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1. Introduction

Suppose you work at a university and have to grade a Master’s

thesis; you know the student is bad and you do not want to read

the entire text in order to prove it.

However, you have to write a report which should not state there

are faults if everything is correct.

Question: Can you read only a very small fraction (less than one

page) of the thesis and nevertheless be almost sure to detect a

fault?

Yes, if thesis is written according to the PCP-theorem

(and for some students also without it ...)
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Probabilistically Checkable Proofs give a new surprising

characterization of class NP

One of the most important results in Theoretical Computer

Science in last 20 years

important as well for questions about approximation algorithms

Arora & Safra 1992 / 1998

Arora & Lund & Motwani & Sudan & Szegedy 1992 / 1998

Dinur 2005
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Example (NP-verification for NP-complete problem 3-SAT)

Given φ(x1, . . . , xn) = C1 ∧ . . . ∧ Cm formula in Conjunctive

Normal Form, each Ci with at most 3 literals, is there a satisfying

assignment y ∈ {0, 1}n for φ? (Ci = x1 ∨ x̄2 ∨ x4)

NP-verification algorithm requires

polynomial running time in size(φ) on input (φ, y)

for each satisfiable φ there is a guess y∗ such that algorithm

accepts (φ, y∗)

for all unsatisfiable φ and all guesses y algorithm rejects

Easy: Guess assignment y∗, check by plugging into φ
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Central for above verification: the algorithm has to inspect all

components of the potential satisfying assignment.

Can we design other verification algorithms that have to inspect

less many parts of a potential proof, may be paying something for

it?

Surprising result: Less many above turns out to be constantly

many only; we pay by including randomization, i.e., false proofs

might be accepted with very small probability.

Proofs must code assignments completely differently
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Example

Suppose as part of a verification proof you want to check whether

two vectors a, b ∈ {0, 1}n are the same.

It is up to you how information about a, b is coded in your proof

(this scenario at the moment sounds a bit strange, but reoccurs

later on)

1. Easy way: Write down a, b and compare componentwise;

each component has to be read

2. A bit more tricky: Expect proof to contain all results at · r and

bt · r ; pick randomly an r ∈ {0, 1}n and read only the two

corresponding results in your proof.
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Example (cntd.)

With probability 1
2 test detects if a 6= b.

This probability can be made arbitrarily small by constantly many

repetitions, i.e., still reading constantly many components only.

Disadvantage: Table of values the proof expects is exponentially

large
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2. Verifiers and PCP classes

Let r , q : N 7→ N be integer (resource) functions

An (r(n), q(n))-verifier V is a polynomial time randomized Turing

machine that works in three phases on an input x of size n and a

potential proof y for showing that x has a desired property:

Phase 1 generate r(n) random bits

Phase 2 use x and the random bits to determine q(n) many

positions in y which the verifier wants to inspect

Phase 3 use x , the r(n) random bits and the q(n) chosen

components from y to compute V (x , y , r) ∈ {0, 1}
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r(n) measures amount of randomness used

q(n) measures number of proof components to be seen

Note: Only Phase 1 is randomized, rest is deterministic

Example

(0, poly(n))-verifiers work like NP-verification algorithms.

Question: Which language does a verifier accept?
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Definition

a) Let V be an (r , q)-verifier. V accepts a language L if the

following holds:

i) For all x ∈ L there is a y such that Prr (V (x , y , r) = 1) = 1;

there is a proof which the verifier accepts with probability 1.

ii) For all x 6∈ L and for all y it is Prr (V (x , y , r) = 1) ≤ 1
4 ; the

verifier accepts a false proof with probability at most 1
4 .

b) Let F ,G be function classes; a language L belongs to class

PCP(F ,G) if there is a (r , q)-verifier accepting L where

r ∈ F , q ∈ G.
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Remark

The bound 1
4 is arbitrarily chosen.

The definition says nothing about wrong proofs if x ∈ L;

this

makes sense since such a proof could be false in a single position

only. Below the goal is to rewrite proofs such that errors in false

proofs in case x 6∈ L will spread all over the proof.
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Example

1. PCP(0,poly) = NP

2. PCP(poly,0) =

co-RP

3. PCP(log n, 1) = P ; for “⊆” simulate verifier on all random

choices; for each component yi it wants to see check which

value of yi would cause V to accept the input; this determines

a potential proof (if there is any)

4. PCP(log n, 2) = P ; similarly: simulating V on all random

choices leads to a 2-SAT formula determining a potential

proof; reading 3 components likely leaves P.
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3. The PCP theorem

Theorem (PCP theorem)

PCP(O(log n),O(1)) = NP

Proof.

Easy part ⊆: Let V be (O(log n), q)-verifier for L, x an instance.

An NP verification for L works as follows: Guess proof y and

simulate V deterministically for all (polynomially many) random

strings r . Accept iff all these results V (x , y , r) = 1.

If x ∈ L and y is the correct proof for V it is as well correct for

above NP verification; if x 6∈ L then for each y and 3
4 of the strings

r V rejects and so does the NP verification. Thus L ∈ NP.
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The inclusion NP ⊆ PCP(O(log n),O(1)) is the hard part to prove

Note: PCP(O(log n),O(1)) closed under polynomial time

reductions; thus sufficient to show that a fixed NP-complete

problem has an (O(log n),O(1))-verifier; consider 3-SAT

Steps towards the proof by Arora et al.:
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Step 1: Show existence of long transparent proofs for 3-SAT:

Theorem

3-SAT ∈ PCP(O(n2),O(1))

A satisfying assignment a of a given formula φ is coded as follows:

i) arithmetization of formula together with randomization leads

to polynomial Pr of degree 2 such that

- if a ∈ {0, 1}n satisfies φ, then Pr (a) = 0

- if a is not satisfying, then Pr (a) = 0 only with small probability

w.r.t. r
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ii) Pr can be decomposed as

Pr (a) = f0(r) + Aa(f1(r)) + Ba(f2(r))

where Aa : {0, 1}n 7→ {0, 1},Ba : {0, 1}n2 7→ {0, 1} are linear

functions canonically attached to a and

the fi (r) can be

computed efficiently from r .

Thus evaluating Pr (a) for given r requires only to look up one

function value of Aa and Ba

The proof the verifier expects thus contains the function

values of Aa and Ba; it has exponential size.
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Introduced new difficulties to be circumvented:

1. Does a table of function values correspond to an almost linear

function:

(self-)testing linear functions

2. If yes, how can we compute the correct values if table

contains small errors:

(self-)correcting linear functions

3. Even if the tables for Aa and Ba represent linear functions are

they coming from the same a:

consistency
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Step 2: Existence of short almost transparent proofs for 3-SAT:

Theorem

3-SAT ∈ PCP(O(log n),O(polylog(n)))

For the proof a satisfying assignment is coded via a low-degree

polynomial

Develop similar - though much harder - techniques for self-testing

and self-correcting such polynomials
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Step 3: Instead of constructing better and better verifiers the final

step uses a composition of the verifiers obtained in Steps 1 and 2

to obtain the one proving the PCP theorem.
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4. PCPs and Approximation

Area of approximation algorithms tries to classify NP-hard

optimization problems according to how well optimal solutions can

be approximated; recall non-approximability of minimal

multi-homogeneous Bézout number from previous lecture!

Example (MAX-3-SAT)

Input: m clauses C1,C2, . . . ,Cm each with at most 3 literals over

variables x1, . . . , xn

Goal: Compute the maximal number of clauses that can be

satisfied in common

Clear: computing exact maximum is NP-hard
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multi-homogeneous Bézout number from previous lecture!

Example (MAX-3-SAT)

Input: m clauses C1,C2, . . . ,Cm each with at most 3 literals over

variables x1, . . . , xn

Goal: Compute the maximal number of clauses that can be

satisfied in common

Clear: computing exact maximum is NP-hard

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

The PCP theorem



Introduction Verifiers and PCP classes The PCP theorem PCPs and Approximation Dinur’s proof

Example (cntd.)

Can we efficiently approximate the maximum up to a given

constant factor including a corresponding assignment?

Easy for factor 2: For each xi count in how many clauses xi and in

how many x̄i occur; choose x∗i ’s value according to majority; then

x∗ satisfies at least m
2 many clauses, i.e.,

optimal value

Algorithm’s result
≤ 2
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Example (cntd.)

Question: Can we reduce the error arbitrarily, i.e., is there an

algorithm which given φ and ε > 0 computes an assignment with

relative error ≤ 1 + ε ?

Running time polynomial in size(φ), arbitrary in ε−1;

defines complexity class PTAS

The question whether MAX-3-SAT ∈ PTAS could only be

answered after the PCP-theorem was proven
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GAP-technique: method to show that certain approximation

problems do not belong to PTAS unless P 6= NP

GAP creating reduction: reduce efficiently instance φ for 3-SAT

decision problem to instance ψ(φ) for MAX-3-SAT such that

if φ is satisfiable, then all clauses ψ(φ) are satisfiable in

common

if φ is not satisfiable, then at most 1− c of the clauses of

ψ(φ) are commonly satisfiable, where 0 < c < 1 is a constant

independent of φ.
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Relation to non-existence of PTAS algorithms:

Lemma

Suppose a GAP creating reduction from 3-SAT to MAX-3-SAT

exists, then MAX-3-SAT 6∈ PTAS unless P = NP.

Proof.

Suppose A is a PTAS algorithm for MAX-3-SAT; given instance φ

for 3-SAT we can decide satisfiability efficiently as follows:

compute the reduction and apply A to the resulting MAX-3-SAT

instance ψ(φ) and ε sufficiently small such that (1− c) · (1 + ε) < 1

Now approximating ψ(φ) within relative error ≤ 1 + ε results in

deciding satisfiability of φ.
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However so far unclear whether such a gap creating reduction exists

Theorem (Arora, Motwani, Safra, Sudan, Szegedy ’92)

The PCP theorem is equivalent to the existence of a gap creating

reduction from 3-SAT to MAX-3-SAT.

Proof.

“if-part”: Suppose the reduction ψ exists; construct an

(O(log n),O(1))-verifier for 3-SAT: Given 3-SAT formula φ the

verifier V first computes 3-SAT formula ψ(φ); V expects as proof

a satisfying assignment for ψ(φ); it randomly guesses one of the

clauses in ψ(φ); there are polynomially many in size(φ), thus

O(log size(φ)) random bits are needed;
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Proof (cntd.)

V then verifies by reading 3 bits from the given proof whether it

satisfies the chosen clause;

if φ is satisfiable so is ψ(φ) and V accepts a satisfying assignment

as proof with probability 1;

if φ is not satisfiable, then V chooses only with probability < 1− c

a clause that is satisfied by the given assignment; repeating the

procedure constantly many times this probability can be reduced to

< 1
4 .
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Proof.

“only-if part”: Let V be a (c · log n, q)-verifier for 3-SAT, q a

constant, φ a 3-SAT instance. We show how to obtain a gap

creating reduction to MAX-3-SAT

Step 0: The verifier has at most nc different runs and wants to

inspect at most N := q · nc components of a proof. Let y1, . . . , yN

be Boolean variables. An assignment to them corresponds to a

proof.

Step 1: For random string ρ define Aρ ⊆ {0, 1}q as those w such

that V rejects (φ, y , ρ) if the components read from y constitute

w .
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Proof.

all Aρ are efficiently computable and of constant cardinality!

Let C1 ∧ . . . ∧ C|Aρ| be a set of clauses in q variables such that for

each w 6∈ Aρ precisely one Ci is false. Note that number s of

clauses is a constant depending on q only.

Step 2: Next consider for each random string ρ that V generates

the variant C ρ
1 ∧ . . . ∧ C ρ

|Aρ| of clauses, where the variables are

replaced by those q many components of y1, . . . , yN the verifier

wants to see.
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Proof.

Conjunction of all those clauses we obtain by trying all ρ gives a

SAT-formula with s · nc many clauses. If a proof y ∈ {0, 1}nc
is

satisfying for the verifier it satisfies all above clauses;

if not, for at

least 3
4 many choices of ρ at least one among the s clauses in

C ρ
1 ∧ . . . ∧ C ρ

s is not satisfied. This results in a constant fraction of

at least 3
4s many unsatisfied clauses; thus a gap is achieved

Above proof easily extends to obtain a 3-SAT formula by usual

reduction.
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5. Dinur’s proof: Short remark

In 2005 Dinur gave an alternative proof of the PCP theorem

Main idea: construct a gap creating reduction directly for another

problem called Constraint Satisfiability Problem; problem defined

(and needed) over arbitrary finite alphabets.

Starting from a small gap depending on 1
input size a tricky gap

amplification construction is invoked O(log n) times to increase the

gap to be constant.

Amplification increases size of underlying finite alphabets; second

step performs alphabet reduction by using long transparent proofs.
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Today: focus on ideas for first proof of PCP theorem

Next talk: PCPs for real number model, in particular

long transparent proofs for NPR

ideas for proving real PCPR theorem along Dinur’s lines

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

The PCP theorem



Introduction Verifiers and PCP classes The PCP theorem PCPs and Approximation Dinur’s proof

References

1. Arora, Lund, Motwani, Sudan, Szegedy: Proof verification and

intractability of approximation problems. JACM 45: 501–555,

1998

2. Arora, Safra: Probabilistically checkable proofs: a new

characterization of NP. JACM 45: 70–122, 1998

3. Ausiello et al: Approximation Algorihtms. Springer, 1998
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Definition of class RP: there is a randomized polynomial time

machine M which accepts each x ∈ L with probability at least 2
3

and rejects all x 6∈ L.
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