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1. Introduction

Mathematicians’ obsession with counting led to many interesting and
far-fetched problems. These lectures are structured around a seemingly
innocent counting problem:

Problem 1.1 (Real root counting). Given a system f = (f1, . . . , fn)
of real polynomial equations in n variables, count the number of real
solutions.

You can also find here a crash-course in Newton iteration. We will
state and analyse a Newton iteration based ‘inclusion-exclusion’ algo-
rithm to count roots of polynomials.

That algorithm was investigated in a sequence of three papers by
Felipe Cucker, Teresa Krick, Mario Wschebor and myself (Cucker et
al., 2008; 2009; 2012). Good numerical properties are proved in
the first paper. For instance, the algorithm it is tolerant to controlled
rounding error. Instead of covering such technicalities, I will present a
simplified version and focus on the main ideas.

The interest of Problem 1.1 lies in the fact that it is complete for
the complexity class #PR over the BSS (Blum-Shub-Smale) compu-
tation model over R. See Blum et al. (1998) for the BSS model of
computation. The class #PR was defined by Meer (2000) as the class
of all functions f : R∞ → {0, 1}∞ ∪ {∞} such that there exists a BSS
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machine M working in polynomial time and a polynomial q satisfying

f(y) = #{z ∈ Rq(size(y) : M(y, z) is an accepting computation.}
We refeer to Bürgisser and Cucker (2006) for the proof of completness
and to Cucker et al. (2008) for references on the subject of counting
zeros.

Counting real polynomial roots in Rn can be reduced to counting
polynomial roots in Sn. Given a degree d polynomial f(x1, . . . , xn), its
homogenization is fhomo(x0, . . . , xn) = xd0f(x1/x0, . . . , xn/x0).

Exercise 1.1 (Beware of infinity). Find an homogeneous polynomial
g = g(y, u) of degree 2 in n+ 2 variables such that

#{x ∈ Rn : f1(x) = · · · = fn(x) = 0} =
1

2
#{(y, u) ∈ Sn+1 =

: fhomo
1 (y) = · · · = fhomo

n (y) = g(y, u) = 0}.
Because of the exercise above, Problem 1.1 reduces to:

Problem 1.2 (Real root counting on Sn). Given a system f =
(f1, . . . , fn) of real homogeneous polynomial equations in n + 1 vari-
ables, count the number of solutions in Sn.

This course is organized as follows. We start by a review of alpha-
theory. This theory originated with a couple of theorems proved by
Steve Smale (1986) and improved subsequently by several authors. It
allows to guarantee (quantitatively) from the available data that New-
ton iterations will converge quadratically to the solution of a system of
equations.

Then I will speak about the inclusion-exclusion algorithm. It uses
crucially several results of alpha-theory.

The complexity of the inclusion-exclusion algorithm depends upon
a condition number. By endowing the input space with a probability
distribution, one can speak of the expected value of the condition num-
ber and of the expected running time. The final section is a review of
the complexity analysis performed in Cucker et al. (2009) and Cucker
et al. (2012).

A warning: these lectures are informal. The model of computation
is cloud computing. This means that we will allow for exponentially
many parallel processors (essentially, BSS machines) at no additional
cost. Moreover, we will be informal in the sense that we will assume
that square roots and operator norms can be computed exactly in finite
time. While this does not happen in the BSS model, those can be
approximated and all our algorithms can be made as rigorous BSS
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algorithms at the cost of a harder complexity analysis (Cucker et al.,
2008).

Exercise 1.2. What would happen if you could design a true polynomial
time algorithm to solve Problem 1.2?

Acknowledgements. I would like to thank Teresa Krick and Felipe Cucker
for pointing out some mistakes in a previous version.
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Part 1. Newton Iteration and Alpha theory

2. Outline

Let f be a mapping between Banach spaces. Newton Iteration is
defined by

N(f ,x) = x−Df(x)−1f(x)
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wherever Df(x) exists and is bounded. Its only possible fixed points
are those satisfying f(x) = 0. When f(x) = 0 and Df(x) is invertible,
we say that x is a nondegenerate zero of f .

It is well-known that Newton iteration is quadratically convergent
in a neighborhood of a nondegenerate zero ζ. Indeed, N(f ,x) − ζ =
D2f(ζ)(x− ζ)2 + · · · .

There are two main approaches to quantify how fast is quadratic
convergence. One of them, pioneered by Kantorovich (Kantorovich)
assumes that the mapping f has a bounded second derivative, and that
this bound is known.

The other approach, developed by Smale (1985, 1986) and described
here, assumes that the mapping f is analytic. Then we will be able to
estimate a neighborhood of quadratic convergence around a given zero
(Theorem 4.2) or to certify an ‘approximate root’ (Theorem 5.3) from
data that depends only on the value and derivatives of f at one point.

A more general exposition on this subject may be found in (Dedieu,
1997b), covering also overdetermined and undetermined polynomial
systems.

3. The gamma invariant

Through this chapter, E and F are Banach spaces, D ⊆ E is open
and f : E→ F is analytic.

This means that if x0 ∈ E is in the domain of E, then there is ρ > 0
with the property that the series

(1) f(x0) + Df(x0)(x− x0) + D2f(x0)(x− x0,x− x0) + · · ·

converges uniformly for ‖x − x0‖ < ρ, and its limit is equal to f(x)
(For more details about analytic functions between Banach spaces,
see (Nachbin, 1964; 1969)).

In order to abbreviate notations, we will write (1) as

f(x0) + Df(x0)(x− x0) +
∑
k≥2

1

k!
Dkf(x0)(x− x0)k

where the exponent k means that x−x0 appears k times as an argument
to the preceding multi-linear operator.

The maximum of such ρ will be called the radius of convergence.
(It is ∞ when the series (1) is globally convergent). This terminology
comes from one complex variable analysis. When E = C, the series
will converge for all x ∈ B(x0, ρ) and diverge for all x 6∈ B(x0, ρ).
This is no more true in several complex variables, or Banach spaces
(Exercise 4.1).
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The norm of a k-linear operator in Banach Spaces (such as the k-th
derivative) is the operator norm, for instance

‖Dkf(x0)‖E→F = sup
‖u1‖E=···=‖uk‖E=1

‖Dkf(x0)(u1, . . . ,uk)‖F.

As long as there is no ambiguity, we drop the subscripts of the norm.

Definition 3.1 (Smale’s γ invariant). Let f : D ⊆ E → F be an
analytic mapping between Banach spaces, and x ∈ E. When Df(x) is
invertible, define

γ(f ,x0) = sup
k≥2

(
‖Df(x0)−1Dkf(x0)‖

k!

) 1
k−1

.

Otherwise, set γ(f ,x0) =∞.

In the one variable setting, this can be compared to the radius of
convergence ρ of f ′(x)/f ′(x0), that satisfies

ρ−1 = lim sup
k≥2

(
‖f ′(x0)−1f (k)(x0)‖

k!

) 1
k−1

.

More generally,

Proposition 3.2. Let f : D ⊆ E → F be a C∞ map between Banach
spaces, and x0 ∈ D such that γ(f ,x0) < ∞. Then f is analytic in x0

if and only if, γ(f, x0) is finite. The series

(2) f(x0) + Df(x0)(x− x0) +
∑
k≥2

1

k!
Dkf(x0)(x− x0)k

is uniformly convergent for x ∈ B(x0, ρ) for any ρ < 1/γ(f ,x0)).

Proof of Prop.3.2, if part. The series

Df(x0)−1f(x0) + (x− x0) +
∑
k≥2

1

k!
Df(x0)−1Dkf(x0)(x− x0)k

is uniformly convergent in B(x0, ρ) where

ρ−1 < lim sup
k≥2

(
‖Df(x0)−1Dkf(x0)‖

k!

) 1
k

≤ lim sup
k≥2

γ(f ,x0)
k−1
k

= lim
k→∞

γ(f ,x0)
k−1
k

= γ(f ,x0)

�
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Before proving the only if part of Proposition 3.2, we need to re-
late the norm of a multi-linear map to the norm of the corresponding
polynomial.

Lemma 3.3. Let k ≥ 2. Let T : Ek → F be k-linear and symmetric.
Let S : E→ F, S(x) = T (x,x, . . . ,x) be the corresponding polynomial.
Then,

‖T‖ ≤ ek−1 sup
‖x‖≤1

‖S(x)‖

Proof. The polarization formula for (real or complex) tensors is

T(x1, · · · ,xk) =
1

2kk!

∑
εj=±1
j=1,...,k

ε1 · · · εkS

(
k∑
l=1

εlxl

)

It is easily derived by expanding the expression inside parentheses.
There will be 2kk! terms of the form

ε1 · · · εkT (x1,x2, · · · ,xk)

or its permutations. All other terms miss at least one variable (say xj).
They cancel by summing for εj = ±1.

It follows that when ‖x‖ ≤ 1,

T(x1, · · · ,xk) ≤
1

k!
max
εj=±1
j=1,...,k

‖S

(
k∑
l=1

εlxl

)
‖

≤ kk

k!
sup
‖x‖≤1

‖S(x)‖

The Lemma follows from using Stirling’s formula,

k! ≥
√

2πkkke−ke1/(12k+1).

We obtain:

‖T‖ ≤
(

1√
2πk

e12k+1

)
ek sup
‖x‖≤1

‖S(x)‖.

Then we use the fact that k ≥ 2, hence
√

2πk ≥ e. �

Proof of Prop.3.2, only if part. Assume that the series (2) converges
uniformly for ‖x − x0‖ < ρ. Without loss of generality assume that
E = F and Df(x0) = I.

We claim that

lim sup
k≥2

sup
‖u‖=1

‖ 1

k!
Dkf(x0)uk‖1/k ≤ ρ−1.
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Indeed, assume that there is δ > 0 and infinitely many pairs (ki,ui)
with ‖ui‖ = 1 and

‖ 1

k!
Dkf(x0)uk‖1/k > ρ−1(1 + δ).

In that case,

‖ 1

k!
Dkf(x0)

(
ρ√

1 + δ
u

)k
‖ >
√

1 + δ
k

infinitely many times, and hence (2) does not converge uniformly on
B(x0, ρ).

Now, we can apply Lemma 3.3 to obtain:

lim sup
k≥2

‖ 1

k!
Dkf(x0)‖1/(k−1) ≤ e lim sup

k≥2
sup
‖u‖=1

‖ 1

k!
Dkf(x0)uk‖

1
k−1

≤ e lim
k→∞

ρ−(1+1/(k−1))

= eρ−1

and therefore ‖ 1
k!
Dkf(x0)‖1/(k−1) is bounded. �

Exercise 3.1. Show the polarization formula for Hermitian product:

〈u,v〉 =
1

4

∑
ε4=1

ε‖u + εv‖2

Explain why this is different from the one in Lemma 3.3.

Exercise 3.2. If one drops the uniform convergence hypothesis in the
definition of analytic functions, what happens to Proposition 3.2?

4. The γ-Theorems

The following concept provides a good abstraction of quadratic con-
vergence.

Definition 4.1 (Approximate zero of the first kind). Let f : D ⊆ E→
F be as above, with f(ζ) = 0. An approximate zero of the first kind
associated to ζ is a point x0 ∈ D, such that

(1) The sequence (x)i defined inductively by xi+1 = N(f ,xi) is
well-defined (each xi belongs to the domain of f and Df(xi) is
invertible and bounded).

(2)

‖xi − ζ‖ ≤ 2−2i+1‖x0 − ζ‖.

The existence of approximate zeros of the first kind is not obvious,
and requires a theorem.
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y = ψ(u)

1

5−
√

17
4

3−
√

7
2 1−

√
2/2

5−
√

17
4

3−
√
7

Figure 1. y = ψ(u)

Theorem 4.2 (Smale). Let f : D ⊆ E→ F be an analytic map between
Banach spaces. Let ζ be a non-degenerate zero of f . Assume that

B = B

(
ζ,

3−
√

7

2γ(f , ζ)

)
⊆ D.

Every x0 ∈ B is an approximate zero of the first kind associated to
ζ. The constant (3−

√
7)/2 is the smallest with that property.

Before going further, we remind the reader of the following fact.

Lemma 4.3. Let d ≥ 1 be integer, and let |t| < 1. Then,

1

(1− t)d
=
∑
k≥0

(
k + d− 1
d− 1

)
tk.

Proof. Differentiate d− 1 times the two sides of the expression 1/(1−
t) = 1 + t+ t2 + · · · , and then divide both sides by d− 1! �

Lemma 4.4. The function ψ(u) = 1 − 4u + 2u2 is decreasing and
non-negative in [0, 1−

√
2/2], and satisfies:

u

ψ(u)
< 1 for u ∈ [0, (5−

√
17)/4)(3)

u

ψ(u)
≤ 1

2
for u ∈ [0, (3−

√
7)/2] .(4)

The proof of Lemma 4.4 is left to the reader (but see Figure 1).
Another useful result is:
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Lemma 4.5. Let A be a n × n matrix. Assume ‖A − I‖2 < 1. Then
A has full rank and, for all y,

‖y‖
1 + ‖A− I‖2

≤ ‖A−1y‖2 ≤
‖y‖

1− ‖A− I‖2

.

Proof. By hypothesis, ‖Ax‖ > 0 for all x 6= 0 so that A has full rank.
Let y = Ax. By triangular inequality,

‖Ax‖ ≥ ‖x‖ − ‖(A− I)x‖ ≥ (1− ‖(A− I)‖2)‖x‖.
Also by triangular inequality,

‖Ax‖ ≤ ‖x‖+ ‖(A− I)x‖ ≤ (1 + ‖(A− I)‖2)‖x‖.
�

The following Lemma will be needed:

Lemma 4.6. Assume that u = ‖x− y‖γ(f ,x) < 1−
√

2/2. Then,

‖Df(y)−1Df(x)‖ ≤ (1− u)2

ψ(u)
.

Proof. Expanding y 7→ Df(x)−1Df(y) around x, we obtain:

Df(x)−1Df(y) = I +
∑
k≥2

1

k − 1!
Df(x)−1Dkf(x)(y − x)k−1.

Rearranging terms and taking norms, Lemma 4.3 yields

‖Df(x)−1Df(y)− I‖ ≤ 1

(1− γ‖y − x‖)2
− 1.

By Lemma 4.5 we deduce that Df(x)−1Df(y) is invertible, and

(5) ‖Df(y)−1Df(x)‖ ≤ 1

1− ‖Df(x)−1Df(y)− I‖
=

(1− u)2

ψ(u)
.

�

Here is the method for proving Theorem 4.2 and similar ones: first
we study the convergence of Newton iteration applied to a ‘universal’
function. In this case, set

hγ(t) = t− γt2 − γ2t3 − · · · = t− γt2

1− γt
.

(See figure 2).
The function hγ has a zero at t = 0, and γ(hγ, 0) = γ. Then, we

compare the convergence of Newton iteration applied to an arbitrary
function to the convergence when applied to the universal function.
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t0t1

t2
t3

Figure 2. y = hγ(t)

Lemma 4.7. Assume that 0 ≤ u0 = γt0 <
5−
√

17
4

. Then the sequences

ti+1 = N(hγ, ti) and ui+1 =
u2
i

ψ(ui)

are well-defined for all i, limi→∞ ti = 0, and

|ti|
|t0|

=
ui
u0

≤
(

u0

ψ(u0)

)2i−1

.

Moreover,

|ti|
|t0|
≤ 2−2i+1

for all i if and only if u0 ≤ 3−
√

7
2

.

Proof. We just compute

h′γ(t) =
ψ(γt)

(1− γt)2

th′γ(t)− hγ(t) = − γt2

(1− γt)2

N(hγ, t) = − γt2

ψ(γt)
.
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When u0 <
5−
√

17
4

, (3) implies that the sequence ui is decreasing, and
by induction

ui = γ|ti|.
Moreover,

ui+1

u0

=

(
ui
u0

)2
u0

ψ(ui)
≤
(
ui
u0

)2
u0

ψ(u0)
<

(
ui
u0

)2

.

By induction,

ui
u0

≤
(

u0

ψ(u0)

)2i−1

.

This also implies that lim ti = 0.
When furthermore u0 ≤ (3 −

√
7)/2, u0/ψ(u0) ≤ 1/2 by (4) hence

ui/u0 ≤ 2−2i+1. For the converse, if u0 > (3−
√

7)/2, then

|t1|
|t0|

=
u0

ψ(u0)
>

1

2
.

�

Before proceeding to the proof of Theorem 4.2, a remark is in order.
Both Newton iteration and γ are invariant with respect to translation

and to linear changes of coordinates: let g(x) = Af(x− ζ), where A is
a continuous and invertible linear operator from F to E. Then

N(g,x + ζ) = N(f ,x) + ζ and γ(g,x + ζ) = γ(f ,x).

Also, distances in E are invariant under translation.

Proof of Th.4.2. Assume without loss of generality that ζ = 0 and
Df(ζ) = I. Set γ = γ(f ,x), u0 = ‖x0‖γ, and let hγ and the sequence
(ui) be as in Lemma 4.7.

We will bound

(6) ‖N(f ,x)‖ =
∥∥x−Df(x)−1f(x)

∥∥ ≤ ‖Df(x)−1‖‖f(x)−Df(x)x‖.
The Taylor expansions of f and Df around 0 are respectively:

f(x) = x +
∑
k≥2

1

k!
Dkf(0)xk

and

(7) Df(x) = I +
∑
k≥2

1

k − 1!
Dkf(0)xk−1.

Combining the two equations, above, we obtain:

f(x)−Df(x)x =
∑
k≥2

k − 1

k!
Dkf(0)xk.
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Using Lemma 4.3 with d = 2, the rightmost term in (6) is bounded
above by

(8) ‖f(x)−Df(x)x‖ ≤
∑
k≥2

(k − 1)γk−1‖x‖k =
γ‖x‖2

(1− γ‖x‖)2
.

Combining Lemma 4.6 and (8) in (6), we deduce that

‖N(f ,x)‖ ≤ γ‖x‖2

ψ(γ‖x‖)
.

By induction, ui ≤ γ‖xi‖. When u0 ≤ (3 −
√

7)/2, we obtain as in
Lemma 4.7 that

‖xi‖
‖x0‖

≤ ui
u0

≤ 2−2i+1.

We have seen in Lemma 4.7 that the bound above fails for i = 1
when u0 > (3−

√
7)/2. �

Notice that in the proof above,

lim
i→∞

u0

ψ(ui)
= u0.

Therefore, convergence is actually faster than predicted by the defi-
nition of approximate zero. We proved actually a sharper result:

Theorem 4.8. Let f : D ⊆ E→ F be an analytic map between Banach
spaces. Let ζ be a non-degenerate zero of f . Let u0 < (5−

√
17)/4.

Assume that

B = B

(
ζ,

u0

γ(f , ζ)

)
⊆ D.

If x0 ∈ B, then the sequences

xi+1 = N(f ,xi) and ui+1 =
u2
i

ψ(ui)

are well-defined for all i, and

‖xi − ζ‖
‖x0 − ζ‖

≤ ui
u0

≤
(

u0

ψ(u0)

)−2i+1

.

Table 1 and Figure 3 show how fast ui/u0 decreases in terms of u0

and i.

To conclude this section, we need to address an important issue
for numerical computations. Whenever dealing with digital comput-
ers, it is convenient to perform calculations in floating point format.
This means that each real number is stored as a mantissa (an integer,
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1/32 1/16 1/10 1/8 3−
√

7
2

1 4.810 3.599 2.632 2.870 1.000
2 14.614 11.169 8.491 6.997 3.900
3 34.229 26.339 20.302 16.988 10.229
4 73.458 56.679 43.926 36.977 22.954
5 151.917 117.358 91.175 76.954 48.406

Table 1. Values of −log2(ui/u0) in function of u0 and i.

215

3−
√

7
2

263

231

27

23

2
5−
√

17
4

i = 1

i = 2

i = 3

i = 4

Figure 3. Values of log2(ui/u0) in function of u0 for
i = 1, . . . , 4.

typically no more than 224 or 253) times an exponent. (The IEEE-754
standard for computer arithmetics (The Institute of Electrical and Elec-
tronics Engineers Inc, 2008) is taught at elementary numerical analysis
courses, see for instance (Higham, 2002, Ch.2)).

By using floating point numbers, a huge gain of speed is obtained
with regard to exact representation of, say, algebraic numbers. How-
ever, computations are inexact (by a typical factor of 2−24 or 2−53).
Therefore, we need to consider inexact Newton iteration. An obvious
modification of the proof of Theorem 4.2 gives us the following state-
ment:

Theorem 4.9. Let f : D ⊆ E→ F be an analytic map between Banach
spaces. Let ζ be a non-degenerate zero of f . Let

0 ≤ 2δ ≤ u0 ≤ 2−
√

14

2
' 0.129 · · ·



14 GREGORIO MALAJOVICH

Assume that

(1)

B = B

(
ζ,

u0

γ(f , ζ)

)
⊆ D.

(2) x0 ∈ B, and the sequence xi satisfies

‖xi+1 −N(f ,xi)‖γ(f , ζ) ≤ δ

(3) The sequence ui is defined inductively by

ui+1 =
u2
i

ψ(ui)
+ δ.

Then the sequences ui and xi are well-defined for all i, xi ∈ D, and

‖xi − ζ‖
‖x0 − ζ‖

≤ ui
u0

≤ max

(
2−2i+1, 2

δ

u0

)
.

Proof. By hypothesis,
u0

ψ(u0)
+

δ

u0

< 1

so the sequence ui is decreasing and positive. For short, let q = u0
ψ(u0)

≤
1/4. By induction,

ui+1

u0

≤ u0

ψ(ui)

(
ui
u0

)2

+
δ

u0

≤ 1

4

(
ui
u0

)2

+
δ

u0

.

Assume that ui/u0 ≤ 2−2i+1. In that case,

ui+1

u0

≤ 2−2i+1

+
δ

u0

≤ max

(
2−2i+1+1, 2

δ

u0

)
.

Assume now that 2−2i+1, ui/u0 ≤ 2δ/u0. In that case,

ui+1

u0

≤ δ

u0

(
δ

4u0

+ 1

)
≤ 2δ

u0

= max

(
2−2i+1+1, 2

δ

u0

)
.

From now on we use the assumptions, notations and estimates of the
proof of Theorem 4.2. Combining (5) and (8) in (6), we obtain again
that

‖N(f ,x)‖ ≤ γ‖x‖2

ψ(γ‖x‖)
.

This time, this means that

‖xi+1‖γ ≤ δ + ‖N(f ,x)‖γ ≤ δ +
γ2‖x‖2

ψ(γ‖x‖)
.

By induction that ‖xi − ζ‖γ(f , ζ) < ui and we are done. �
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Exercise 4.1. Consider the following series, defined in C2:

g(x) =
∞∑
i=0

xi1x
i
2.

Compute its radius of convergence. What is its domain of absolute
convergence ?

Exercise 4.2. The objective of this exercise is to produce a non-optimal
algorithm to approximate

√
y. In order to do that, consider the map-

ping f(x) = x2 − y.

(1) Compute γ(f, x).
(2) Show that for 1 ≤ y ≤ 4, x0 = 1/2 + y/2 is an approximate

zero of the first kind for x, associated to y.
(3) Write down an algorithm to approximate

√
y up to relative

accuracy 2−63.

Exercise 4.3. Let f be an analytic map between Banach spaces, and
assume that ζ is a non-degenerate zero of f .

(1) Write down the Taylor series of Df(ζ)−1 (f(x)− f(ζ)).
(2) Show that if f(x) = 0, then

γ(f , ζ)‖x− ζ‖ ≥ 1/2.

This shows that two non-degenerate zeros cannot be at a distance less
than 1/2γ(f , ζ). (Results of this type appeared in (Dedieu, 1997a), but
some of them were known before (Malajovich, 1993, Th.16)).

5. Estimates from data at a point

Theorem 4.2 guarantees quadratic convergence in a neighborhood of
a known zero ζ. In practical situations, ζ is not known. A major result
in alpha-theory is the criterion to detect an approximate zero with just
local information. We need to slightly modify the definition.

Definition 5.1 (Approximate zero of the second kind). Let f : D ⊆
E → F be as above. An approximate zero of the first kind associated
to ζ ∈ D, f(ζ) = 0, is a point x0 ∈ D, such that

(1) The sequence (x)i defined inductively by xi+1 = N(f ,xi) is
well-defined (each xi belongs to the domain of f and Df(xi) is
invertible and bounded).

(2)

‖xi+1 − xi‖ ≤ 2−2i+1‖x1 − x0‖.
(3) limi→∞ xi = ζ.

For detecting approximate zeros of the second kind, we need:
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Definition 5.2 (Smale’s β and α invariants).

β(f ,x) = ‖Df(x)−1f(x)‖ and α(f ,x) = β(f ,x)γ(f ,x).

The β invariant can be interpreted as the size of the Newton step
N(f ,x)− x.

Theorem 5.3 (Smale). Let f : D ⊆ E→ F be an analytic map between
Banach spaces. Let

α ≤ α0 =
13− 3

√
17

4
.

Define

r0 =
1 + α−

√
1− 6α + α2

4α
and r1 =

1− 3α−
√

1− 6α + α2

4α
.

Let x0 ∈ D be such that α(f ,x0) ≤ α and assume furthermore that
B(x0, r0β(f ,x0)) ⊆ D. Then,

(1) x0 is an approximate zero of the second kind, associated to some
zero ζ ∈ D of f .

(2) Moreover, ‖x0 − ζ‖ ≤ r0β(f ,x0).
(3) Let x1 = N(f ,x0). Then ‖x1 − ζ‖ ≤ r1β(f ,x0).

The constant α0 is the largest possible with those properties.

This theorem appeared in (Smale, 1986). The value for α0 was found
by Wang Xinghua (Wang Xinghua, 1993). Numerically,

α0 = 0.157, 670, 780, 786, 754, 587, 633, 942, 608, 019 · · ·
Other useful numerical bounds, under the hypotheses of the theorem,
are:

r0 ≤ 1.390, 388, 203 · · · and r1 ≤ 0.390, 388, 203 · · · .

The proof of Theorem 5.3 follows from the same method as the one
for Theorem 4.2. We first define the ‘worst’ real function with respect
to Newton iteration. Let us fix β, γ > 0. Define

hβγ(t) = β − t+
γt2

1− γt
= β − t+ γt2 + γ2t3 + · · · .

We assume for the time being that α = βγ < 3− 2
√

2 = 0.1715 · · · .
This guarantees that hβγ has two distinct zeros ζ1 = 1+α−

√
∆

4γ
and ζ2 =

1+α+
√

∆
4γ

with of course ∆ = (1 + α)2 − 8α. An useful expression is the

product formula

(9) hβγ(x) = 2
(x− ζ1)(x− ζ2)

γ−1 − x
.
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t0 = 0 t1

t2

ζ1 ζ2

Figure 4. y = hβγ(t).

From (9), hβγ has also a pole at γ−1. We have always 0 < ζ1 < ζ2 <
γ−1.

The function hβγ is, among the functions with h′(0) = −1 and
β(h, 0) ≤ β and γ(h, 0) ≤ γ, the one that has the first zero ζ1 fur-
thest away from the origin.

Proposition 5.4. Let β, γ > 0, with α = βγ ≤ 3− 2
√

2. let hβγ be as
above. Define recursively t0 = 0 and ti+1 = N(hβγ, ti). then

(10) ti = ζ1
1− q2i−1

1− ηq2i−1
,

with

η =
ζ1

ζ2

=
1 + α−

√
∆

1 + α +
√

∆
and q =

ζ1 − γζ1ζ2

ζ2 − γζ1ζ2

=
1− α−

√
∆

1− α +
√

∆
.

Proof. By differentiating (9), one obtains

h′βγ(t) = hβγ(t)

(
1

t− ζ1

+
1

t− ζ2

+
1

γ−1 − t

)
and hence the Newton operator is

N(hβγ, t) = t− 1
1

t−ζ1 + 1
t−ζ2 + 1

γ−1−t
.
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A tedious calculation shows that N(hβγ, t) is a rational function of
degree 2. Hence, it is defined by 5 coefficients, or by 5 values.

In order to solve the recurrence for ti, we change coordinates using
a fractional linear transformation. As the Newton operator will have
two attracting fixed points (ζ1 and ζ2), we will map those points to 0
and ∞ respectively. For convenience, we will map t0 = 0 into y0 = 1.
Therefore, we set

S(t) =
ζ2t− ζ1ζ2

ζ1t− ζ1ζ2

and S−1(y) =
−ζ1ζ2y + ζ1ζ2

−ζ1y + ζ2

Let us look at the sequence yi = S(ti). By construction y0 = 1, and
subsequent values are given by the recurrence

yi+1 = S(N(hβγ, S
−1(yi))).

It is an exercise to check that

(11) yi+1 = qy2
i ,

Therefore we have yi = q2i−1, and equation (10) holds. �

Proposition 5.5. Under the conditions of Proposition 5.4, 0 is an
approximate zero of the second kind for hβγ if and only if

α = βγ ≤ 13− 3
√

17

4
.

Proof. Using the closed form for ti, we get:

ti+1 − ti =
1− q2i+1−1

1− ηq2i+1−1
− 1− q2i−1

1− ηq2i−1

= q2i−1 (1− η)(1− q2i)

(1− ηq2i+1−1)(1− ηq2i−1)

In the particular case i = 0,

t1 − t0 =
1− q
1− ηq

= β

Hence
ti+1 − ti

β
= Ciq

2i−1

with

Ci =
(1− η)(1− ηq)(1− q2i)

(1− q)(1− ηq2i+1−1)(1− ηq2i−1)
.

Thus, C0 = 1. The reader shall verify in Exercise 5.1 that Ci is a
non-increasing sequence. Its limit is non-zero.
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From the above, it is clear that 0 is an approximate zero of the
second kind if and only if q ≤ 1/2. Now, if we clear denominators and

rearrange terms in (1 + α −
√

∆)/(1 + α +
√

∆) = 1/2, we obtain the
second degree polynomial

2α2 − 13α + 2 = 0.

This has solutions (13±
√

17)/2. When 0 ≤ α ≤ α0 = (13−
√

17)/2,
the polynomial values are positive and hence q ≤ 1/2. �

Proof of Th.5.3. Let β = β(f ,x0) and γ = γ(f ,x0). Let hβγ and the
sequence ti be as in Proposition 5.4. By construction, ‖x1−x0‖ = β =
t1 − t0. We use the following notations:

βi = β(f ,xi) and γi = γ(f ,xi).

Those will be compared to

β̂i = β(hβγ, ti)) and γ̂i = γ(hβγ, ti)).

Induction hypothesis: βi ≤ β̂i and for all l ≥ 2,

‖Df(xi)
−1Dlf(xi)‖ ≤ −

h
(l)
βγ(ti)

h′βγ(ti)
.

The initial case when i = 0 holds by construction. So let us assume
that the hypothesis holds for i. We will estimate

(12) βi+1 ≤ ‖Df(xi+1)−1Df(xi)‖‖Df(xi)
−1f(xi+1)‖

and

(13) γi+1 ≤ ‖Df(xi+1)−1Df(xi)‖
‖Df(xi)

−1Dkf(xi+1)‖
k!

.

By construction, f(xi)+Df(xi)(xi+1−xi) = 0. The Taylor expansion
of f at xi is therefore

Df(xi)
−1f(xi+1) =

∑
k≥2

Df(xi)
−1Dkf(xi)(xi+1 − xi)

k

k!

Passing to norms,

‖Df(xi)
−1f(xi+1)‖ ≤ β2

i γi
1− γi

The same argument shows that

−hβγ(ti+1)

h′βγ(ti)
=
β(hβγ, ti)

2γ(hβγ, ti)

1− γ(hβγ, ti)
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From Lemma 4.6,

‖Df(xi+1)−1Df(xi)‖ ≤
(1− βiγi)2

ψ(βiγi)
.

Also, computing directly,

(14)
h′βγ(ti+1)

h′βγ(ti)
=

(1− β̂γ̂)2

ψ(β̂γ̂)
.

We established that

βi+1 ≤
β2
i γi(1− βiγi)
ψ(βiγi)

≤ β̂2
i γ̂i(1− β̂iγ̂i)
ψ(β̂iγ̂i)

= β̂i+1.

Now the second part of the induction hypothesis:

Df(xi)
−1Dlf(xi+1) =

∑
k≥0

1

k!

Df(xi)
−1Dk+lf(xi)(xi+1 − xi)

k

k + l

Passing to norms and invoking the induction hypothesis,

‖Df(xi)
−1Dlf(xi+1)‖ ≤

∑
k≥0

−
h

(k+l)
βγ (ti)β̂

k
i

k!h′βγ(ti)

and then using Lemma 4.6 and (14),

‖Df(xi+1)−1Dlf(xi+1)‖ ≤ (1− β̂iγ̂i)2

ψ(β̂iγ̂i)

∑
k≥0

−
h

(k+l)
βγ (ti)β̂

k
i

k!h′βγ(ti)
.

A direct computation similar to (14) shows that

−
h

(k+l)
βγ (ti+1)

k!h′βγ(ti+1)
=

(1− β̂iγ̂i)2

ψ(β̂iγ̂i)

∑
k≥0

−
h

(k+l)
βγ (ti)β̂

k
i

k!h′βγ(ti)
.

and since the right-hand-terms of the last two equations are equal, the
second part of the induction hypothesis proceeds. Dividing by l!, taking
l − 1-th roots and maximizing over all l, we deduce that γi ≤ γ̂i.

Proposition 5.5 then implies that x0 is an approximate zero.

The second and third statement follow respectively from

‖x0 − ζ‖ ≤ β0 + β1 + · · · = ζ1

and

‖x1 − ζ‖ ≤ β1 + β2 + · · · = ζ1 − β.
�
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1/32 1/16 1/10 1/8 13−3
√

17
4

1 4.854 3.683 2.744 2.189 1.357
2 14.472 10.865 7.945 6.227 3.767
3 33.700 25.195 18.220 14.41 7.874
4 72.157 53.854 38.767 29.648 15.881
5 149.71 111.173 79.861 60.864 31.881
6 302.899 225.811 162.49 123.295 63.881

Table 2. Values of −log2(‖xi − ζ‖/β) in function of α
and i.

The same issues as in Theorem 4.2 arise. First of all, we actually
proved a sharper statement. Namely,

Theorem 5.6. Let f : D ⊆ E→ F be an analytic map between Banach
spaces. Let

α ≤ 3− 2
√

2.

Define

r =
1 + α−

√
1− 6α + α2

4α
.

Let x0 ∈ D be such that α(f ,x0) ≤ α and assume furthermore that
B(x0, rβ(f ,x0)) ⊆ D. Then, the sequence xi+1 = N(f ,xi) is well de-
fined, and there is a zero ζ ∈ D of f such that

‖xi − ζ‖ ≤ q2i−1 1− η
1− ηq2i−1

rβ(f ,x0).

for η and q as in Proposition 5.4.

Table 2 and Figure 5 show how fast ‖xi − ζ‖/β decreases in terms
of α and i.

The final issue is robustness. There is no obvious modification of the
proof of Theorem 5.3 to provide a nice statement, so we will rely on
Theorem 4.9 indeed.

Theorem 5.7. Let f : D ⊆ E→ F be an analytic map between Banach
spaces. Let δ, α and u0 satisfy

0 ≤ 2δ < u0 =
rα

(1− rα)ψ(rα)
< 2−

√
14

2

with r = 1+α−
√

1−6α+α2

4α
. Assume that

(1)
B = B (x0, 2rβ(f ,x0)) ⊆ D.
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2
23
27

215

231

263

2− 3
√
2

i = 6

13−3
√

17
4

i = 1

i = 2

i = 3

i = 4

i = 5

Figure 5. Values of −log2(‖xi− ζ‖/β) in function of α
for i = 1 to 6.

(2) x0 ∈ B, and the sequence xi satisfies

‖xi+1 −N(f ,xi)‖
rβ(f, x0)

(1− rα)ψ(rα)
≤ δ

(3) The sequence ui is defined inductively by

ui+1 =
u2
i

ψ(ui)
+ δ.

Then the sequences ui and xi are well-defined for all i, xi ∈ D, and

‖xi − ζ‖
‖x1 − x0‖

≤ rui
u0

≤ rmax

(
2−2i+1, 2

δ

u0

)
.

Numerically, α0 = 0.074, 290 · · · satisfies the hypothesis of the The-
orem. A version of this theorem (not as sharp, and another metric)
appeared as Theorem 2 in (Malajovich, 1994).

The following Lemma will be useful:

Lemma 5.8. Assume that u = γ(f ,x)‖x− y‖ ≤ 1−
√

2/2. Then,

γ(f ,y) ≤ γ(f ,x)

(1− u)ψ(u)
.

Proof. In order to estimate the higher derivatives, we expand:

1

l!
Df(x)−1Dlf(y) =

∑
k≥0

(
k + l
l

)
Df(x)−1Dk+lf(x)(y − x)k

k + l
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and by Lemma 4.3 for d = l + 1,

1

l!
‖Df(x)−1Dlf(y)‖ ≤ γ(f ,x)l−1

(1− u)l+1
.

Combining with Lemma 4.6,

1

l!
‖Df(y)−1Dlf(y)‖ ≤ γ(f ,x)l−1

(1− u)l−1ψ(u)
.

Taking the l − 1-th power,

γ(f ,y) ≤ γ(f ,x)

(1− u)ψ(u)
.

�

Proof of Theorem 5.7. We have necessarily α < 3 − 2
√

2 or r is un-
defined. Then (Theorem 5.6) there is a zero ζ of f with ‖x0 − ζ‖ ≤
rβ(f, x0). Then, Lemma 5.8 implies that ‖x0 − ζ‖γ(f , ζ) ≤ u0. Now
apply Theorem 4.9.

�

Exercise 5.1. The objective of this exercise is to show that Ci is non-
increasing.

(1) Show the following trivial lemma: If 0 ≤ s < a ≤ b, then
a−s
b−s ≤

a
b
.

(2) Deduce that q ≤ η.
(3) Prove that Ci+1/Ci ≤ 1.

Exercise 5.2. Show that

ζ1γ(ζ1) =
1 + α−

√
∆

3− α +
√

∆

1

ψ
(

1+α−
√

∆
4

) .
Part 2. Inclusion and exclusion

6. Eckart-Young theorem

The following classical theorem in linear algebra is known as the
singular value decomposition (svd for short).

Theorem 6.1. Let A : Rn 7→ Rm (resp. Cn → Cm) be linear. Then,
there are σ1 ≥ · · · ≥ σr > 0, r ≤ m,n, such that

A = UΣV ∗

with U ∈ O(m) (resp. U(m)), V ∈ O(n) (resp. U(n)) and Σij = σi
for i = j ≤ r and 0 otherwise.



24 GREGORIO MALAJOVICH

It is due to Sylvester (real n×n matrices) and to Eckart and Young
(1939) in the general case, now exercise 6.1 below.

Σ is a m× n matrix. It is possible to rewrite this in an ‘economical’
formulation with Σ an r×r matrix, U and V orthogonal (resp. unitary)
m× r and n× r matrices. The numbers σ1, . . . , σr are called singular
values of A. They may be computed by extracting the positive square
root of the non-zero eigenvalues of A∗A or AA∗, whatever matrix is
smaller. The operator and Frobenius norm of A may be written in
terms of the σi’s:

‖A‖2 = σ1 ‖A‖F =
√
σ2

1 + · · ·+ σ2
r .

The discussion and the results above hold when A is a linear operator
between finite dimensional inner product spaces. It suffices to choose
an orthonormal basis, and apply Theorem 6.1 to the corresponding
matrix.

When m = n = r, ‖A−1‖2 = σn. In this case, the condition number
of A for linear solving is defined as

κ(A) = ‖A‖∗‖A−1‖∗∗.
The choice of norms is arbitrary, as long as operator and vector norms
are consistent. Two canonical choices are

κ2(A) = ‖A‖2‖A−1‖2 and κD(A) = ‖A‖F‖A−1‖2.

The second choice was suggested by Demmel (1988). Using that def-
inition he obtained bounds on the probability that a matrix is poorly
conditioned. The exact probability distribution for the most usual
probability measures in matrix space was computed in (Edelman, 1992).

Assume that A(t)x(t) ≡ b(t) is a family of problems and solutions
depending smoothly on a parameter t. Differentiating implicitly,

Ȧx + Aẋ = ḃ

which amounts to
ẋ = A−1ḃ− A−1Ȧx.

Passing to norms and to relative errors, we quickly obtain

‖ẋ‖
‖ẋ‖
≤ κD(A)

(
‖Ȧ‖F
‖A‖F

+
‖ḃ‖
‖b‖

)
.

This bounds the relative error in the solution x in terms of the rel-
ative error in the coefficients. The usual paradigm in numerical linear
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algebra dates from (Turing, 1948) and (Wilkinson, 1994). After the
rounding-off during computation, we obtain the exact solution of a
perturbed system. Bounds for the perturbation or backward error are
found through line by line analysis of the algorithm. The output error
or forward error is bounded by the backward error, times the condition
number.

Condition numbers provide therefore an important metric invariant
for numerical analysis problems. A geometric interpretation in the case
of linear equation solving is:

Theorem 6.2. Let A be a non-degenerate square matrix.

‖A−1‖2 = min
det(A+B)=0

‖B‖F

In particular, this implies that

κD(A)−1 = min
det(A+B)=0

‖B‖F
‖A‖F

A pervading principle in the subject is: the inverse of the condition
number is related to the distance to the ill-posed problems.

It is possible to define the condition number for a full-rank non-
square matrix by

κD(A) = ‖A‖F σmin(m,n)(A)−1.

Theorem 6.3. (Eckart and Young, 1936) Let A be an m× n matrix
of rank r. Then,

σr(A)−1 = min
σr(A+B)=0

‖B‖F .

In particular, if r = min(m,n),

κD(A)−1 = min
σr(A+B)=0

‖B‖F
‖A‖F

.

Exercise 6.1. Prove Theorem 6.1. Hint: let u, v, σ such that Av = σu
with σ maximal, ‖u‖ = 1, ‖v‖ = 1. What can you say about A|v⊥?

Exercise 6.2. Prove Theorem 6.3.

Exercise 6.3. Assume furthermore that m < n. Show that the same
interpretation for the condition number still holds, namely the norm of
the perturbation of some solution is bounded by the condition number,
times the perturbation of the input.
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7. The space of homogeneous polynomial systems

We will denote by HR
d the space of polynomials of degree d in n+ 1

variables. This space can be assimilated to the space of symmetric
d-linear forms. For instance, when d = 2, the polynomial

f(x0, x1) = f0x
2
0 + f1x0x1 + f2x

2
1 =

[
x0 x1

] [ f0 f1/2
f1/2 f0

] [
x0

x1

]
can be assimilated to a symmetric bilinear form and can be represented
by a matrix. In general, a homogeneous polynomial can be represented
by a symmetric tensor

f(x) =
∑
|a|=d

fax
a0
1 · · ·xann =

∑
0≤i1,...,id≤n

Ti1i2...idxi1xi2 · · · xid

where
fa =

∑
a=ei1+ei2+···eid

Ti1i2...id .

The canonical inner product for tensors is given by

〈S, T 〉 =
∑

0≤i1,...,id≤n

Si1i2...idTi1i2...id

The same inner product for polynomials is written

〈f, g〉 =
∑
|a|=d

faga(
d
a

) .
where

(
d
a

)
= d!

a0!a1!···an!
is the coefficient of (x0 + · · ·+ xn)d in xa.

Lemma 7.1. Let Q be an orthogonal n× n matrix, that is QTQ = I.
Then,

〈f ◦Q, g ◦Q〉 = 〈f, g〉
Exercise 7.1. Prove Lemma 7.1

We say that the above inner product is invariant under orthogonal
action. We will always assume this inner-product for HR

d .

It is also important to notice that HR
d is that it is a reproducing

kernel space. Let
Kd(x,y) = 〈x,y〉d.

Then
f(y) = 〈f(·), Kd(·,y)〉,

Df(y)u = 〈f(·), DyKd(·,y)u〉,
etc...
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8. The condition number

Now, let’s denote by HR
d the space of systems of homogeneous poly-

nomials of degree d = (d1, . . . , dn). The condition number measures
how does the solution of an equation depends upon the coefficients.

Therefore, assume that both a polynomial system f ∈ S(HR
d) and a

point x ∈ S(Rn+1) depend upon a parameter t. Say,

ft(xt) ≡ 0.

Differentiating, one gets

Dft(xt)ẋt = −ḟt(xt)

so

(15) ‖ẋt‖ ≤ ‖Dft(xt)
−1
|x⊥t
‖‖ḟt(xt)‖.

The normalized condition number is defined for f ∈ HR
d and

x ∈ Rn+1 as

µ(f ,x) = ‖f‖

∥∥∥∥∥∥∥∥

d
−1/2
1 ‖x‖−d1+1

. . .

d
−1/2
n ‖x‖−dn+1

Df(x)|x⊥


−1
∥∥∥∥∥∥∥∥ .

In the special case f ∈ S(HR
d) and x ∈ S(Rn+1),

µ(f ,x) =

∥∥∥∥∥∥∥∥

d
−1/2
1

. . .

d
−1/2
n

Df(x)|x⊥


−1
∥∥∥∥∥∥∥∥ .

Proposition 8.1.

(1) If ft and xt are paths in S(HR
d) and S(Rn+1) respectively, and

ft(xt) ≡ 0 then

‖ẋt‖ ≤ µ(ft,xt)‖ḟt‖.
(2) Let x ∈ S(Rn+1) be fixed. Then the mapping

π : HR
d → L(x⊥,Rn),

f 7→


d
−1/2
1

d
−1/2
2

. . .

d
−1/2
n

Df(x)|x⊥
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restricts to an isometry π|(kerπ)⊥ : (ker π)⊥ → L(x⊥,Rn).

(3) Let f ∈ S(HR
d) and x ∈ S(Rn+1). Then,

µ(f ,x) =
1

min{‖f − g‖ : Dg(x)|x⊥ singular}
.

(4) If furthermore f(x) = 0,

µ(f ,x) =
1

min{‖f − g‖ : g(x) = 0 and Dg(x)|x⊥ singular}
.

Proof. Item 1 follows from (15). In order to prove item 2, let x ∈
S(Rn+1) be fixed and let f ∈ HR

d. Assume that y ⊥ x. We can write
f(x + y) as

f(x + y) = f(x) +Df(x)|x⊥y +
1

2
D2f(x)|x⊥(y − x,y − x) + · · ·

This suggests a decomposition of HR
d into terms that are ‘constant’,

‘linear’ or ‘higher order’ at x.

HR
d = H0 ⊕H1 ⊕H2 ⊕ · · · .

An orthonormal basis for H1 would be(
1√
d

∂Kdi(·,x)

∂uj
ei

)
where (u1, . . . ,un) is an orthornormal basis of x⊥ and (e1, . . . , en) is
the canonical basis of Rn.

In this basis, the projection of f in H1 is just


...

· · ·
〈
fi,

1√
d

∂Kdi (·,x)

∂uj

〉
· · ·

...

 =

d−1/2
1

· · ·
d
−1/2
n

Df(x)|x⊥ .

Thus, the subspace H1 of HR
d is isomorphic to the space of n × n

matrices. Moreover, π : HR
d → H1 is an orthogonal projection. Items

3 and 4 follow now easily from Theorem 6.3. �

Exercise 8.1. Deduce that for all f ∈ HR
d, 0 6= x ∈ Rn+1, µ(f ,x) ≥

√
n.

We denote by ρ(x,y) = (̂x0y) the angular distance between x ∈ Sn
and y ∈ Sn. The following estimate is quite useful:

Theorem 8.2. Let f ,g ∈ S(HR
d) and let x,y ∈ S(Rn+1). Let

u = (max di)µ(f ,g)ρ(x,y) and v = µ(f ,x)‖f − g‖.
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Then,

1

1 + u+ v
µ(f ,x) ≤ µ(f ,y) ≤ 1

1− u− v
µ(f ,x).

Remark 8.3. Similar formulas appeared in (Bürgisser and Cucker, 2011)
and (Dedieu et al., 2012). The final form here appeared in (Malajovich,
2011) and generalizes to the sparse condition number.

Proof. Let R be a rotation taking y to x. Then, µ(g,y) = µ(g ◦R,x).
Moreover, it is easy to check that ‖g ◦R−g‖ ≤ (max di)ρ(x,y). Thus,

µ(f ,x)‖f − g ◦R‖ ≤ (u+ v).

Now, notice that Proposition 8.1(3) implies:

1

µ(f ,x)
− ‖f − g ◦R‖. ≤ 1

µ(g ◦R,x)
≤ 1

µ(f ,x)
+ ‖f − g ◦R‖.

The theorem follows by multiplying all terms by µ(f ,x) and taking
inverses. �

9. The inclusion theorem

For any x ∈ S(HR
d), we denote by Ax be the affine space x + x⊥ and

by Fx : Ax → Rn, X 7→ f(x + X) the restriction of f to Ax. Then Fx

is an n-variate polynomial system of degree d.

Lemma 9.1. (Shub and Smale, 1993)

γ(Fx, 0) ≤ (max di)
3/2

2
‖f‖µ(f ,x)

Proof. For simplicity assume ‖f‖ = 1. Let k ≥ 2 and

∆ =


√
d1

. . . √
dn

 .
1

k!

∥∥DFx(0)−1DkFx(0)
∥∥ =

1

k!

∥∥∥Df(x)−1
|x⊥D

kf(x)|x⊥
∥∥∥

≤ 1

k!

∥∥∥Df(x)−1
|x⊥∆

∥∥∥∥∥∆−1Dkf(x)|x⊥
∥∥

≤ µ(f ,x)
1

k!

∥∥∆−1Dkf(x)|x⊥
∥∥
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Now, notice that

|Dkfi(x)| = |〈fi, DkKdi(·,x)〉| ≤
≤ ‖fi‖ sup

‖u1‖=···=‖uk‖=1
u1,...,uk⊥x

‖DkKdi(·,x)(u1, . . . ,uk)‖

where Kdi(y,x) = 〈y,x〉di is the reproducing kernel of HR
di

. Differenti-
ating Kdi with respect to y, one obtains:

1

k!
DkKdi(y,x)(u1, . . . ,uk) =

(
di
k

)
〈y,x〉d−k〈y,u1〉 · · · 〈y,uk〉.

The norm of 1
k!
DkKdi(y,x)(u1, . . . ,uk) (as a polynomial of y) can be

computed using the reproducing kernel property.∥∥∥∥ 1

k!
DkKdi(·,x)(u1, . . . ,uk)

∥∥∥∥2

=

=

〈
1

k!
DkKdi(·,x)(u1, . . . ,uk),

1

k!
DkKdi(·,x)(u1, . . . ,uk)

〉
=

1

k!

∂y

∂u1

· · · ∂y

∂uk

(
di
k

)
〈y,x〉d−k〈y,u1〉 · · · 〈y,uk〉

=
1

k!

(
di
k

)
Perm

[
〈ui,uj〉

]
≤

(
di
k

)
It follows that

1

k!

∥∥DFx(0)−1DkFx(0)
∥∥ ≤ µ(f ,x) max

1√
di

(
di
k

)
.

Estimating

(
di
k

)
≤ dki 2

−k and using Exercise 8.1,

γ(Fx, 0) ≤ d3/2

2
µ(f ,x).

�

Whenever the sequence (Xk)k∈N defined by X0 = 0, Xk+1 =
= N(Fx,Xk) converges, let X∗ = lim Xk and define

ζx =
x + X∗

‖x + X∗‖
∈ Sn+1.

As in Theorem 5.3, define

r0(α) =
1 + α−

√
1− 6α + α2

4α
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Let α∗ the smallest positive root of

α∗ = α0(1− α∗r0(α∗))
2.

Numerically, α∗ > 0.116. (This is better than (Cucker et al., 2008)).
Let Bx = {y ∈ Sn : ρ(x,y) ≤ rx} with rx = r0(α∗)µ(f ,x)‖f(x)‖.

Theorem 9.2. Let f ∈ S(HR
d) and x ∈ Sn be such that

(max di)
3/2µ(f ,x)2‖f(x)‖ ≤ α∗.

Then,

(1) α(F, 0) ≤ α∗.
(2) 0 is an approximate zero of the second kind of Fx, and in par-

ticular f(ζx) = 0.
(3) ζx ∈ Bx.
(4) For any z ∈ Bx, ζz = ζx.

Proof. (1) By Lemma 9.1,

α(Fx, 0) ≤ (max di)
3/2µ(f ,x)

∥∥Df(x)−1
x⊥

f(x)
∥∥ ≤

≤ (max di)
3/2µ(f ,x)2‖f(x)‖ ≤ α∗.

(2) Since α∗ ≤ α, we can apply Theorem 5.3 to Fx and 0.
(3) Since 0 is a zero of the second kind for Fx,

Fx(X∗) = f(‖x + X∗‖ζx) = 0

and hence by homogeneity f(ζx) = 0.
(4)

ρ(x, ζx) ≤ tan ρ(x, ζx) ≤ r0(α∗)β(f ,x) ≤ r0(α∗)µ(f ,x)‖f(x)‖

(5) By Theorem 8.2,

µ(f , z) ≤ 1

1− (max di)µ(f ,x)ρ(x, z)
µ(f ,x) ≤ 1

1− α∗r0(α∗)
µ(f ,x)

and hence, as in item 1:

α(Fz, 0) ≤ 1

(1− α∗r0(α∗))2
α∗ ≤ α0.

�

This theorem appeared in Cucker et al. (2008). For other inclu-
sion/exclusion theorems based in alpha-theory, see Giusti et al. (2007).
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10. The exclusion lemma

Lemma 10.1. Let f ∈ S(HR
d) and let x,y ∈ Sn with ρ(x,y) ≤

√
2.

Then,
‖f(x)− f(y)‖ ≤ max(di)ρ(x,y).

In particular, let δ = min(‖f(x)‖/
√

max(di),
√

2). If f(x) 6= 0, then
there is no zero of f in

B(x, δ) = {y ∈ Sn+1 : ρ(x,y) ≤ δ}.

Proof. First of all,

|fi(x)− fi(y)| = |〈fi(·), Kdi(·,x)−Kdi(·,y)〉|
≤ ‖fi‖‖Kdi(·,x)−Kdi(·,y)‖
≤ ‖fi‖

√
Kdi(x,x) +Kdi(y,y)− 2Kdi(x,y)

= ‖fi‖
√

2
√

1− cos(θ)d

with θ = ρ(x, y). Since θ ≤ π <
√

30, we have always

cos(θ) = 1− 1

2
θ2 +

1

4!
θ4 − 1

6!
θ6 + · · · > 1− 1

2
θ2.

The reader will check that for ε < 1, (1 − ε)d > 1 − dε. Therefore,
using θ < 1/

√
2,

|fi(x)− fi(y)| ≤ ‖fi‖
√
diθ

and
‖f(x)− f(y)‖ ≤

√
max(di)θ.

�

Part 3. The algorithm and its complexity

11. Convexity and geometry Lemmas

Definition 11.1. Let y1, . . . ,ys ∈ Sn belong to the same hemisphere,
that is 〈yi, z〉 > 0 for a fixed z. The spherical convex hull of y1, . . . ,ys
is defined as

SCH(y1, . . . ,ys) =

{
λ1y1 + · · ·+ λsys
‖λ1y1 + · · ·+ λsys‖

: λ1, . . . , λs ≥ 0

and λ1 + · · ·+ λs = 1

}
.

This is the same as the intersection of the sphere with the cone
{λ1y1 + · · · + λsys : λ1, . . . , λs ≥ 0}. We will need the following con-
vexity Lemma from Cucker et al. (2008):
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Lemma 11.2. Let y1, . . . ,ys ∈ Sn belong to the same hemisphere.
Let r1, . . . , rs > 0 and let B(yi, ri) = {x ∈ Sn : ρ(x,yi) < ri}. If
∩B(yi, ri) 6= ∅, then SCH(y1, . . . ,ys) ⊂ ∪B(yi, ri).

Exercise 11.1. Prove Lemma 11.2 above.

For the root counting algorithm, we will need to define a mesh on
the sphere.

Lemma 11.3. For every η = 2−t, we can construct a set C(η) ⊆ Sn

satisfying:

(1) For all z ∈ Sn, ∃x ∈ C(η) such that ρ(z,x) ≤ η
√
n/2.

(2) For all x ∈ Sn, let Y = {y ∈ C(η) : ρ(x,y) ≤
√
nη}. Then

x ∈ SCH(Y ).
(3) #C(η) ≤ 2n(1 + 2t+1)n.

Proof. Just set

C(η) =

{
x

‖x‖
: x ∈ Rn+1, xiη

−1 ∈ Z, ‖x‖∞ = 1

}
.

This corresponds to dividing Q = {x : ‖x‖∞ = 1} into n-cubes of side
η̃. The maximal distance in Q between a point Z ∈ Q and a point X
in the mesh is half of the diagonal, or η

√
n. Then

ρ(Z/‖Z‖,X/‖X‖) < η
√
n.

Now, let Y ′ be the set of points y ∈ C(η) such that the distance
along Q between x/‖x‖∞ and y/‖y‖∞ is at most η. Then clearly
x ∈ SCH(Y ′). Moreover, Y ′ ⊂ Y .

The last item is trivial. �

12. The counting algorithm

Given f ∈ S(HR
d) and η = 2−t, we construct a graph Gη = (Vη, Eη)

as follows. Let

A(f) = {x ∈ Sn : max d
3/2
i µ(f ,x)2‖f(x)‖ < α∗}

be the set of points satisfying the hypotheses of Theorem 9.2. The
set of vertices of Gη is Vη = C(η) ∩ A(f). The set of edges is Eη =
{(x,y) ∈ Vη × Vη : Bx ∩ By 6= ∅}. This graph is clearly constructible.
Theorem 9.2 implies that for any edge (x,y) ∈ Eη, ζx = ζy. More
generally,

Lemma 12.1. The vertices of any connected component of G(η) are
approximate zeros associated to the same zero of f . Moreover, if x,y
belong to distinct connected components of G(η), then ζx 6= ζy.
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The algorithm is as follows:

Algorithm RootCount

Input: f ∈ S(HR
d).

Output: #ζ ∈ Sn : f(ζ) = 0.

η ← 2−dlog2(1/
√

2n)e.

Repeat
η ← η/2.
Let U1, . . . ,Ur be the connected components of Gη.
Until ∀1 ≤ i < j ≤ r,∀x vertex of Ui,∀y vertex of Uj,

(16) ρ(x,y) > 2η
√
n.

and ∀x ∈ C(η) \ A(f),

(17) ‖f(x)‖ > η
√
nmax di/2.

Return r.

Theorem 12.2. If the algorithm RootCount stops, then r is the correct
number of roots of f in Sn.

Proof of Th.12.2. Suppose the algorithm stopped at a certain value of
η. As each connected component Ui determines a distinct and unique
zero of f , it remains to prove that there are no zeros of f outside
∪x∈VηBx.

Therefore, assume by contradiction that there is ζ ∈ Sn with f(ζ) = 0
and ζ 6∈ Bx for any x ∈ Vη.

Let Y be the set of y ∈ C(η) with ρ(ζ,y) ≤ η
√
n.

If there is y ∈ Y with y 6∈ A(f) let δ = ‖f(y)‖/
√

max di. Equa-
tion (17) guarantees that η

√
n/2 < δ. By construction, η

√
n/2 <

√
2.

Therefore, the exclusion lemma 10.1 guarantees that f(ζ) 6= 0, contra-
diction.

Therefore, we assume that Y ⊂ A(f). Equation (16) guarantees that
Y ⊂ Uk for a same connected component of Gη. Therefore, ∩y∈YBy 3 ζ
is not empty.

By Lemma 11.3(2), x ∈ SCH(Y ). Lemma 11.2 says that

SCH(Y ) ⊆ ∪y∈YBy

Thus, x ∈ By for some y, contradiction again.
�

13. Complexity

We did not prove that algorithm RootCount stops. It actually stops
almost surely, that is for input f outside a certain measure zero set.
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Define

κ(f ,x) =
1√

µ(f ,x)−2 + ‖f(x)‖2

and notice that

κ(f ,x) ≤ µ(f ,x) and κ(f ,x) ≤ ‖f(x)‖−1.

Reciprocally,

min(µ(f ,x), ‖f(x)‖−1) ≤
√

2κ(f ,x).

If f(x) = 0, then κ(f ,x) = µ(f ,x).

Definition 13.1. The condition number for for Problem 1.2 (count-
ing real zeros on the sphere) is

κ(f) = max
x∈Sn

κ(f ,x).

Assume that f has no degenerate root. Then the denominator is
bounded away from zero, and κ(f) is finite. We will prove later that
the algorithm stops for κ(f) finite. But before, we state and prove the
condition number theorem to obtain some geometric intuition on κ(f).

Theorem 13.2. (Cucker et al., 2009) Let ΣR = {g ∈ HR
d : ∃ζ ∈ Sn :

g(ζ) = 0 and rk(Dg(ζ)) < n}. Let f ∈ S(HR
d), f 6∈ ΣR. Then,

κ(f) =
1

ming∈ΣR‖f−g‖
.

In particular, κ(f) ≥ 1.

Proof. It suffices to prove that

κ(f ,x) =
1

min g∈HR
d

g(x)=0
rk(Dg(x))<n

‖f − g‖
.

We proceed as in the proof of Prop.8.1. We decompose

HR
d = H0 ⊕H1 ⊕H2 ⊕ · · ·

where H0 and H1 correspond to the constant and linear terms of y 7→
f(x + y). Let u1, . . . ,un be an orthonormal basis for x⊥.

An orthonormal basis for H0 ⊕H1 is(
Kdi(·,x),

1√
d

∂Kdi(·,x)

∂uj

)
.
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The projection of f in H0 ⊕H1 is

[
〈f(·), Kdi(·,x)〉

]
⊕


...

· · ·
〈
fi,

1√
d

∂Kdi (·,x)

∂uj

〉
· · ·

...

 =

= f(x)⊕

d
−1/2
1

d
−1/2
2

d
−1/2
n

Df(x)|x⊥ .

This is an orthogonal projection onto Rn × Rn×n.
Now,

κ(f ,x)−2 = ‖f(x)‖2 + σn


d
−1/2
1

d
−1/2
2

d
−1/2
n

Df(x)|x⊥

 .

Again, we apply Th.6.3. �

Lemma 13.3. Let ζ1, ζ2 be distinct roots of f in Sn. Then,

ρ(ζ1, ζ2) ≥ 1

max d
3/2
i κ(f)

Proof.

‖ζ1 − ζ2‖ ≥
1

2γ(f , ζ1)
by Ex.4.3

≥ 1

max d
3/2
i µ(f , ζ1)

by Lem.9.1

≥ 1

max d
3/2
i κ(f)

because f(ζ1) = 0.

The Lemma follows. �

Lemma 13.4. Assume that

η <
1

2 max d
3/2
i

√
nκ(f)

(1− 2α∗r0(α∗)).

Then (16) holds.

Proof. Recall that x and y belong to Af , so that

max d
3/2
i µ(f ,x)2‖f(x)‖ < α∗
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and the same for y. In particular, the radius rx of Bx satisfies

r0(α∗)µ(f ,x)‖f(x)‖ < α∗r0(α∗)

max d
3/2
i µ(f ,x)

≤ α∗r0(α∗)

max d
3/2
i κ(f ,x)

.

By Lemma 13.3 and the triangle inequality,

ρ(x,y) ≥ ρ(ζx, ζy)− r0(α∗)µ(f ,x)‖f(x)‖ − r0(α∗)µ(f ,y)‖f(y)‖

≥ 1

max d
3/2
i κ(f)

(1− 2α∗r0(α∗)).

�

Lemma 13.5. Let x 6∈ Af . Then,

‖f(x)‖ ≥ α∗

κ(f ,x)2 max d
3/2
i

.

Proof. Let x 6∈ Af , so that

max d
3/2
i

2
µ(f ,x)2‖f(x)‖ ≥ α∗.

Recall that

min(µ(f ,x), ‖f(x)‖−1) ≤
√

2κ(f ,x)

There are two possibilities. If µ(f ,x) ≤
√

2κ(f ,x), then

‖f(x)‖ ≥ α∗

max d
3/2
i κ(f ,x)2

.

Otherwise,

‖f(x)‖ ≥ 1√
2κ(f ,x)

≥ α∗

max d
3/2
i κ(f ,x)2

.

�

Now we can state the ‘cloud complexity’ theorem.

Theorem 13.6. The algorithm RootCount will stop for

η <
1

max d
3/2
i κ(f ,x)2

min

(
α∗ ,

κ(f)

2
√
n

(1− 2α∗r0(α∗))

)
that is, after O(log κ(f) + log max di) iterations. The total number of
evaluations of f and Df is

2n(1 + 4 max d
3/2
i

√
nκ(f)2)n.
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That means that 2n(1 + 4 max d
3/2
i

√
nκ(f)2)n processors in parallel

can compute the root count in time O(log κ(f) + log max di) times a
polynomial in n for the linear algebra.

For people concerned with the overall computing cost, a price tag
exponential in n is known as the curse of dimensionality. It usually
plagues divide and conquer and monte-carlo algorithms.

But the situation n = 2 is already intersting. How efficiently can we
count zeros of a system of polynomials on the 2-sphere? As the parallel
and sequencial running time depends upon κ(f), it is useful to known
more about the condition number.

14. Probabilistic and smoothed analysis

One possibility is to pick the input system f at random, and treat
κ(f) as a random variable. For instance, let f ∈ HR

d be random with
Gaussian probability distribution

1

(2π)dimHR
d/2

e−‖f‖
2/2 dHR

d.

The tail for the random variable κ(f) and the expected value of
log κ(f) can be bounded by

Theorem 14.1. (Cucker, Krick, Malajovich, and Wschebor, 2012)
Let f be as above. Assume that n ≥ 3. Then,

(i) For a > 4
√

2 (max di)
2n7/2N1/2 we have

Prob
(
κ(f) > a

)
≤ Kn

√
2n(1 + ln(a/

√
2n))1/2

a
,

where N = dimHR
d, Kn := 8(max di)

2D1/2N1/2n5/2 + 1 and D =
∏
di.

(ii)

E(lnκ(f)) ≤ lnKn + (lnKn)1/2 + (lnKn)−1/2 +
1

2
ln(2n).

Notice as a consequence that the expected running time of RootCount
is E(lnκ(f)) ∈ O(n ln max di). This is cloud computing time, of course.

Average time analysis depends upon an arbitrary distribution. Spiel-
man and Teng (2004) suggested looking instead at a small random per-
turbation for each given input. This is known as smoothed analysis.

For a given f ∈ S(HR
d), we will consider the uniform distribution in

the ball B(f , arcsinσ) ⊂ S(HR
d) where σ is an arbitrary radius, and

Riemannian metric on the sphere is assumed. The strange looking arc-
sine comes from the fact that B(f , arcsinσ) is the projection on the
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sphere of the ball B(f , σ) ⊂ HR
d. The reason for looking at the uni-

form distribution for perturbations instead of Gaussian is the following
result:

Theorem 14.2. (Bürgisser, Cucker, and Lotz, 2008) Let Σ ⊂ RN be
contained in a projective hypersurface H of degree at most D and let
κ : SN−1 → [1,∞] be given by

κ(f) =
‖f‖

ming∈Σ ‖f − g‖
.

Then, for all σ ∈ (0, 1],

sup
f∈SN−1

Eh∈B(f ,arcsinσ)⊆SN−1(lnκ(h)) ≤ 2 ln(N − 1) + 2 lnD − lnσ + 5.5.

In the context of the root counting problem, the degree D of Σ = ΣR

is bounded by n2(
∏
di)(max di). Therefore,

Corollary 14.3. (Cucker, Krick, Malajovich, and Wschebor, 2009)

sup
f∈S(HR

d)

Eh∈B(f ,arcsinσ)⊆S(HR
d)(lnκ(h)) ≤ 2 ln(dim(HR

d)) + 4 ln(n)

+2 ln(
∏

di) + ln 1/σ + 6.

15. Conclusions

We sketched the average time analysis and a smoothed analysis of
an algorithm for root counting. The same algorithm can also decide if
a given polynomial system admits a root.

Loosely stated, those seem to be NP-complete or #P complete prob-
lems. However, the polynomial systems in the complete problems are
sparse. However, the degree of the sparse discriminant is no more than
the degree of the usual discriminant. In that sense the algorithm and
Corollary 14.3 are still valid. The running time of the algorithm is
still polynomial in n and in the dimension of the input space. Again,
this is a massively parallel algorithm so the number of processors is
exponential in n.
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