be computed still ranges over H3k). The verifier expects a proof to contain
for each 1 ≤ i ≤ 3k, (r1, . . . , ri−1) ∈ F i−1 a univariate polynomial x → g′i(r1, . . . , ri−1, x) of
degree at most d. The proof is required to represent such a polynomial by specifying its d+ 1
many real coefficients. An ideal proof is supposed to use the corresponding restriction x →
gi(r1, . . . , ri−1, x) of the partial-sum polynomial gi as g′i(r1, . . . , ri−1, x). The basis of the sum-
check procedure now is to verify for all i the relation gi(x1, . . . , xi) =

∑
y∈H

gi+1(x1, . . . , xi, y)

together with
∑
y∈H g1(y) = 0. In the corresponding test this is done finitely many times using

a random choice (r1, . . . , r3k) ∈ F 3k of points in F for the xi’s. It can be shown that this
test when accepted guarantees with high probability that the pairs (gi, gi+1) are consistent
and that the entire sum evaluates to 0. Most important, this part of the verifier needs the
following resources. Choosing 3k many points from F randomly requires O(k · log |F |) many
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random bits. For each of the O(k) many equations tested the verifier reads d+ 1 many proof
components representing the univariate polynomial y 7→ gi(r1, . . . , ri−1, y). For the final check∑
y∈H g1(y) = 0 a constant number of values from fa is required.
The analysis (not given here) then guarantees everything to work fine when the involved

parameters are chosen according to k = O(log n), h = O(log n), |F | = poly log n.
There is one major new problem that has been tacitly introduced in the above sum-check

procedure. Its probability analysis makes it necessary to consider the gi on a larger domain
F 3k. But fa originally is defined on Hk only. So if in the sum-check part a value of fa in an
argument outside Hk has to be inspected, we must first extend fa consistently to domain F k.
Consistency of course is crucial here in order to make sure that still the same fa, and thus
the same assignment a ∈ Rn, is used.

Dealing with this problem is the main task for obtaining the desired verifier. By interpo-
lation every function f : Hk → R can in a unique way be seen as a polynomial in k variables
that ranges over H and with degree at most h− 1 in each variable. This polynomial of course
is defined as well on any larger set F k since we consider both H and F as subsets of R. It
is this low-degree extension that should be used in the sum-check. Note that the above g in
fact is obtained in a similar way using as well the low-degree extensions of the χ(i) functions
in its definition.

But then we are left with a question that is very similar to what has been discussed in
relation to long transpaernt proofs. The verifier expects a function value table of a function
f̃ : F k → R. As part of its test it first has to convince itself that the table with high probability
is close to a unique low-degree polynomial f : F k → R. This polynomial is identical to the
low-degree extension of a function fa. It is this a which then is expected by the verifier to
solve the given polynomial system.

So it is necessary to design a test which checks such a function f̃ for being close to a
low-degree polynomial with high probability. Once again, a problem for doing it is that the
domains H and F cannot be taken to have a nice structure such as finite fields which are used
in the Turing setting. However, based on work by Friedl et al. [37] it is shown in [65] that
such a test can be developed and additionally respects the required resource bounds. Putting
this low-degree test and the sum-check procedure together one obtains

Theorem 22 ([65]). NPR = PCPR(O(log n), poly log n).

It remains open whether the full PCPR theorem can be obtained pushing the above ideas
forward by combining the two verifiers using a long transparent and a short almost transparent
proof, respectively. The reason why we are doubtful is that in order to apply a real version
of verifier composition - a technique introduced by [3] and similar to the use of the long
transparent proof in Dinur’s approach - the verifier of Theorem 22 needs to obey an improved
structure. In the classical proof this better structure is obtained by designing yet another low-
degree test which considers the total degree of polynomials. In contrast, the low-degree test
used above is dealing with the maximal degree of each variable. What is the problem here?
It seems that designing a better structured total degree test over the reals might use a much
larger domain to be tested, thus leading to a higher amount of randomness necessary. We
do not know at the time being whether such a test can be designed respecting the required
resourse bounds. This certainly is an interesting research question of independent interest
since it deals with a typical example of property testing in real domains.
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