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1. Introduction

Since several years increasing interest in alternative (w.r.t. Turing

machine) models of computation

Typical reasons:

- treatment of different problems

- more appropriate description of algorithmic phenomena which

are hard or impossible to model by Turing machines
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- focus on different aspects of a problem

- hope for new methods/results also for discrete problems

- . . .

Important: Not a single model is the only correct one, but each is

an idealization focussing on particular aspects
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Classical model: Turing - machine: discrete problems, bit

complexity

Alternative models:

real,algebraic models computational geometry , analysis of algo-

rithms in numerics, computer algebra etc.

recursive analysis continuous real functions

neural nets machine learning, optimization

analogue models dynamical systems as algorithms

IBC incomplete information: numerical integration

quantum computers factorization

biology membrane computing etc.
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Example: Motion synthesis in robotics

Many practical problems within computational geometry result in

question, whether a polynomial system is solvable

Here: Design of certain mechanisms in mechanical engineering

Task leads to interesting problems in different computational

models: Turing model, real/complex BSS model, ...
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Example: Protection of pedestrians in traffic
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Problem in kinematics: Design gearing mechanism satisfying

certain demands
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Stephenson gear

Example of a required motion:

Move point P through certain given positions
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Typically leads to problem of solving a polynomial system with real

or complex coefficients

Difficulty: Already few variables and low degrees can result in a

system out of range of current methods!

Homotopy methods: Deform an easy to handle start system into

the target system; then follow numerically the zeros of the start

system into those of the target system
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Zeros of

start system g

Deformation of g into f

Zeros of

target system f

Here: First complete motion synthesis for so called

Stephenson mechanisms

M.& Schmitt & Schreiber, Mechanism and Machine Theory 2002

using PHC-package by Verschelde
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Solvability question for polynomial system interesting from

different viewpoints:

Applications many problems lead to such systems, f.e., in

robotics, non-linear optimization etc.

Mathematics computational (semi-) algebraic geometry

Computer Science fundamental importance in complexity theory

and design of algorithms

Efficiency of homotopy methods relies on existence and number of

zeros (paths)

 Analysis needs more theory
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Intermezzo: Carrying coals to Newcastle ...

Fundamental contributions on homotpy methods by:

Shub & Smale

Beltrán &Pardo

Bürgisser & Cucker

Dedieu, Li, Malajovich, Verschelde, . . .

Here: only one particular aspect related to questions picked up in

later talks
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2. A combinatorial optimization problem

Several (deep) mathematical methods for bounding number of

zeros for polynomial systems f : Cn 7→ Cn :

Bézout number generalizes fundamental theorem of algebra,

easy to compute, too a large bound

Mixed Volumes Minkowski sum of Newton polytopes,

hard to compute, (generically) correct bound

multi-homogeneous partitioning of variables, then Bézout for

Bézout numbers each group; mainly used in practice;

complexity of computing it??
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Example (Eigenpairs)

Find eigenpairs (λ, v) ∈ Cn+1 of M ∈ Cn×n :

M · v − λ · v = 0 , vn − 1 = 0

Has (generically) n solutions, but Bézout number 2n.

Multi-homogeneous Bézout numbers: Group variables as

M · v − λ · v = 0 , vn − 1 = 0

and homogenize w.r.t. both groups

λ0 ·M · v − v · λ = 0 , vn − v0 = 0

Then the number of isolated roots in (C)n is bounded by the

2-homogeneous Bézout number, which here is n.
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Consider n ∈ N, a finite A ⊂ Nn and a polynomial system

f1(z) =
∑

α∈A f1αzα1
1 zα2

2 · · · zαn
n

...

fn(z) =
∑

α∈A fnαzα1
1 zα2

2 · · · zαn
n ,

where the fiα are non-zero complex coefficients.

Thus, all fi have the same support A

A multi-homogeneous structure: partition of {1, . . . , n} into k

subsets

(I1, . . . , Ik) , Ij ⊆ {1, . . . , n}
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Define for each partition (I1, . . . , Ik) :

block of variables related to Ij : Zj = {zi |i ∈ Ij}

corresponding degree of fi with respect to Zj :

dj := max
α∈A

∑
l∈Ij

αl

(the same for all polynomials fi because of same support)
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Definition

a) The multi-hom. Bézout number w.r.t. partition (I1, . . . , Ik) is

the coefficient of
∏k

j=1 ζ
|Ik |
j in the formal polynomial

(d1ζ1 + · · ·+ dkζk)n (if each group not yet homogeneous)

Béz(A, I1, . . . , Ik) =

 n

|I1| |I2| · · · |Ik |

 k∏
j=1

d
|Ij |
j

b) Minimal multi-hom. Bézout number:

min
I partition

Béz(A, I)

Important: minimum is defined purely combinatorially
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Theorem (Malajovich & M., 2005)

a) Given a polynomial system f : Cn → Cn there is no efficient

Turing-algorithm that computes the minimal multi-homogeneous

Bézout number (unless P = NP).

b) The same holds with respect to efficiently approximating the

minimal such number within an arbitrary constant factor.

Proof.

Relate problem to 3-coloring problem for graphs: edges become

binomials, triangles trinomials; mhBn shows a constant gap

between 3-colorable and not 3-colorable graphs; part b)

consequence of multiplicative structure of mhBn.
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In practice: Balance whether additional effort for constructing start

system pays out

alternatively: choose start system by random (Smale & Shub,

Beltrán & Pardo, Bürgisser & Cucker)

Remark.

MHBN important in analysis of central path in interior point

methods (Dedieu & Malajovich & Shub)
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3. Complexity theory over R: Blum & Shub & Smale model

Decision problem: L ⊆ R∗ :=
⋃

n≥1
Rn

Operations: +,−, ∗, :, x ≥ 0?

Size of problem instance: number of reals specifying input

Cost of an algorithm: number of operations

Important: Algorithms are allowed to introduce finite set of

parameters into its calculations:

Machine constants
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Definition (Complexity class PR)

L ∈ PR if efficiently decidable, i.e., number of steps in an algorithm

deciding whether input x ∈ R∗ belongs to L polynomially bounded

in (algebraic) size of input x

Example

Solvability of linear system A · x = b by Gaussian elimination;

Existence of real solution of univariate polynomial f ∈ R[x ]

(Sturm)
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Definition (Complexity class NPR)

L ∈ NPR if efficiently verifiable, i.e., given x ∈ R∗ and potential

membership proof y ∈ R∗, there is an algorithm verifying whether

y proves x ∈ L.

If x ∈ L there must exist such a proof; if x 6∈ L no proof y is

accepted.

The running time is polynomially bounded in (algebraic) size of

input x (and thus, only polynomially bounded y ’s are relevant)
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Example

1.) Quadratic Polynomial Systems QPS (Hilbert Nullstellensatz):

Input: n,m ∈ N, real polynomials in n variables

p1, . . . , pm ∈ R[x1, . . . , xn] of degree at most 2; each pi depending

on at most 3 variables;

Do the pi ’s have a common real root?

NPR-verification for solvability of system

p1(x) = 0 , . . . , pm(x) = 0

guesses solution y∗ ∈ Rn and plugs it into all pi ’s ; obviously all

components of y∗ have to be seen
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Example (cntd.)

2. Mathematical Programming

Input: polynomial f ∈ R[x1, . . . , xn] as objective function,

linear constraints Ax ≤ b where A ∈ Rm×n, b ∈ Rm

Is Min{f (x)|x ∈ Rn,Ax ≤ b} ≤ 0 ?

f linear/quadratic leads to Linear/Quadratic Programming

NPR-verification: guess feasible point y in Rn, check feasibility and

evaluate objective function

Complexity in Turing model: LP ∈ P ; QP is NP-complete

Complexity in BSS model: unknown

Conjectures: LP 6∈ PR ; QP not NPR-complete (M. ’94)
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Definition (NPR-completeness)

L is NPR-complete if each problem A in NPR can be reduced in

polynomial time to L, i.e., instead of deciding whether x ∈ A one

can decide whether f (x) ∈ L, where f can be computed in

polynomial time in sizeR(x).

Complete problems have universal complexity within NPR

Main open problem: Is PR = NPR ?

Equivalent: Are there NPR-complete problems in PR?

Remark.

Similar definitions for structures like C (with =? test), groups,

vector spaces, ...
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Theorem (Blum-Shub-Smale ’89)

a) The Hilbert-Nullstellensatz problem QPSR is NPR-complete.

Considered as problem QPSC over C it is NPC-complete.

b) The real Halting problem HR is undecidable in the BSS

model: Given a machine M (as codeword in R∗) together with

input x ∈ R∗, does M halt on x?

c) Other undecidable problems: Q inside R, the Mandelbrot set

as subset of R2

Both HR and Q are semi-decidable, i.e., there is a BSS algorithm

that halts precisely on inputs from these sets.
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Theorem

All problems in NPR are decidable in simple exponential time;

similarly for NPC.

Proof.

Difficulty: uncountable search space; requires quantifier elimination

algorithms for real/algebraically closed fields

Long history starting with Tarski; fundamental contributions by

Collins, Heintz et al., Grigoriev & Vorobjov, Renegar, Basu &

Pollack & Roy, . . .

Effective Hilbert Nullstellensatz: Giusti & Heintz, Pardo, . . .
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Some related questions treated below:

1. Structural complexity theory in different settings, transfer

results for P=NP? question

2. Structure inside NP: Are there non-complete problems

between P and NP?

3. Recursion theory: Undecidable problems, degrees of

undecidability

(with focus on own research!)
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4. P versus NP in different settings

Since P versus NP is major question in above (and further) models

as well it is natural to ask, how these (and further) questions relate

in different models, in particular:

how is classical Turing complexity theory related to results over

R,C, . . . ?

Transfer Results
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Theorem (Blum & Cucker & Shub& Smale 1996)

For all algebraically closed fields of characteristic 0 the P versus

NP question has the same answer.

Proof.

Main idea is to eliminate complex machine constants in algorithms

for problems that can be defined without such constants;

the NPC-complete problem QPS has this property;

price to pay for elimination only polynomial slowdown

Technique: Some algebraic number theory
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Elimination of machine constants important technique for several

transfer results;

alternative proof by Koiran does it applying again Quantifier

Elimination:

algebraic constants are coded via minimal polynomials

transcendental constants satisfy no algebraic equality test in

algorithm, so each test is answered the same in a

neighborhood of such a constant; using results from complex

QE shows that there is a small rational point in such a

neighborhood which can replace the transcendental constant
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Relation between complex BSS model and randomized Turing

algorithms through class BPP of discrete problems that can be

decided with small two-sided error in polynomial time

Theorem (Smale, Koiran)

Suppose PC = NPC, then NP ⊆ BPP.

Proof.

Extract from PC algorithm for QPSC a randomized algorithm for

NP-complete variant of QPS; replacement of complex constants by

randomly choosing small rational constants from a suitable set

which with high probability contains rationals that behave the

same as original constants.

Note: Inclusion NP ⊆ BPP considered highly unlikely!
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Both above results not known for real algorithms; first deeper

relation between real and Turing algorithms via additive real BSS

machines, i.e., algorithms that only perform +,− and tests x ≥ 0;

here: no non-rational machine constants

Theorem (Fournier & Koiran 1998)

P = NP (Turing) ⇔ Padd
R = NPadd

R (additive model)

Proof.

Replacement of machine constants using deep result on point

location in hyperplane arrangements by Meyer auf der Heide
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Remark.

1. Similar results when allowing real machine constants, but

introduces non-uniformity into Turing results.

2. In additive model with equality tests only, P and NP are

provably different (M.’95)

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number Complexity Theory



Introduction A combinatorial optimization problem Complexity theory over R P versus NP in different settings Inside NPR Recursion theory over R

5. Inside NPR

Classical result in Turing complexity/recursion theory:

Theorem (Ladner 1975)

If P 6= NP there are non-complete problems in NP \ P.

Proof.

Key point is diagonalization against family {P1,P2, . . .} of

P-machines and family {R1,R2, . . .} of poly-time reductions;

both algorithm-classes are countable in Turing model;
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Proof (cntd.)

given NP-complete L construct L̃ ∈ NP s.t. one after the other

Pi fails to decide L̃ and Ri fails to reduce L to L̃;

L̃ constructed dimensionwise: find effectively error dimensions for

each Pi ,Ri ;

rest a folklore padding argument to force L̃ into NP

Computational models over R,C: set of algorithms uncountable

thus, direct transformation of above construction fails
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Theorem (Malajovich & M. 1995)

If PC 6= NPC there are non-complete problems in NPC \ PC.

Proof.

Efficient elimination of complex machine constants allows to

reduce problem to the algebraic closure Q̄ of Q in C, i.e., to a

countable setting; then adapt Ladner’s proof
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’Elimination-of-constants’ result is not known for R, so what can

be done?

Central complexity class for investigations: PR/const (Michaux)

PR/const allows diagonalization technique in uncountable settings

idea: consider discrete skeleton of real/complex algorithms,

split real/complex constants from skeleton

 basic machine: M︸︷︷︸
skeleton

( x︸︷︷︸
input

, c︸︷︷︸
machine
constants

)
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L ∈ PR/const ⇔ there is a skeleton M using k constants such

that

for each input dimension n there is a choice c(n) ∈ Rk such

that M(•, c(n)) decides L upto dimension n in polynomial time.

Important:

skeleton is used uniformly, machine constants non-uniformly,

PR/const is a restricted version of non-uniform class PR/poly ;

set of basic machines countable!

Similar for other models: PC/const,Padd
R /const,Prc

R /const
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Theorem (Ben-David & M. & Michaux 2000)

If NPR 6⊆ PR/const there exist problems in NPR \ PR/const which

are not NPR-complete under PR/const reductions.

Proof.

Construct again diagonal problem L̃ along Ladner’s line;

fool step by step all basic decision / reduction machines;

fooling dimensions computed via quantifier elimination: for each n

and basic machine M it is first order expressible whether M with

some choice of constants decides problem upto dimension n.
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Thus central: analysis of P/const in different models;

here notions from model theory enter

Theorem (Michaux; Ben-David & Michaux & M.)

For every ω-saturated structure it is P = P/const.

ω-saturation roughly means: given countable family φn(c) of

first-order formulas such that each finite subset is commonly

satisfiable, then the entire family is satisfiable.

R is not ω-saturated: φn(c) ≡ c ≥ n
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What is known about P/const in different models:

Turing: P = P/const thus Ladner holds

BSS over C : PC = PC/const thus Ladner holds

BSS over R : highly unlikely that PR = PR/const

Chapuis & Koiran

additive BSS over R : Padd
R = Padd

R /const thus Ladner holds

Chapuis & Koiran

real BSS with restricted use of constants Ladner holds

M. 2012
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Restricted BSS model:

restricted use of machine constants:

input variables can be used arbitrarily; all intermediate results

depend linearly on machine constants (thus no multiplication

between machine constants)

 classes Prc
R , NPrc

R , Prc
R /const

Theorem

QPS is NPrc
R -complete (under Prc

R -reductions)

thus: restricted model closer to full BSS model than

linear/additive models  motivation for studying it!
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Theorem (M. 2012)

Ladner’s theorem holds in the real BSS model with restricted use

of constants.

Proof.

Main step is to prove equality Prc
R = Prc

R /const; proof relies on a

limit argument in affine geometry that allows elimination of

non-uniform machine constants by uniform ones

Problem: Can ideas be somehow used to prove Ladner in full real

BSS model?
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6. Recursion theory over R

Blum-Shub-Smale: Real Halting problem is BSS undecidable

HR := {code of BSS machine M that halts on empty input}

further undecidable problems:

Q, i.e., given x ∈ R, is x rational? Problem is semi-decidable:

there is an algorithms which stops exactly for inputs from Q;

graphs of sin and exp functions

Mandelbrot and certain Julia sets

...

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number Complexity Theory



Introduction A combinatorial optimization problem Complexity theory over R P versus NP in different settings Inside NPR Recursion theory over R

6. Recursion theory over R

Blum-Shub-Smale: Real Halting problem is BSS undecidable

HR := {code of BSS machine M that halts on empty input}

further undecidable problems:

Q, i.e., given x ∈ R, is x rational? Problem is semi-decidable:

there is an algorithms which stops exactly for inputs from Q;

graphs of sin and exp functions

Mandelbrot and certain Julia sets

...

Klaus Meer Brandenburg University of Technology, Cottbus, Germany

Real Number Complexity Theory



Introduction A combinatorial optimization problem Complexity theory over R P versus NP in different settings Inside NPR Recursion theory over R

Typical related questions:

degrees of undecidability

Post’s problem: are there problems easier than HR yet

undecidable?

find other natural undecidable problems equivalent to HR

Formalization of comparing problems via oracle machines:

A is Turing reducible to B iff A can be decided by a BSS machine

that additionally has access to an oracle for membership in B.

A equivalent to B iff both are Turing reducible to each other
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Real Post’s problem: Are there problems Turing reducible to HR

that are not Turing reducible from HR but yet undecidable?

Turing setting: question posted in 1944 and solved 57/58 by

Friedberg & Muchnik;

however: no explicit problem with this property known so far
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Theorem (M. & Ziegler 2007)

The rational numbers Q are strictly easier than HR yet

undecidable.

Proof.

Show that set T of transcendent reals is not semi-decidable even

with oracle for Q; topological and number theoretic arguments how

rational functions map dense subsets of algebraic numbers.

Note: Algebraic numbers = R \ T are semi-decidable.
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Word Problem for Groups I

Consider product bab2ab2aba in free semi-group 〈{a, b}〉;

subject to

rule ab = 1 it can be simplified to b2 but not to 1

using additional rules a4 = a2 it can be simplified to 1

Fix set X and set R of equations over 〈X 〉 = (X ∪ X−1)∗.

Word problem for 〈X 〉: Given a formal product

w := x±1
1 x±1...

2 x±1
n , xi ∈ X , does it hold subject to R that w = 1?

Boone ’58, Novikov ’59: There exist finite X ,R such that the

related word problem is equivalent to discrete Halting problem.
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Word Problem for Groups II

Now set X ⊂ R∗ of real generators, R rules on 〈X 〉;

word problem as before, but suitable for BSS setting

Example

X := {xr |r ∈ R}; R := {xnr = xr , xr+k = xr |r ∈ R, n ∈ N, k ∈ Z}

X ,R are BSS decidable and xr = 1⇔

r ∈ Q

Thus this world problem is undecidable, but easier than HR.
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Theorem (M. & Ziegler 2009)

There are BSS decidable sets X ⊂ RN ,R ⊂ R∗ such that the

resulting word problem is equivalent to HR.

Proof.

Lot of combinatorial group theory: Nielsen reduction, HNN

extensions, Britton’s Lemma, amalgamation, ...

Reals enter as index set for set of generators; no particular

influence of semi-algebraic geometry; word problem is located in

computational group theory and thus presents new kind of

complete problem in BSS recursion theory.
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Further research questions:

power of other undecidable problems like Mandelbrot set?

use of machine constants: what power does one gain by using

more machine constants?

find word problems representing real number complexity

classes like NPR or PR

Bounded query computations: how many queries to an oracle

B are needed to compute characteristic function χA
n for An on

(R∗)n?

Example: For A = B = HR log n queries are sufficient.
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