Mip

Tracking multiplicities

Jean-Claude Yakoubsohn

Institut de Mathématiques de Toulouse

Santalo's Summer School
Recent Advances in Real Complexity and Computation

Work in collaboration with Marc Giusti.

The problem

$1-x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$.
2 - a polynomial system $f=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{C}^{m}[x]$.
3- w an isolated multiple root of f, i.e. $\operatorname{Df}(w)$ has not a full rank.
The quadratic convergence of the Newton method is lost in a neighborhood of w. To recover it
1- determine a regular system at w from the initial.

$$
\begin{gathered}
f_{i}=\sum_{k=1}^{9} x_{k}+x_{i}^{2}-2 x_{i}-8 \\
i=1: 9
\end{gathered}
$$

$(1, \ldots, 1)$ multiplicity 256
(Dayton - Zeng)

Contents

1- Dimension and number of roots
2- Multiplicity : algebraic point of view.
3- Rouché theorem and dimension
4- Multiplicity and duality via linear algebra.
5- On methods recovering quadratic convergence.
6- Another way : deflating and kernelling.

References

1- B.H. Dayton, T.Y. Li, Z. Zeng, Multiple zeros of nonlinear systems, Math of Comp. 80, 2143-2168, 2011.
2- N. Li, L. Zhi, Computing isolated singular solutions of polynomials systems : case of breadth one, SIAM J. Numer. Math., 50,1 ,354-372, 2012.
3- A. Leykin, J. Vershelde, A. Zhao, Newton's method with deflation for isolated singularities of polynomial systems, Theoretical Comput. Sci.,359, 1112-122,2006.
4- Angelos Mantzalaris and Bernard Mourrain, Deflation and Certified Isolation of Singular Zeros of Polynomial Systems,arXiv 1101.340v1, 17-01-2011.

5- Two papers of M. Giusti,G.Lecerf,B. Salvy, J.-C. Yak., in FOCM, 2005, 2007.

References

7- J.-P. Dedieu, M. Shub, On Simple Double Zeros and Badly Conditioned Zeros of Analytic Functions of n Variables. Mathematics of Computation, 70 (2001) 319-327.

Book
6- D.A. Cox, J. Little, D.O'Shea, Using Algebraic Geometry, Springer, 2005.

Number of roots of a polynomial system

Theorem Let $I=<f_{1}, \ldots, f_{m}>$ and $V(I) \subset \mathbb{C}^{n}$ the associated variety.
1- The dimension of $C[x] / I$ is finite iff the dimension of $V(I)$ is zero.
2- In the finite dimension case one has

$$
\operatorname{dim} C[x] / I=\# V(I)
$$

where $\# V(I)$ is the number of points of $V(I)$ counted with multiplicities.

Example

$f_{1}(x, y)=x^{2}+x^{3}, \quad f_{2}(x, y)=x^{3}+y^{2}$ and $V(I)=\{(0,0),(-1,1)\}$.
A Groebner basis of I is :
$g_{1}(x, y)=x^{0} y^{4}-y^{2}, \quad g_{2}(x, y)=x^{1} y^{2}+y^{2}, \quad g_{3}(x, y)=x^{2} y^{0}-y^{2}$, We deduce

$$
\operatorname{dim} C[x] / I=6
$$

Multiplicities and local rings

Let w an isolated root of $f=\left(f_{1}, \ldots, f_{m}\right)$ and $I=<f_{1}, \ldots f_{m}>$.
Let $\mathbb{C}\{x-w\}$ the local ring of convergent power series in n variables which the maximal ideal is generated by $x_{1}-w_{1}, \ldots x_{n}-w_{n}$. Let $I \mathbb{C}\{x-w\}$ the ideal generated by I in $\mathbb{C}\{x-w\}$
We note $A_{w}=\mathbb{C}\{x-w\} / / \mathbb{C}\{x-w\}$.

Theorem.

Let $V(I)=\left\{w_{1}, w_{2}, \ldots w_{N}\right\}$. Then
$1-\mathbb{C}[x] / I \sim A_{w_{1}} \times \ldots \times A_{w_{N}}$.
$2-\operatorname{dim} \mathbb{C}[x] / I=\sum_{i=1}^{N} \operatorname{dim} A_{w_{i}}$.

Example

$f_{1}(x, y)=x^{2}+x^{3}, \quad f_{2}(x, y)=x^{3}+y^{2}$ and
$V(I)=\{(0,0),(-1,1),(-1,1)\}$.
$1-\mathrm{A}$ standard basis of $\mathbb{C}\{x, y\}$ is : $g_{1}=x^{2}, \quad g_{2}=y^{2}$.
Hence $\operatorname{dim} A_{(0,0)}=4$.
2 - A standard basis of $\mathbb{C}\{x+1, y-1\}$ (resp. $I \mathbb{C}\{x+1, y+1\})$ is :
$g_{1}=3 x, \quad g_{2}=2 y$.
Hence $\operatorname{dim} A_{(-1,1)}=\operatorname{dim} A_{(-1,-1)}=1$.

Multiple roots and clusters of roots

Let w a multiple root of f with multiplicity μ. Let \bar{f} a pertubated system of f. In an open neighborhood U_{w} where the Rouché theorem holds, i.e. if for all $x \in \partial U_{w}$ we have

$$
\|\bar{f}(x)-f(x)\|<\|f(x)\|
$$

then \bar{f} has μ roots in U_{w}.

$$
\operatorname{dim} A_{w}^{f}=\sum_{\bar{w} \in \bar{f}-1(0) \cap U_{w}} \operatorname{dim} A_{\bar{w}}^{\bar{f}}
$$

Duality and Multiplicities

We define

$$
\begin{array}{ll}
\mathcal{D}_{w}^{k}(f)=\left\{L=\sum_{|\alpha| \leq k} L_{\alpha} \partial_{\alpha}[w]\right. & : \quad L(f)=0 \\
& \text { and } \left.\phi_{i}(L) \in \mathcal{D}_{w}^{k-1}, \forall i=1: n\right\}
\end{array}
$$

where the $\phi_{i}^{\prime} s$ are the linear anti-differentiation transformations :

$$
\phi_{i}\left(\partial_{\alpha}[w]\right)=\partial_{\beta}[w] \quad \text { with } \quad \beta_{j}=\left\{\begin{array}{cc}
\beta_{j} & \text { if } j \neq i \\
\beta_{i}-1 & \text { if } j=i
\end{array}\right.
$$

Theorem

1- The root w is isolated iff there exists / s.t. $\mathcal{D}_{w}^{\prime-1}=\mathcal{D}_{w}^{\prime}$.
2- In this case the dimension of \mathcal{D}_{w}^{\prime} is equal to the multiplicity of w.

Macaulay matrices and multiplicity

We consider the Macaulay matrices

$$
S_{k}=\left(\partial_{\alpha}[w]\left((x-w)^{\beta} f_{i}(x)\right)\right) \quad \text { for }|\beta| \leq k-1 \text { and } i=1: m
$$

Theorem D_{w}^{k} is isomorphic to the kernel of S_{k}.

Consequently $D_{w}^{I-1}=D_{w}^{\prime}$ when $\operatorname{nullity}\left(S_{l-1}\right)=\operatorname{nullity}\left(S_{l}\right)$

Example

$$
f_{1}=x^{2}+y^{2}-2, f_{2}=x y-1 . w=(1,1)
$$

		∂_{00}	∂_{10}	∂_{01}	∂_{20}	∂_{11}	∂_{02}
S_{0}	f_{1}	0	2	$2 \mid$	2	0	2
	f_{2}	0	1	$1 \mid$	0	1	0
	---	-					
S_{1}				\mid			
	---	-	-	-			
S_{2}	$(x-1) f_{1}$	0	0	0	4	2	0
	$(x-1) f_{2}$	0	0	0	2	1	0
	$(y-1) f_{1}$	0	0	0	0	2	4
	$(y-1) f_{2}$	0	0	0	0	1	2

$\operatorname{rank}\left(S_{0}\right)=0, \operatorname{corank}\left(S_{0}\right)=1$
$\operatorname{rank}\left(S_{1}\right)=1, \operatorname{corank}\left(S_{1}\right)=2$
$\operatorname{rank}\left(S_{2}\right)=4, \operatorname{corank}\left(S_{2}\right)=2$.
Hence $\mu=2$.

Recovering the quadratic convergence

The idea is to determine a sequence of systems which the last is regular at the multiple root of the original system.

The method of LVZ

Let r the rank of the jacobian matrix J of f at w. The LVZ method consist to add at each step of deflation $r+1$ equations and unknowns at the initial system.

$$
\begin{array}{ll}
f(x)=0 & \\
J(x) B \lambda=0 & B \in \mathbb{C}^{n \times(r+1)} \text { random matrix } \\
\lambda^{T} h-1=0 & h \in \mathbb{C}^{r+1} \text { random vector }
\end{array}
$$

The unknowns of this new system are $(x, \lambda) \in \mathbb{C}^{n+r+1}$.
The corank of the system $\left(J(x) B \lambda=0, h^{\top} \lambda-1=0\right)$ is generalically equal to 1 and the multiplicty of the new system is less than the initial system.
We have added $m+r+1$ equations and $n+r+1$ unknowns. The number of step of deflations to restore quadratic convergence for the Gauss-Newton method is bounded by the multiplicity of the root.

The first method of DLZ

$$
\begin{aligned}
& f(x)=0 \\
& J(x) \lambda=0 \\
& \lambda^{T} h-1=0
\end{aligned}
$$

At the end of this of this process we can to add $2^{\mu-1} \times m$ equations and $2^{\mu-1} \times n$ unknowns.

The second method of DLZ : case of breadth one.

Breadth one : if at each deflation step corank(system) $=1$. In this case the second method of DLZ constructs a regular system with at most $\mu \times m$ equations and $\mu \times n$ unknowns.

Mantzalaris and Mourrain improvement.

Step 1- Compute a basis for the dual space of the local quotient ring $A_{w}: \Lambda=\left(\Lambda_{1}, \ldots, \Lambda_{\mu}\right)$
Step 2- Compute the system $f^{\wedge}:=\left(\Lambda\left(f_{1}\right), \ldots, \Lambda\left(f_{m}\right)\right)$.

Theorem The system f^{\wedge} is regular at w.

Example.

$f_{1}(x, y)=x^{2}+y^{2}-2, f_{2}=x y-1 . w=(1,1)$.
$\Lambda=\left(1, \partial_{1}-\partial_{2}\right)$.
$f^{\wedge}=\left(f_{1}, f_{2}, x-y\right)$.

Recovering quadratic convergence : another way.

Newton method does not converge quadratically closed to an isolated root. To recover this quadratic convergence the idea is to determine a polynomial system which admits w as regular root, i.e, its jacobian is full rank at w.
To do that we use both numerical and symbolic computation. Two ingredients
1- Deflation based on numerical computation of derivatives.
2- Determination of new polynomials based on computation of numerical ranges.
This way does not require to compute the whole structure of the local qotient algebra which is too huge.

Recovering quadratic convergence : deflating and kernelling.

We proceed by two actions :
1- Deflating
2- Kerneling
We do that without to add new variables. The number of equations only increases.

Deflating

We can replace an equation $g(x)=0$ by the n equations $\frac{\partial g(x)}{\partial x_{i}}=0$, $i=1: n$ if

$$
g(w)=0, \quad \frac{\partial g(w)}{\partial x_{i}}=0, \quad i=1: n .
$$

We decide of this thanks to a point closed to w.

Deflating. Example

$f_{1}=x^{3} / 3+y^{2} x+x^{2}+2 y x+y^{2}, \quad f_{2}=x^{2} y+x^{2}+2 y x+y^{2}$
The multiplicity of $(0,0)$ is 6 .
We have

\[

\]

The new polynomial system consists of tree polynomials

$$
x^{2}+y^{2}+2 x+2 y, \quad x y+x+y, \quad x^{2}+2 x+2 y
$$

Kerneling

Let us consider a polynomial system $f(x)=0$ such that $D f(w)$ is rank deficient and $D f_{i}(w) \neq 0, i=1: n$. Hence the rank of $D f(w)$ is $r>0$. If

$$
D f(w)=\left(\begin{array}{ll}
A(w) & B(w) \\
C(w) & D(w)
\end{array}\right) \in \mathbb{C}^{m \times n}
$$

with $A(w)$ invertible matrix of size $r \times r$.
The Jacobian matrix $D f(w)$ has rank r iff the Schur complement is zero

$$
D(w)-C(w) A(w)^{-1} B(w)=0
$$

i.e., w is a root of

$$
D(x)-C(x) A(x)^{-1} B(x)
$$

Kerneling using Schur complement

Then we add to the initial system at most the $(m-r) \times(n-r)$ equations given by:

$$
\text { numer }\left(D(x)-C(x) A^{-1}(x) B(x)\right)=0
$$

Alternative : we can also deal with
1 - the rational functions $D(x)-C(x) A^{-1}(x) B(x)=0$.
2- the power series $D(x)-C(x) A_{1}(x) B(x)$ where $A_{1}(x)$ is the power series of $A^{-1}(x)$ at w.

Kerneling using Schur Complement. Example

$f_{1}=x^{2}+y^{2}+2 x+2 y, \quad f_{2}=x y+x+y, \quad f_{3}=x^{2}+2 x+2 y$.
The root $(0,0)$ has multiplicity 2 .
$J=\left(\begin{array}{cc}2 x+2 & 2 y+2 \\ y+1 & x+1 \\ 2 x+2 & 2 y+2\end{array}\right)$ and $D f(0,0,0)=\left(\begin{array}{ll}2 & 2 \\ 1 & 1 \\ 2 & 2\end{array}\right)$ with rank 1.
Then there are two equations which are added to f since :

$$
\operatorname{numer}\left(J(2 . .3,2)-J(2 . .3,1) J(1,1)^{-1} J(1,2)\right)=\binom{2 x^{2}+4 x-2 y}{2 y}
$$

Moreover the rank of the new system is 2 .

$$
\begin{aligned}
& \text { Let } G N_{f}(x)=x-\left(D f(x)^{T} D f(x)\right)^{-1} D f(x)^{T} f(x) \text { and } \\
& \qquad x_{k+1}=G N_{f}\left(x_{k}\right), \quad k \geq 0 .
\end{aligned}
$$

Consider

$$
\begin{aligned}
& f_{1}=x^{2}+y^{2}+2 x+2 y, \quad f_{2}=x y+x+y, \quad f_{3}=x^{2}+2 x+2 y \\
& f_{4}=x^{2}+2 x-y, \quad f_{5}=y
\end{aligned}
$$

$$
\begin{array}{ll}
e_{1} & =0.22 \\
e_{2} & =0.0088
\end{array}
$$

$$
e_{3}=3 \times 10^{-5}
$$

$$
e_{4}=6 \times 10^{-10}
$$

$$
e_{5}=1.7 \times 10^{-19}
$$

$$
e_{6}=1.4 \times 10^{-38}
$$

$$
e_{7}=1 \times 10^{-76}
$$

Example from Kobayashi-Suzuki-Sakai

$f_{i}=\sum_{k=1}^{9} x_{k}+x_{i}^{2}-2 x_{i}-n+1, \quad i=1: n . w=(1, \ldots, 1)$.
$J(x)=\left(\begin{array}{cccc}2 x_{1}-1 & 1 & \cdots & 1 \\ 1 & 2 x_{2}-1 & \cdots & 1 \\ 1 & 1 & \cdots & 2 x_{n}-1\end{array}\right) \quad J_{w}=(1)_{i, j}$. Hence $\operatorname{rank}(J)=1$.
The Shur complement is $\left(\begin{array}{cccc}2 x_{2}-1 & 1 \\ 1 & 2 x_{3}-1 & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 2 x_{n}-1\end{array}\right)-\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right) \frac{1}{2 x_{1}-1}(1, \ldots, 1)$.
The deflated system is

$$
\left(f_{1}, \ldots, f_{n}, x_{1}-1,\left(2 x_{1}-1\right)\left(2 x_{i}-1\right)-1, i=2: n\right)
$$

Lecerf example

$$
f=\left[\begin{array}{c}
2 x+2 x^{2}+2 y+2 y^{2}+z^{2}-1 \\
(x+y-z-1)^{3}-x^{3} \\
\left(2 x^{3}+2 y^{2}+10 z+5 z^{2}+5\right)^{3}-1000 x^{5}
\end{array}\right]
$$

The multiplicity of the root $(0,0,-1)$ is 18 . The deflated system is :

$$
\begin{aligned}
& x \\
& y \\
& 1+z \\
& y-z-1 \\
& \frac{9}{14} x^{5}+\frac{5}{28}\left(2 x^{3}+2 y^{2}+10 z+5 z^{2}+5\right) x^{2}-\frac{625}{126} x \\
& x+y-z-1 \\
& x+x^{2}+y+y^{2}+1 / 2 z^{2}-1 / 2
\end{aligned}
$$

$f=\left(f_{1}, \ldots f_{m}\right)$ and w a multiple root of f.
Theorem Let $f(w)=0$ and $\nabla f_{1}(w)=0$ such that $\nabla \partial_{i} f_{1}(w) \neq 0$, $i=1: n$. Then

$$
\text { multiplicity }_{w}(f)>\text { multiplicity }_{w}\left(\nabla f_{1}, f\right)
$$

Theorem Let $f(w)=0, \operatorname{rank}(D f(w))<n$ and $\nabla f_{i}(w) \neq 0$, $i=1: n$. Let $S=\{$ numerators of a Schur complement of $\operatorname{Df}(x)\}$. Then multiplicity $_{w}(f)>$ multiplicity $_{w}(f, S)$

Complexity

1- At each step of deflating-kernelling the multiplicity decreases at less by one.
2- The number of steps of deflating-kernelling is bounded by the multiplicity of the root.

