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1. Introduction

First two talks:

Real number complexity with important complexity class NPR

Probabilistically checkable proofs PCPs in Turing model and

PCP theorem to characterize Turing class NP

Today: PCPs in real number complexity
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Example (Quadratic Polynomial Systems QPS)

Input: n,m ∈ N, real polynomials in n variables

p1, . . . , pm ∈ R[x1, . . . , xn] of degree at most 2; each pi depending

on at most 3 variables;

Do the pi ’s have a common real zero?

NPR verification for solvability of system

p1(x) = 0 , . . . , pm(x) = 0

guesses solution y∗ ∈ Rn and plugs it into all pi ’s ; obviously all

components of y∗ have to be inspected
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PCP question makes perfect sense:

Can we stabilize a verification proof, e.g., for QPS, and detect

faults with high probability by inspecting constantly many (real)

components only?

Real verifiers: particular probabilistic BSS machines running in

polynomial time
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Definition (Real verifiers)

r , q : N 7→ N; a real verifier V (r , q) is a polynomial time

probabilistic BSS machine working as follows: V gets as input

vectors x ∈ Rn (the problem instance) and y ∈ Rs (the verification

proof)

i) V generates non-adaptively r(n) random bits;

ii) from x and the r(n) random bits V determines q(n) many

components of y ;

iii) using x , the r(n) random bits and the q(n) components of y

V deterministically produces its result (accept or reject)
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Acceptance condition for a language L ⊆ R∗ :

A real verifier V accepts a language L iff

for all x ∈ L there is a guess y such that

Pr
ρ∈{0,1}r(n)

{V (x , y , ρ) = ’accept’} = 1

for all x 6∈ L and for all y

Pr
ρ∈{0,1}r(n)

{V (x , y , ρ) = ’reject’} ≥ 1

2

Important: probability aspects still refer to discrete probabilities.

Real verifiers as well produce random bits.
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Definition

R,Q function classes.

L ∈ PCPR(R,Q) : L is accepted by a real verifier V (r , q) with

r ∈ R, q ∈ Q

Example

NPR = PCPR(0, poly)

NPR ⊇ PCPR(O(log n),O(1))

PCPR(O(log n), 1): leads to questions about zeros of univariate

polynomials given by straight line program
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Goal: Characterizations of NPR via real number PCPs

Recall the two proofs in Turing model by Arora et al. and Dinur:

both need long transparent proofs for NP, i.e.,

NP ⊆ PCP(poly(n),O(1))

Arora et al. prove existence of short, almost transparent

proofs:

NP ⊆ PCP(O(log n), poly log n)

and use verifier composition to get full PCP theorem

Dinur constructs gap reduction from 3-SAT to 3-SAT

Here: more on first and third item
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2. Long transparent proofs for NPR

Theorem

NPR ⊆ PCPR(O(f (n)),O(1)), where f is superpolynomial

i.e., NPR has long transparent proofs.

Note: Most important wrt application in full PCP theorem is

structure of the long transparent proofs (more than parameter

values)

As by-product proof gives generalization of results by Rubinfeld &

Sudan on self-testing and -correcting linear functions on finite

subsets of Rn: property testing
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Problem setting; new difficulties

Sufficient: produce (O(f (n)),O(1))-verifier for NPR-complete

problem; we take QPS;

what to use as more stable verification?

Consider QPS input p1, . . . , pm, guess y ∈ Rn; for r ∈ {0, 1}m

define
P(y , r) :=

m∑
i=1

pi (y) · ri

Observations:

if a ∈ Rn is a zero, then P(a, r) = 0 ∀ r ;

if a ∈ Rn is no zero, then Pr
r

[P(a, r) > 0] ≥ 1
2
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Minor technical difference to classical setting: structure of P

Important: Separate dependence of P on guessed zero a from that

on real coefficients of pi ’s

Lemma

There are real linear functions A,B of n, n2 variables, respectively,

depending on a only, as well as linear functions

LA, LB : {0, 1}m 7→ Rn,Rn2
and C : {0, 1}m 7→ R

such that

P(a, r) = C (r) + A ◦ LA(r) + B ◦ LB(r)

Moreover, LA, LB and C depend on the coefficients of the pi ’s.
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More precisely: A,B depend on a guessed zero a ∈ Rn as follows:

A : Rn 7→ R,A(w1, . . . ,wn) =
n∑

i=1
ai · wi

B : Rn2 7→ R,B(w11, . . . ,wnn) =
n∑

i=1

n∑
j=1

ai · aj · wij

Important: In order to evaluate

P(a, r) = C (r) + A ◦ LA(r) + B ◦ LB(r)

one needs to know only two values, one for A and one for B.
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Example

p1(a) = π + 1 · a1 + 2 · a2, p2(a) = 3 · a1a3−1 · a2
4,

p3(a) = 1 + πa1 + 7a2a3

P(a, r) :=
3∑

i=1
pi · ri = πr1 + 1 · r3+

+a1 · (1 · r1 + πr3) + a2 · 2r1+

+a1a3 · 3r2 + a2
4 · 1 · r2 + a2 · a3 · 7r3

results in

C (r) = (π, 0, 1) ·


r1

r2

r3

 , LA(r) =


1 0 π

2 0 0

0 0 0

0 0 0

 ·


r1

r2

r3


Similarly for LB !
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Idea to stabilize verification proofs (classical):

Instead of potential zero a guess function tables for A,B

Then probabilistically check that with high probability

functions are linear (linearity test)

functions do result from the same a (consistency test)

this a is a zero (satisfiability test)

Klaus Meer Brandenburg University of Technology, Cottbus, Germany
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Problems with this idea

Main problems occur because of new domains to be considered:

Turing model:

domains where to guess

function values obvious: Zn
2

each evaluation like

A(a + b) , a, b ∈ Zn
2 remains

in Zn
2;

BSS model:

domains for A,B not obvi-

ous: LA, LB give real val-

ues for each r ∈ Zn
2 (and

different ones for each new

input); evaluations like A ◦

LA(r1 + r2) once more en-

large domain

Klaus Meer Brandenburg University of Technology, Cottbus, Germany
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uniform distribution over Zn
2

invariant under shifts;

uniform distribution on po-

tential domains far from in-

variant, domains not even

closed under shifting;

no constants beside 0, 1 arbitrary reals as constants,

so linearity check also re-

quires A(λ · x) = λ · A(x).

Again: what domain for λ’s?

Klaus Meer Brandenburg University of Technology, Cottbus, Germany
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Sketch of what verifier will do:

i) Expect verification proof to contain function tables for A,B

on appropriate domains; tables will have an double

exponential size

ii) Check: both functions linear on their domains with high

probability;

iii) Check: both functions arise from same a ∈ Rn with high

probability;

iv) Check: a is a zero of input polynomials with high probability.
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Appropriate domain for map A (I)

Outline of construction:

test domain: X1, proof should provide A(x) for all x ∈ X1 ⊕X1

safe domain: X0 ⊂ X1 and Λ; if all tests succeed function A is

almost surely linear on X0 with scalar factors from Λ

Goal for defining domains: obtain as far as possible shift-invariance

for fixed x ∈ X0 it is Pr
y∈X1

(x + y ∈ X1) ≥ 1− ε

for fixed λ ∈ Λ it is Pr
y∈X1

(λy ∈ X1) ≥ 1− ε

Clear: X0 must contain LA(Zm
2 )
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Appropriate domain for map A (II)

Λ := {λ1, . . . , λK} ⊂ R multiset of entries in LA,K := O(n)

(w.l.o.g. m = O(n)) and as safe domain

X0 := {
∑K

i=1 si · λi | si ∈ {0, 1}}n.

Then

- Zn
2 ⊆ X0 (i.e., a basis of Rn) and

- LA(Zm
2 ) ⊆ X0

Klaus Meer Brandenburg University of Technology, Cottbus, Germany
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Appropriate domain for map A (III)

The test domain then is

X1 :=

 1

α

∑
β∈M+

sβ · β | sβ ∈ {0, . . . , n3}, α ∈ M


n

,

where M := {
∏K

i=1 λ
ti
i |ti ∈ {0, . . . , n2}}, and

M+ := {
∏K

i=1 λ
ti
i |ti ∈ {0, . . . , n2 + 1}}

Lemma

X1 is almost invariant under additive shifts with fixed x ∈ X0 and

multiplicative shifts with fixed λ ∈ Λ. It has doubly exponential

cardinality in n.
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Testing linearity

Test Linearity

Choose k ∈ N large enough; perform k rounds of the following:

uniformly and independently choose random x , y from X1 and

random α, β from M;

check if A(x + y) = 1
αA(αx) + 1

βA(βy)?

If all k checks were correct accept, otherwise reject.

In k rounds linearity test requires to read 3k proof components.
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Theorem

If A passes k rounds of linearity test for large enough k, then there

is a function fA such that

a) fA is defined via

fA(x) := majorityy∈X1,α∈M
1

α
· (A(α(x + y))− A(αx))}

and is linear on X0 wrt scalars from Λ;

b) fA is the unique linear function close to A, i.e., both differ in at

most a given arbitarily small fraction 0 < ε < 1
2 of points from X1;

c) A can be self-corrected, i.e., for any x ∈ X0 the correct value

fA(x) can be computed with high probability from finitely many

entries in the table for A.
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Consistency, solvability

Do the above as well for function table B and fB ;

suppose both functions are linear with high probability, then:

Check consistency, i.e., whether fA, fB result from a single

assignment a; uses self-correction and easy test to check

whether coefficient vector {bij} of fB satisfies bij = ai · aj ;

check solvability: see beginning of talk
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Theorem (Existence of long transparent proofs)

NPR ⊆ PCPR(f (n),O(1)), where f = nO(n).

The same holds for BSS model over complex numbers.

Proof.

Tests use constantly many values stored in doubly exponentially

large tables.

All arguments the same over C.

IMPORTANT: The theorem is applied in the full PCP theorem in a

situation where n is constant; so size of f (n) does not matter;

more crucial: structure of verification proof!

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number PCPs



Introduction Long transparent proofs The real PCP theorem

Theorem (Existence of long transparent proofs)

NPR ⊆ PCPR(f (n),O(1)), where f = nO(n).

The same holds for BSS model over complex numbers.

Proof.

Tests use constantly many values stored in doubly exponentially

large tables.

All arguments the same over C.

IMPORTANT: The theorem is applied in the full PCP theorem in a

situation where n is constant; so size of f (n) does not matter;

more crucial: structure of verification proof!

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number PCPs



Introduction Long transparent proofs The real PCP theorem

3. The PCP theorem over R

Goal: Adaption of Dinur’s proof to show real PCP theorem

Changed viewpoint of QPS problem

QPS(m, k, q, s): system with m constraints, each consisting of k

polynomial equations of degree 2; polynomials depend on at most

q variable arrays having s components, i.e., ranging over Rs

Example

Way we considered QPS instances so far, i.e., m single equations

of quadratic polynomials, each with at most 3 variables, can be

changed easily to
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Example (cntd.)

QPS(m, 1, 3, 1)-instances: each constraint is single equation, arrays

are single variables (dimension 1), at most 3 arrays per constraint

or as

QPS(m̃, 1, 2, 3)-instances: arrays have dimension 3, original

constraints depend on 1 such array, consistency between

components expressed in further constraints depending on 2 arrays.

Below we always try to work with q = 2 arrays per constraint in

order to define constraint graphs between arrays: edge between

two arrays represents constraint depending on those arrays.
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Example

p1(x1, x2, x3) = 0, p2(x2, x3, x4) = 0, p3(x4, x5) = 0

Variable arrays of dimension 3:

χ(1) = (z1, z2, z3), χ(2) = (z4, z5, z6), χ(3) = (z7, z8)

Old constraints depending on a single array:

p1(χ(1)) = 0, p2(χ(2)) = 0, p3(χ(3)) = 0

Consistency constraints depending on two arrays:

z2 − z4 = 0

z3 − z5 = 0

 consistency constraint for (χ(1), χ(2))

z6 − z7 = 0 consistency constraint for (χ(2), χ(3))
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Crucial: gap-reduction between QPS-instances, i.e., polynomial

time transformation of QPS(m, k , q, s)-instance φ into

QPS(m′, k ′, q, s)-instance ψ such that:

- if φ is satisfiable so is ψ ;

- if φ is unsatisfiable, then at least a fraction of ε > 0

constraints in ψ is violated by each assignment.

Here ε is fixed constant
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Proposition

If a gap-reduction exists, then NPR = PCPR(O(log n),O(1)).

Proof.

Verifier for instance φ computes reduction result ψ and expects

proof to provide satisfying assignment for ψ. Randomly choose a

constraint in ψ and evaluate. If φ is unsatisfiable the chosen

constraint is violated with probability ≥ ε. Verifier reads qs proof

components. Finitely many repetitions increase probability

sufficiently. �
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Thus the goal is to design a gap-reduction as follows:

1. Preprocessing puts QPS-instances into highly structured form;

constraints depend on q = 2 many arrays of fixed dimension s

and constraint graph is particular d-regular expander graph

2. Amplification step increases unsatisfiability ratio of an

instance by a constant factor > 1;

disadvantage: parameters

q, s get too large if applied several times, i.e., query

complexity too large;

3. Dimension reduction scales parameters q and s down again at

price of small lost in unsatisfiability ratio.
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Step 1: Preprocessing, technical, no major difficulties

Step 2: Amplification, similar to Dinur, minor changes necessary

Basic idea is to transform QPS(m, k , 2, s)-instance to new one

such that violated constraints in old instance occur in significantly

more constraints of new instance and violate it;

this is achieved using random walks of constant length t on

constraint graph; new constraints are made of paths in old graph;

due to expander structure violated constraints = edges occur in

many paths.
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x(i)

Old constraint graph and variable arrays x (i) ∈ Rs
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x(i)

y
y'

New constraint for each path of length 2t, t constant;

new variable arrays y ∈ Rs(t) with s(t) ≤ d t+
√

t+1 · s
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x(i)

y
y'

New arrays y claim values on old arrays in t-neighborhood
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x(i)

y
y'

similarly for y ′
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Theorem

There exists a polynomial time algorithm that maps a

(preprocessed) QPS(m, k, 2, s) instance ψ to a

QPS(d2tm, 2
√

tk + (2
√

t + 1)s, 2, d t+
√

t+1s)-instance ψt and has

the following properties:

If ψ is satisfiable, then ψt is satisfiable.

If ψ is not satisfiable and UNSAT(ψ) < 1
d
√

t
, then

UNSAT(ψt) ≥
√

t
3520d · UNSAT(ψ).

We choose t, d such that
√

t
3520d ≥ 2.
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Note: if initially ψ has m constraints, then UNSAT (ψ) ≥ 1
m ,

thus O(log m) rounds of amplification increase gap to a constant.

Why not done?

Problem: array size will not be constant any longer, and so will

either query complexity
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Step 3: Dimension reduction

use long transparent proofs for NPR to reduce array dimension

while not decreasing gap too much;

consider constraint C in instance ψt obtained after amplification;

C depends on two arrays u, v ∈ Rs(t); checking whether C is

satisfied by concrete assignment for (u, v) can be expressed by

algebraic circuit of size poly(s(t)), i.e., constant size

use long transparent proofs to replace C by

QPS(m̂(t),K ,Q, 1)-instance, where K is constant and Q is the

constant query complexity of a long transparent proof
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Transformation works as follows:

new constraints express what verifier expects from long transparent

proof to show that circuit for C accepts assignment (u, v);

this gives correct result with high probability and needs only Q

components to be read instead of poly(s(t)) many.

Problem: Same variables in different constraints must get

consistent assignment

Solution: Structure of long transparent proofs also guarantees this

to be expressible via QPS(m̂(t),K ,Q, 1)-instances

Reduction in gap factor is harmless!

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number PCPs



Introduction Long transparent proofs The real PCP theorem

Transformation works as follows:

new constraints express what verifier expects from long transparent

proof to show that circuit for C accepts assignment (u, v);

this gives correct result with high probability and needs only Q

components to be read instead of poly(s(t)) many.

Problem: Same variables in different constraints must get

consistent assignment

Solution: Structure of long transparent proofs also guarantees this

to be expressible via QPS(m̂(t),K ,Q, 1)-instances

Reduction in gap factor is harmless!

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number PCPs



Introduction Long transparent proofs The real PCP theorem

Transformation works as follows:

new constraints express what verifier expects from long transparent

proof to show that circuit for C accepts assignment (u, v);

this gives correct result with high probability and needs only Q

components to be read instead of poly(s(t)) many.

Problem: Same variables in different constraints must get

consistent assignment

Solution: Structure of long transparent proofs also guarantees this

to be expressible via QPS(m̂(t),K ,Q, 1)-instances

Reduction in gap factor is harmless!

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number PCPs



Introduction Long transparent proofs The real PCP theorem

Transformation works as follows:

new constraints express what verifier expects from long transparent

proof to show that circuit for C accepts assignment (u, v);

this gives correct result with high probability and needs only Q

components to be read instead of poly(s(t)) many.

Problem: Same variables in different constraints must get

consistent assignment

Solution: Structure of long transparent proofs also guarantees this

to be expressible via QPS(m̂(t),K ,Q, 1)-instances

Reduction in gap factor is harmless!

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number PCPs



Introduction Long transparent proofs The real PCP theorem

Transformation works as follows:

new constraints express what verifier expects from long transparent

proof to show that circuit for C accepts assignment (u, v);

this gives correct result with high probability and needs only Q

components to be read instead of poly(s(t)) many.

Problem: Same variables in different constraints must get

consistent assignment

Solution: Structure of long transparent proofs also guarantees this

to be expressible via QPS(m̂(t),K ,Q, 1)-instances

Reduction in gap factor is harmless!

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number PCPs



Introduction Long transparent proofs The real PCP theorem

Theorem (Baartse & M.)

The PCP theorem holds for the real Blum-Shub-Smale model, i.e.,

NPR = PCPR(O(log n),O(1))

The same is true for the complex BSS model:

NPC = PCPC(O(log n),O(1))
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Final remarks

Theorem implies non-approximability result for following

optimization problem:

Given a system of polynomial equations over R, find the maximum

number of equations that commonly can be satisfied.

Existence of gap-reduction implies:

Unless PR = NPR there is no polynomial time algorithm (in the

system’s size) which, given the system and an ε > 0, approximates

the above maximum within a factor 1 + ε.
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Can the PCP theorem be proved along the lines of the first

classical proof by Arora et al?

Currently not clear; a weaker version can be shown using

low-degree polynomials as coding objects

Theorem (M.)

NPR = PCPR(O(log n), poly log n)

Classical proof constructs final verifier by composing long

transparent proofs with low-degree proofs; needs better structure

than the one sufficient to show above theorem; existence over R

unclear.
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Thanks for your audience and

thanks again to L.M. Pardo and P. Montaña!
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