Real Number Complexity Theory

Klaus Meer

Brandenburg University of Technology, Cottbus, Germany
Santaló's Summer School, Part 1, July 2012
(work supported by DFG, GZ:ME 1424/7-1)

Overview of talks

Talk 1: Introduction to real number complexity theory; structural results

Talk 2: Probabilistically Checkable Proofs; the 'classical' PCP theorem

Talk 3: PCPs in real number complexity

Outline today

(1) Introduction
(2) An optimization problem
(3) Complexity theory over \mathbb{R}
(4) P versus NP in different settings
(5) Inside $\mathrm{NP}_{\mathbb{R}}$
(6) Recursion theory over \mathbb{R}

1. Introduction

Since several years increasing interest in alternative (w.r.t. Turing machine) models of computation

Typical reasons:

- treatment of different problems
- more appropriate description of algorithmic phenomena which are hard or impossible to model by Turing machines
- focus on different aspects of a problem
- hope for new methods/results also for discrete problems

Important: Not a single model is the only correct one, but each is an idealization focussing on particular aspects

Classical model: Turing - machine: discrete problems, bit

Alternative models:
real,algebraic models computational geometry, analysis of algorithms in numerics, computer algebra etc.
recursive analysis continuous real functions
neural nets
analogue models
IBC
quantum computers
biology
membrane computing etc.

Example: Motion synthesis in robotics

Many practical problems within computational geometry result in question, whether a polynomial system is solvable

Here: Design of certain mechanisms in mechanical engineering

Example: Motion synthesis in robotics

Many practical problems within computational geometry result in question, whether a polynomial system is solvable Here: Design of certain mechanisms in mechanical engineering

Task leads to interesting problems in different computational models: Turing model, real/complex BSS model, ...

Example: Protection of pedestrians in traffic

Required motion of cooler and spoiler

Problem in kinematics: Design gearing mechanism satisfying certain demands

Stephenson gear

Example of a required motion:
Move point P through certain given positions

Typically leads to problem of solving a polynomial system with real or complex coefficients

Difficulty: Already few variables and low degrees can result in a system out of range of current methods!

Homotopy methods: Deform an easy to handle start system into the target system; then follow numerically the zeros of the start system into those of the target system

Here: First complete motion synthesis for so called
Stephenson mechanisms
M.\& Schmitt \& Schreiber, Mechanism and Machine Theory 2002
using PHC-package by Verschelde

Solvability question for polynomial system interesting from different viewpoints:

Applications
many problems lead to such systems, f.e., in
robotics, non-linear optimization etc.
Mathematics computational (semi-) algebraic geometry
Computer Science fundamental importance in complexity theory
and design of algorithms
Efficiency of homotopy methods relies on existence and number of zeros (paths)
\rightsquigarrow Analysis needs more theory

Intermezzo: Carrying coals to Newcastle ...
Fundamental contributions on homotpy methods by:
Shub \& Smale
Beltrán \&Pardo
Bürgisser \& Cucker
Dedieu, Li, Malajovich, Verschelde, ...

Here: only one particular aspect related to questions picked up in
later talks

2. A combinatorial optimization problem

Several (deep) mathematical methods for bounding number of zeros for polynomial systems $f: \mathbb{C}^{n} \mapsto \mathbb{C}^{n}$:
Bézout number generalizes fundamental theorem of algebra, easy to compute, too a large bound

Mixed Volumes Minkowski sum of Newton polytopes, hard to compute, (generically) correct bound
multi-homogeneous
Bézout numbers each group; mainly used in practice; complexity of computing it??

Example (Eigenpairs)

Find eigenpairs $(\lambda, v) \in \mathbb{C}^{n+1}$ of $M \in \mathbb{C}^{n \times n}$:

$$
M \cdot v-\lambda \cdot v=0, v_{n}-1=0
$$

Has (generically) n solutions, but Bézout number 2^{n}.
Multi-homogeneous Bézout numbers: Group variables as

$$
M \cdot v-\lambda \cdot v=0, v_{n}-1=0
$$

and homogenize w.r.t. both groups

$$
\lambda_{0} \cdot M \cdot v-v \cdot \lambda=0, v_{n}-v_{0}=0
$$

Then the number of isolated roots in $(\mathbb{C})^{n}$ is bounded by the 2-homogeneous Bézout number, which here is n.

Consider $n \in \mathbb{N}$, a finite $A \subset \mathbb{N}^{n}$ and a polynomial system

$$
\begin{aligned}
f_{1}(z) & =\sum_{\boldsymbol{\alpha} \in A} f_{1 \alpha} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}} \\
& \vdots \\
f_{n}(z) & =\sum_{\boldsymbol{\alpha} \in A} f_{n \alpha} z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}},
\end{aligned}
$$

where the $f_{i \alpha}$ are non-zero complex coefficients.
Thus, all f_{i} have the same support A
A multi-homogeneous structure: partition of $\{1, \ldots, n\}$ into k subsets

$$
\left(I_{1}, \ldots, I_{k}\right), I_{j} \subseteq\{1, \ldots, n\}
$$

Define for each partition $\left(I_{1}, \ldots, I_{k}\right)$:

- block of variables related to $I_{j}: Z_{j}=\left\{z_{i} \mid i \in I_{j}\right\}$
- corresponding degree of f_{i} with respect to \mathbb{Z}_{j} :
$d_{j}:=\max _{\alpha \in A} \sum_{I \in I_{j}} \alpha_{I}$
(the same for all polynomials f_{i} because of same support)

Definition

a) The multi-hom. Bézout number w.r.t. partition $\left(I_{1}, \ldots, I_{k}\right)$ is the coefficient of $\prod_{j=1}^{k} \zeta_{j}^{\left|I_{k}\right|}$ in the formal polynomial $\left(d_{1} \zeta_{1}+\cdots+d_{k} \zeta_{k}\right)^{n}$ (if each group not yet homogeneous)

$$
\left.\operatorname{Béz}\left(A, I_{1}, \ldots, I_{k}\right)=\binom{n}{\left|I_{1}\right|\left|I_{2}\right| \cdots}\left|I_{k}\right| l\right) \prod_{j=1}^{k} d_{j}^{\left|I_{j}\right|}
$$

b) Minimal multi-hom. Bézout number:

min $\operatorname{Béz}(A, \mathbf{I})$
 I partition

Important: minimum is defined purely combinatorially

Theorem (Malajovich \& M., 2005)

a) Given a polynomial system $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ there is no efficient

Turing-algorithm that computes the minimal multi-homogeneous Bézout number (unless $P=N P$).
b) The same holds with respect to efficiently approximating the minimal such number within an arbitrary constant factor.

Theorem (Malajovich \& M., 2005)

a) Given a polynomial system $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ there is no efficient

Turing-algorithm that computes the minimal multi-homogeneous
Bézout number (unless $P=N P$).
b) The same holds with respect to efficiently approximating the minimal such number within an arbitrary constant factor.

Proof.

Relate problem to 3-coloring problem for graphs: edges become binomials, triangles trinomials; mhBn shows a constant gap between 3-colorable and not 3-colorable graphs; part b) consequence of multiplicative structure of mhBn .

In practice: Balance whether additional effort for constructing start system pays out alternatively: choose start system by random (Smale \& Shub, Beltrán \& Pardo, Bürgisser \& Cucker)

Remark.

MHBN important in analysis of central path in interior point methods
(Dedieu \& Malajovich \& Shub)
3. Complexity theory over \mathbb{R} : Blum \& Shub \& Smale model

Decision problem:

$$
L \subseteq \mathbb{R}^{*}:=\bigcup_{n \geq 1} \mathbb{R}^{n}
$$

Operations: $+,-, *,:, x \geq 0$?

Size of problem instance: number of reals specifying input Cost of an algorithm: number of operations

Important: Algorithms are allowed to introduce finite set of parameters into its calculations:

Machine constants

Definition (Complexity class $\mathrm{P}_{\mathbb{R}}$)

$L \in P_{\mathbb{R}}$ if efficiently decidable, i.e., number of steps in an algorithm deciding whether input $x \in \mathbb{R}^{*}$ belongs to L polynomially bounded in (algebraic) size of input x

Example

Solvability of linear system $A \cdot x=b$ by Gaussian elimination;
Existence of real solution of univariate polynomial $f \in \mathbb{R}[x]$

Definition (Complexity class $\mathrm{NP}_{\mathbb{R}}$)

$L \in N P_{\mathbb{R}}$ if efficiently verifiable, i.e., given $x \in \mathbb{R}^{*}$ and potential membership proof $y \in \mathbb{R}^{*}$, there is an algorithm verifying whether y proves $x \in L$.

Definition (Complexity class $N P_{\mathbb{R}}$)

$L \in \mathrm{NP}_{\mathbb{R}}$ if efficiently verifiable, i.e., given $x \in \mathbb{R}^{*}$ and potential membership proof $y \in \mathbb{R}^{*}$, there is an algorithm verifying whether y proves $x \in L$.

If $x \in L$ there must exist such a proof; if $x \notin L$ no proof y is accepted.

Definition (Complexity class $\mathrm{NP}_{\mathbb{R}}$)

$L \in N P_{\mathbb{R}}$ if efficiently verifiable, i.e., given $x \in \mathbb{R}^{*}$ and potential membership proof $y \in \mathbb{R}^{*}$, there is an algorithm verifying whether y proves $x \in L$.

If $x \in L$ there must exist such a proof; if $x \notin L$ no proof y is accepted.

The running time is polynomially bounded in (algebraic) size of input x (and thus, only polynomially bounded y 's are relevant)

Example

1.) Quadratic Polynomial Systems QPS (Hilbert Nullstellensatz): Input: $n, m \in \mathbb{N}$, real polynomials in n variables $p_{1}, \ldots, p_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree at most 2 ; each p_{i} depending on at most 3 variables;

Do the p_{i} 's have a common real root?

Example

1.) Quadratic Polynomial Systems QPS (Hilbert Nullstellensatz): Input: $n, m \in \mathbb{N}$, real polynomials in n variables $p_{1}, \ldots, p_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree at most 2 ; each p_{i} depending on at most 3 variables;

Do the p_{i} 's have a common real root?
$N P_{\mathbb{R}^{-}}$-verification for solvability of system

$$
p_{1}(x)=0, \ldots, p_{m}(x)=0
$$

guesses solution $y^{*} \in \mathbb{R}^{n}$ and plugs it into all p_{i} 's ; obviously all components of y^{*} have to be seen

Example (cntd.)

2. Mathematical Programming

Input: polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ as objective function,
linear constraints $A x \leq b$ where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

$$
\text { Is } \operatorname{Min}\left\{f(x) \mid x \in \mathbb{R}^{n}, A x \leq b\right\} \leq 0 \quad \text { ? }
$$

f linear/quadratic leads to Linear/Quadratic Programming

Example (cntd.)

2. Mathematical Programming

Input: polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ as objective function,
linear constraints $A x \leq b$ where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

$$
\text { Is } \operatorname{Min}\left\{f(x) \mid x \in \mathbb{R}^{n}, A x \leq b\right\} \leq 0 \quad \text { ? }
$$

f linear/quadratic leads to Linear/Quadratic Programming
$N P_{\mathbb{R}^{-}}$verification: guess feasible point y in \mathbb{R}^{n}, check feasibility and evaluate objective function

Example (cntd.)

2. Mathematical Programming

Input: polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ as objective function,
linear constraints $A x \leq b$ where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

$$
\text { Is } \operatorname{Min}\left\{f(x) \mid x \in \mathbb{R}^{n}, A x \leq b\right\} \leq 0 \quad \text { ? }
$$

f linear/quadratic leads to Linear/Quadratic Programming
$N P_{\mathbb{R}^{-}}$verification: guess feasible point y in \mathbb{R}^{n}, check feasibility and evaluate objective function

Complexity in Turing model: LP $\in \mathrm{P}$; QP is NP-complete
Complexity in BSS model: unknown
Conjectures: $L P \notin \mathrm{P}_{\mathbb{R}}$;

Example (cntd.)

2. Mathematical Programming

Input: polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ as objective function,
linear constraints $A x \leq b$ where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

$$
\text { Is } \operatorname{Min}\left\{f(x) \mid x \in \mathbb{R}^{n}, A x \leq b\right\} \leq 0 \quad \text { ? }
$$

f linear/quadratic leads to Linear/Quadratic Programming
$N P_{\mathbb{R}}$-verification: guess feasible point y in \mathbb{R}^{n}, check feasibility and evaluate objective function

Complexity in Turing model: LP $\in \mathrm{P}$; QP is NP-complete
Complexity in BSS model: unknown
Conjectures: $\mathrm{LP} \notin \mathrm{P}_{\mathbb{R}} ; \mathrm{QP}$ not $\mathrm{NP}_{\mathbb{R}^{-}}$-complete (M. '94)

Definition ($\mathrm{NP}_{\mathbb{R}^{-}}$-completeness)

L is $N P_{\mathbb{R}^{-}}$-complete if each problem A in $N P_{\mathbb{R}}$ can be reduced in polynomial time to L, i.e., instead of deciding whether $x \in A$ one can decide whether $f(x) \in L$, where f can be computed in polynomial time in $\operatorname{size}_{\mathbb{R}}(x)$.

Definition ($N P_{\mathbb{R}^{-}}$-completeness)

L is $N P_{\mathbb{R}^{-}}$-complete if each problem A in $N P_{\mathbb{R}}$ can be reduced in polynomial time to L, i.e., instead of deciding whether $x \in A$ one can decide whether $f(x) \in L$, where f can be computed in polynomial time in $\operatorname{size}_{\mathbb{R}}(x)$.

Complete problems have universal complexity within $\mathrm{NP}_{\mathbb{R}}$ Main open problem: Is $\mathrm{P}_{\mathbb{R}}=\mathrm{NP}_{\mathbb{R}}$?

Equivalent: Are there $\mathrm{NP}_{\mathbb{R}}$-complete problems in $\mathrm{P}_{\mathbb{R}}$?

Definition ($N P_{\mathbb{R}^{-}}$-completeness)

L is $N P_{\mathbb{R}^{-}}$-complete if each problem A in $N P_{\mathbb{R}}$ can be reduced in polynomial time to L, i.e., instead of deciding whether $x \in A$ one can decide whether $f(x) \in L$, where f can be computed in polynomial time in $\operatorname{size}_{\mathbb{R}}(x)$.

Complete problems have universal complexity within $\mathrm{NP}_{\mathbb{R}}$ Main open problem: Is $\mathrm{P}_{\mathbb{R}}=\mathrm{NP}_{\mathbb{R}}$?

Equivalent: Are there $\mathrm{NP}_{\mathbb{R}}$-complete problems in $\mathrm{P}_{\mathbb{R}}$?

Remark.

Similar definitions for structures like \mathbb{C} (with $=$? test), groups, vector spaces, ...

Theorem (Blum-Shub-Smale '89)

a) The Hilbert-Nullstellensatz problem $Q P S_{\mathbb{R}}$ is $N P_{\mathbb{R}}$-complete. Considered as problem $Q P S_{\mathbb{C}}$ over \mathbb{C} it is $N P_{\mathbb{C}}$-complete.
b) The real Halting problem $\mathbb{H}_{\mathbb{R}}$ is undecidable in the BSS model: Given a machine M (as codeword in \mathbb{R}^{*}) together with input $x \in \mathbb{R}^{*}$, does M halt on x ?
c) Other undecidable problems: \mathbb{Q} inside \mathbb{R}, the Mandelbrot set as subset of \mathbb{R}^{2}

Theorem (Blum-Shub-Smale '89)

a) The Hilbert-Nullstellensatz problem $Q P S_{\mathbb{R}}$ is $N P_{\mathbb{R}}$-complete. Considered as problem $Q P S_{\mathbb{C}}$ over \mathbb{C} it is $N P_{\mathbb{C}}$-complete.
b) The real Halting problem $\mathbb{H}_{\mathbb{R}}$ is undecidable in the BSS model: Given a machine M (as codeword in \mathbb{R}^{*}) together with input $x \in \mathbb{R}^{*}$, does M halt on x ?
c) Other undecidable problems: \mathbb{Q} inside \mathbb{R}, the Mandelbrot set as subset of \mathbb{R}^{2}

Both $\mathbb{H}_{\mathbb{R}}$ and \mathbb{Q} are semi-decidable, i.e., there is a BSS algorithm that halts precisely on inputs from these sets.

> Theorem
> All problems in $\mathrm{NP}_{\mathbb{R}}$ are decidable in simple exponential time; similarly for $N P_{\mathbb{C}}$.

Theorem

All problems in $\mathrm{NP}_{\mathbb{R}}$ are decidable in simple exponential time; similarly for $N P_{\mathbb{C}}$.

Proof.

Difficulty: uncountable search space; requires quantifier elimination algorithms for real/algebraically closed fields

Long history starting with Tarski; fundamental contributions by Collins, Heintz et al., Grigoriev \& Vorobjov, Renegar, Basu \& Pollack \& Roy, ...

Effective Hilbert Nullstellensatz: Giusti \& Heintz, Pardo, . . .

Some related questions treated below:

1. Structural complexity theory in different settings, transfer results for $\mathrm{P}=\mathrm{NP}$? question
2. Structure inside NP: Are there non-complete problems between P and NP?
3. Recursion theory: Undecidable problems, degrees of undecidability
(with focus on own research!)

4. P versus NP in different settings

Since P versus NP is major question in above (and further) models as well it is natural to ask, how these (and further) questions relate in different models, in particular:
how is classical Turing complexity theory related to results over $\mathbb{R}, \mathbb{C}, \ldots$?

Transfer Results

Theorem (Blum \& Cucker \& Shub\& Smale 1996)
 For all algebraically closed fields of characteristic 0 the P versus

NP question has the same answer.

Theorem (Blum \& Cucker \& Shub\& Smale 1996)

For all algebraically closed fields of characteristic 0 the P versus
NP question has the same answer.

Proof.

Main idea is to eliminate complex machine constants in algorithms for problems that can be defined without such constants; the $N P_{\mathbb{C}}$-complete problem QPS has this property; price to pay for elimination only polynomial slowdown

Technique: Some algebraic number theory

Elimination of machine constants important technique for several

 transfer results; alternative proof by Koiran does it applying again Quantifier Elimination:- algebraic constants are coded via minimal polynomials
- transcendental constants satisfy no algebraic equality test in algorithm, so each test is answered the same in a neighborhood of such a constant; using results from complex QE shows that there is a small rational point in such a neighborhood which can replace the transcendental constant

Relation between complex BSS model and randomized Turing algorithms through class BPP of discrete problems that can be decided with small two-sided error in polynomial time

Relation between complex BSS model and randomized Turing algorithms through class BPP of discrete problems that can be decided with small two-sided error in polynomial time

```
Theorem (Smale, Koiran)
Suppose }\mp@subsup{P}{\mathbb{C}}{}=N\mp@subsup{P}{\mathbb{C}}{}\mathrm{ , then NP }\subseteq\textrm{BPP}
```

Relation between complex BSS model and randomized Turing algorithms through class BPP of discrete problems that can be decided with small two-sided error in polynomial time

Theorem (Smale, Koiran)

Suppose $P_{\mathbb{C}}=N P_{\mathbb{C}}$, then $\mathrm{NP} \subseteq \mathrm{BPP}$.

Proof.

Extract from $\mathrm{P}_{\mathbb{C}}$ algorithm for $\mathrm{QPS}_{\mathbb{C}}$ a randomized algorithm for NP-complete variant of QPS;

Relation between complex BSS model and randomized Turing algorithms through class BPP of discrete problems that can be decided with small two-sided error in polynomial time

Theorem (Smale, Koiran)

Suppose $P_{\mathbb{C}}=N P_{\mathbb{C}}$, then $\mathrm{NP} \subseteq \mathrm{BPP}$.

Proof.

Extract from $\mathrm{P}_{\mathbb{C}}$ algorithm for $\mathrm{QPS}_{\mathbb{C}}$ a randomized algorithm for
NP-complete variant of QPS; replacement of complex constants by randomly choosing small rational constants from a suitable set which with high probability contains rationals that behave the same as original constants.

Both above results not known for real algorithms; first deeper relation between real and Turing algorithms via additive real BSS machines, i.e., algorithms that only perform,+- and tests $x \geq 0$;

Both above results not known for real algorithms; first deeper relation between real and Turing algorithms via additive real BSS machines, i.e., algorithms that only perform,+- and tests $x \geq 0$; here: no non-rational machine constants

Both above results not known for real algorithms; first deeper relation between real and Turing algorithms via additive real BSS machines, i.e., algorithms that only perform,+- and tests $x \geq 0$; here: no non-rational machine constants

Theorem (Fournier \& Koiran 1998)

$$
\mathrm{P}=\mathrm{NP} \text { (Turing) } \Leftrightarrow P_{\mathbb{R}}^{\text {add }}=N P_{\mathbb{R}}^{\text {add }} \text { (additive model) }
$$

Both above results not known for real algorithms; first deeper relation between real and Turing algorithms via additive real BSS
machines, i.e., algorithms that only perform,+- and tests $x \geq 0$;
here: no non-rational machine constants

Theorem (Fournier \& Koiran 1998)

$$
\mathrm{P}=\mathrm{NP} \text { (Turing) } \Leftrightarrow P_{\mathbb{R}}^{\text {add }}=N P_{\mathbb{R}}^{\text {add }} \text { (additive model) }
$$

Proof.

Replacement of machine constants using deep result on point location in hyperplane arrangements by Meyer auf der Heide

Remark.

1. Similar results when allowing real machine constants, but introduces non-uniformity into Turing results.
2. In additive model with equality tests only, P and NP are provably different (M.'95)

5. Inside $\mathrm{NP}_{\mathbb{R}}$

Classical result in Turing complexity/recursion theory:

5. Inside $\mathrm{NP}_{\mathbb{R}}$

Classical result in Turing complexity/recursion theory:
Theorem (Ladner 1975)
If $\mathrm{P} \neq \mathrm{NP}$ there are non-complete problems in $\mathrm{NP} \backslash \mathrm{P}$.

5. Inside $\mathrm{NP}_{\mathbb{R}}$

Classical result in Turing complexity/recursion theory:

Theorem (Ladner 1975)

If $\mathrm{P} \neq \mathrm{NP}$ there are non-complete problems in NP $\backslash \mathrm{P}$.

Proof.

Key point is diagonalization against family $\left\{P_{1}, P_{2}, \ldots\right\}$ of P-machines and family $\left\{R_{1}, R_{2}, \ldots\right\}$ of poly-time reductions; both algorithm-classes are countable in Turing model;

Proof (cntd.)

given NP-complete L construct $\tilde{L} \in \mathrm{NP}$ s.t. one after the other P_{i} fails to decide \tilde{L} and R_{i} fails to reduce L to \tilde{L};

Proof (cntd.)

given NP-complete L construct $\tilde{L} \in \mathrm{NP}$ s.t. one after the other P_{i} fails to decide \tilde{L} and R_{i} fails to reduce L to \tilde{L};
\tilde{L} constructed dimensionwise: find effectively error dimensions for each P_{i}, R_{i}; rest a folklore padding argument to force \tilde{L} into NP

Proof (cntd.)

given NP-complete L construct $\tilde{L} \in \mathrm{NP}$ s.t. one after the other P_{i} fails to decide \tilde{L} and R_{i} fails to reduce L to \tilde{L};
\tilde{L} constructed dimensionwise: find effectively error dimensions for each P_{i}, R_{i}; rest a folklore padding argument to force \tilde{L} into NP

Computational models over \mathbb{R}, \mathbb{C} : set of algorithms uncountable thus, direct transformation of above construction fails

Theorem (Malajovich \& M. 1995)
If $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$ there are non-complete problems in $N P_{\mathbb{C}} \backslash P_{\mathbb{C}}$.

Theorem (Malajovich \& M. 1995)

If $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$ there are non-complete problems in $N P_{\mathbb{C}} \backslash P_{\mathbb{C}}$.

Proof.

Efficient elimination of complex machine constants allows to reduce problem to the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} in \mathbb{C}, i.e., to a countable setting; then adapt Ladner's proof

'Elimination-of-constants' result is not known for \mathbb{R}, so what can be done?

'Elimination-of-constants' result is not known for \mathbb{R}, so what can be done?

Central complexity class for investigations: $\mathrm{P}_{\mathbb{R}} /$ const (Michaux)
$\mathrm{P}_{\mathbb{R}} /$ const allows diagonalization technique in uncountable settings idea: consider discrete skeleton of real/complex algorithms, split real/complex constants from skeleton
'Elimination-of-constants' result is not known for \mathbb{R}, so what can be done?

Central complexity class for investigations: $\mathrm{P}_{\mathbb{R}} /$ const (Michaux)
$\mathrm{P}_{\mathbb{R}} /$ const allows diagonalization technique in uncountable settings idea: consider discrete skeleton of real/complex algorithms, split real/complex constants from skeleton
\rightsquigarrow basic machine:
'Elimination-of-constants' result is not known for \mathbb{R}, so what can be done?

Central complexity class for investigations: $\mathrm{P}_{\mathbb{R}} /$ const (Michaux)
$\mathrm{P}_{\mathbb{R}} /$ const allows diagonalization technique in uncountable settings idea: consider discrete skeleton of real/complex algorithms, split real/complex constants from skeleton
\rightsquigarrow basic machine:

'Elimination-of-constants' result is not known for \mathbb{R}, so what can be done?

Central complexity class for investigations: $\mathrm{P}_{\mathbb{R}} /$ const (Michaux)
$\mathrm{P}_{\mathbb{R}} /$ const allows diagonalization technique in uncountable settings idea: consider discrete skeleton of real/complex algorithms, split real/complex constants from skeleton
\rightsquigarrow basic machine:

'Elimination-of-constants' result is not known for \mathbb{R}, so what can be done?

Central complexity class for investigations: $\mathrm{P}_{\mathbb{R}} /$ const (Michaux)
$\mathrm{P}_{\mathbb{R}} /$ const allows diagonalization technique in uncountable settings idea: consider discrete skeleton of real/complex algorithms, split real/complex constants from skeleton

$L \in \mathrm{P}_{\mathbb{R}} /$ const \Leftrightarrow there is a skeleton M using k constants such

 that$L \in \mathrm{P}_{\mathbb{R}} /$ const \Leftrightarrow there is a skeleton M using k constants such that for each input dimension n there is a choice $c^{(n)} \in \mathbb{R}^{k}$ such that $M\left(\bullet, c^{(n)}\right)$ decides L upto dimension n in polynomial time.
$L \in \mathrm{P}_{\mathbb{R}} /$ const \Leftrightarrow there is a skeleton M using k constants such that for each input dimension n there is a choice $c^{(n)} \in \mathbb{R}^{k}$ such that $M\left(\bullet, c^{(n)}\right)$ decides L upto dimension n in polynomial time. Important:
skeleton is used uniformly, machine constants non-uniformly,
$L \in \mathrm{P}_{\mathbb{R}} /$ const \Leftrightarrow there is a skeleton M using k constants such that for each input dimension n there is a choice $c^{(n)} \in \mathbb{R}^{k}$ such that $M\left(\bullet, c^{(n)}\right)$ decides L upto dimension n in polynomial time. Important:
skeleton is used uniformly, machine constants non-uniformly,
$\mathrm{P}_{\mathbb{R}} /$ const is a restricted version of non-uniform class $\mathrm{P}_{\mathbb{R}} /$ poly; set of basic machines countable!

Similar for other models: $\mathrm{P}_{\mathbb{C}} /$ const, $\mathrm{P}_{\mathbb{R}}^{\text {add }} /$ const, $\mathrm{P}_{\mathbb{R}}^{\text {rc }} /$ const

Theorem (Ben-David \& M. \& Michaux 2000)

If $\mathrm{NP}_{\mathbb{R}} \nsubseteq \mathrm{P}_{\mathbb{R}} /$ const there exist problems in $\mathrm{NP}_{\mathbb{R}} \backslash \mathrm{P}_{\mathbb{R}} /$ const which are not $\mathrm{NP}_{\mathbb{R}}$-complete under $\mathrm{P}_{\mathbb{R}} /$ const reductions.

Theorem (Ben-David \& M. \& Michaux 2000)

If $\mathrm{NP}_{\mathbb{R}} \nsubseteq \mathrm{P}_{\mathbb{R}} /$ const there exist problems in $\mathrm{NP}_{\mathbb{R}} \backslash \mathrm{P}_{\mathbb{R}} /$ const which are not $\mathrm{NP}_{\mathbb{R}}$-complete under $\mathrm{P}_{\mathbb{R}} /$ const reductions.

Proof.

Construct again diagonal problem \tilde{L} along Ladner's line; fool step by step all basic decision / reduction machines; fooling dimensions computed via quantifier elimination: for each n and basic machine M it is first order expressible whether M with some choice of constants decides problem upto dimension n.

Thus central: analysis of $\mathrm{P} /$ const in different models; here notions from model theory enter

Theorem (Michaux; Ben-David \& Michaux \& M.)

For every ω-saturated structure it is $\mathrm{P}=\mathrm{P} /$ const.

Thus central: analysis of $\mathrm{P} /$ const in different models; here notions from model theory enter

Theorem (Michaux; Ben-David \& Michaux \& M.)

For every ω-saturated structure it is $\mathrm{P}=\mathrm{P} /$ const.
ω-saturation roughly means: given countable family $\phi_{n}(c)$ of first-order formulas such that each finite subset is commonly satisfiable, then the entire family is satisfiable.
\mathbb{R} is not ω-saturated: $\phi_{n}(c) \equiv c \geq n$

What is known about P /const in different models:

What is known about P /const in different models:
Turing: $\mathrm{P}=\mathrm{P} /$ const
thus Ladner holds

What is known about P /const in different models:

Turing: $\mathrm{P}=\mathrm{P} /$ const
BSS over $\mathbb{C}: \mathrm{P}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}} /$ const
thus Ladner holds thus Ladner holds

What is known about P /const in different models:
Turing: $\mathrm{P}=\mathrm{P} /$ const
BSS over $\mathbb{C}: \mathrm{P}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}} /$ const
BSS over \mathbb{R} : highly unlikely that $\mathrm{P}_{\mathbb{R}}=\mathrm{P}_{\mathbb{R}} /$ const
Chapuis \& Koiran

What is known about P /const in different models:

Turing: $\mathrm{P}=\mathrm{P} /$ const
BSS over $\mathbb{C}: \mathrm{P}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}} /$ const
BSS over \mathbb{R} : highly unlikely that $\mathrm{P}_{\mathbb{R}}=\mathrm{P}_{\mathbb{R}} /$ const
Chapuis \& Koiran
additive BSS over $\mathbb{R}: \mathrm{P}_{\mathbb{R}}^{\text {add }}=\mathrm{P}_{\mathbb{R}}^{\text {add }} /$ const
thus Ladner holds thus Ladner holds

What is known about P /const in different models:

Turing: $\mathrm{P}=\mathrm{P} /$ const
BSS over $\mathbb{C}: \mathrm{P}_{\mathbb{C}}=\mathrm{P}_{\mathbb{C}} /$ const
BSS over \mathbb{R} : highly unlikely that $\mathrm{P}_{\mathbb{R}}=\mathrm{P}_{\mathbb{R}} /$ const
Chapuis \& Koiran
additive BSS over $\mathbb{R}: \mathrm{P}_{\mathbb{R}}^{\text {add }}=\mathrm{P}_{\mathbb{R}}^{\text {add }} /$ const thus Ladner holds

Chapuis \& Koiran
real BSS with restricted use of constants
thus Ladner holds thus Ladner holds

Restricted BSS model:

restricted use of machine constants:

Restricted BSS model:

restricted use of machine constants:
input variables can be used arbitrarily; all intermediate results depend linearly on machine constants (thus no multiplication between machine constants)
\rightsquigarrow classes $P_{\mathbb{R}}^{r c}, \quad N P_{\mathbb{R}}^{r c}, \quad P_{\mathbb{R}}^{r c} /$ const

Restricted BSS model:

restricted use of machine constants:
input variables can be used arbitrarily; all intermediate results depend linearly on machine constants (thus no multiplication between machine constants)
\rightsquigarrow classes $P_{\mathbb{R}}^{\mathrm{rc}}, \quad N P_{\mathbb{R}}^{\mathrm{rc}}, \quad P_{\mathbb{R}}^{\mathrm{rc}} /$ const

Theorem

$Q P S$ is $N P_{\mathbb{R}}^{\mathrm{rc}}$-complete (under $P_{\mathbb{R}}^{\mathrm{rc}}$-reductions)
thus: restricted model closer to full BSS model than
linear/additive models \rightsquigarrow motivation for studying it!

Theorem (M. 2012)

Ladner's theorem holds in the real BSS model with restricted use of constants.

Proof.

Main step is to prove equality $\mathrm{P}_{\mathbb{R}}^{\mathrm{rc}}=\mathrm{P}_{\mathbb{R}}^{\mathrm{rc}} /$ const; proof relies on a limit argument in affine geometry that allows elimination of non-uniform machine constants by uniform ones

Theorem (M. 2012)

Ladner's theorem holds in the real BSS model with restricted use of constants.

Proof.

Main step is to prove equality $\mathrm{P}_{\mathbb{R}}^{\mathrm{rc}}=\mathrm{P}_{\mathbb{R}}^{\mathrm{rc}} /$ const; proof relies on a limit argument in affine geometry that allows elimination of non-uniform machine constants by uniform ones

Problem: Can ideas be somehow used to prove Ladner in full real BSS model?

6. Recursion theory over \mathbb{R}

Blum-Shub-Smale: Real Halting problem is BSS undecidable
$\mathbb{H}_{\mathbb{R}}:=\{$ code of BSS machine M that halts on empty input $\}$

6. Recursion theory over \mathbb{R}

Blum-Shub-Smale: Real Halting problem is BSS undecidable
$\mathbb{H}_{\mathbb{R}}:=\{$ code of BSS machine M that halts on empty input $\}$
further undecidable problems:

- \mathbb{Q}, i.e., given $x \in \mathbb{R}$, is x rational? Problem is semi-decidable: there is an algorithms which stops exactly for inputs from \mathbb{Q};
- graphs of sin and exp functions
- Mandelbrot and certain Julia sets
- ...

Typical related questions:

- degrees of undecidability
- Post's problem: are there problems easier than $\mathbb{H}_{\mathbb{R}}$ yet undecidable?
- find other natural undecidable problems equivalent to $\mathbb{H}_{\mathbb{R}}$

Typical related questions:

- degrees of undecidability
- Post's problem: are there problems easier than $\mathbb{H}_{\mathbb{R}}$ yet undecidable?
- find other natural undecidable problems equivalent to $\mathbb{H}_{\mathbb{R}}$

Formalization of comparing problems via oracle machines:
A is Turing reducible to B iff A can be decided by a BSS machine that additionally has access to an oracle for membership in B.
A equivalent to B iff both are Turing reducible to each other

Real Post's problem: Are there problems Turing reducible to $\mathbb{H}_{\mathbb{R}}$

 that are not Turing reducible from $\mathbb{H}_{\mathbb{R}}$ but yet undecidable?Real Post's problem: Are there problems Turing reducible to $\mathbb{H}_{\mathbb{R}}$ that are not Turing reducible from $\mathbb{H}_{\mathbb{R}}$ but yet undecidable?

Turing setting: question posted in 1944 and solved $57 / 58$ by
Friedberg \& Muchnik;
however: no explicit problem with this property known so far

Theorem (M. \& Ziegler 2007)

The rational numbers \mathbb{Q} are strictly easier than $\mathbb{H}_{\mathbb{R}}$ yet undecidable.

Proof.

Show that set T of transcendent reals is not semi-decidable even with oracle for \mathbb{Q}; topological and number theoretic arguments how rational functions map dense subsets of algebraic numbers.

Note: Algebraic numbers $=\mathbb{R} \backslash T$ are semi-decidable.

Word Problem for Groups I

Consider product $b a b^{2} a b^{2} a b a$ in free semi-group $\langle\{a, b\}\rangle$; subject to

- rule $a b=1$ it can be simplified to b^{2} but not to 1
- using additional rules $a^{4}=a^{2}$ it can be simplified to 1

Word Problem for Groups I

Consider product $b a b^{2} a b^{2} a b a$ in free semi-group $\langle\{a, b\}\rangle$; subject to

- rule $a b=1$ it can be simplified to b^{2} but not to 1
- using additional rules $a^{4}=a^{2}$ it can be simplified to 1

Fix set X and set R of equations over $\langle X\rangle=\left(X \cup X^{-1}\right)^{*}$.
Word problem for $\langle X\rangle$: Given a formal product
$w:=x_{1}^{ \pm 1} x_{2}^{ \pm 1 \cdots} x_{n}^{ \pm 1}, x_{i} \in X$, does it hold subject to R that $w=1$?
Boone '58, Novikov '59: There exist finite X, R such that the related word problem is equivalent to discrete Halting problem.

Word Problem for Groups II

Now set $X \subset \mathbb{R}^{*}$ of real generators, R rules on $\langle X\rangle$; word problem as before, but suitable for BSS setting

Example

$X:=\left\{x_{r} \mid r \in \mathbb{R}\right\} ; R:=\left\{x_{n r}=x_{r}, x_{r+k}=x_{r} \mid r \in \mathbb{R}, n \in \mathbb{N}, k \in \mathbb{Z}\right\}$
X, R are BSS decidable and $x_{r}=1 \Leftrightarrow$

Word Problem for Groups II

Now set $X \subset \mathbb{R}^{*}$ of real generators, R rules on $\langle X\rangle$; word problem as before, but suitable for BSS setting

Example

$X:=\left\{x_{r} \mid r \in \mathbb{R}\right\} ; R:=\left\{x_{n r}=x_{r}, x_{r+k}=x_{r} \mid r \in \mathbb{R}, n \in \mathbb{N}, k \in \mathbb{Z}\right\}$
X, R are BSS decidable and $x_{r}=1 \Leftrightarrow r \in \mathbb{Q}$

Word Problem for Groups II

Now set $X \subset \mathbb{R}^{*}$ of real generators, R rules on $\langle X\rangle$; word problem as before, but suitable for BSS setting

Example
$X:=\left\{x_{r} \mid r \in \mathbb{R}\right\} ; R:=\left\{x_{n r}=x_{r}, x_{r+k}=x_{r} \mid r \in \mathbb{R}, n \in \mathbb{N}, k \in \mathbb{Z}\right\}$
X, R are BSS decidable and $x_{r}=1 \Leftrightarrow r \in \mathbb{Q}$
Thus this world problem is undecidable, but easier than $\mathbb{H}_{\mathbb{R}}$.

Theorem (M. \& Ziegler 2009)

There are BSS decidable sets $X \subset \mathbb{R}^{N}, R \subset \mathbb{R}^{*}$ such that the resulting word problem is equivalent to $\mathbb{H}_{\mathbb{R}}$.

Proof.

Lot of combinatorial group theory: Nielsen reduction, HNN extensions, Britton's Lemma, amalgamation, ...

Theorem (M. \& Ziegler 2009)

There are BSS decidable sets $X \subset \mathbb{R}^{N}, R \subset \mathbb{R}^{*}$ such that the resulting word problem is equivalent to $\mathbb{H}_{\mathbb{R}}$.

Proof.

Lot of combinatorial group theory: Nielsen reduction, HNN extensions, Britton's Lemma, amalgamation, ...

Reals enter as index set for set of generators; no particular influence of semi-algebraic geometry; word problem is located in computational group theory and thus presents new kind of complete problem in BSS recursion theory.

Further research questions:

- power of other undecidable problems like Mandelbrot set?
- use of machine constants: what power does one gain by using more machine constants?
- find word problems representing real number complexity classes like $\mathrm{NP}_{\mathbb{R}}$ or $\mathrm{P}_{\mathbb{R}}$
- Bounded query computations: how many queries to an oracle B are needed to compute characteristic function χ_{n}^{A} for A^{n} on $\left(\mathbb{R}^{*}\right)^{n}$?

Example: For $A=B=\mathbb{H}_{\mathbb{R}} \log n$ queries are sufficient.

