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The numerical solution of problems
We need to understand
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The need for speed
The faster the computer, the more important the speed of algorithms - Ll. Threfeten
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The need for precision
The faster the computer, the faster it can screw things up
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So, people is worried by two things: complexity and
precision (stability)

And these are studied in all important (numerical) problems
around:

1. Linear algebra routines (solving Ax = b, finding kernels, LSQ,
matrix decompositions...)

2. Solving systems of Ordinary Differential Equations (ODEs),
Differential Algebraic Equations (DAEs) and Partial
Differential Equations (PDEs).

3. Solving f (x) = 0 where f : Kn→Kn.

4. And in general, *any* problem which is to be solved by a
computer.

We will shortly deal with the first and the last of these two
problems
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Virtually every non–trivial numerical computation involves
LA as a subroutine
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Virtually every non–trivial numerical computation involves
LA as a subroutine
Ax = b where A is n × n, det(A) 6= 0

Input: A ∈Mn(C), det(A) 6= 0. b ∈ Cn. Output: x ∈ Cn such
that Ax = b. Stability of the solution: Relation between x and
x ′ where:

Ax = b A′x ′ = b, A ≈ A′.

Condition number: κ(A) := ‖A‖2‖A−1‖2 [Turing].

‖x − x ′‖
‖x ′‖

≤ κ(A)
‖A− A′‖2
‖A‖2

.

Alternatively: κD(A) := ‖A‖F‖A−1‖2 [Smale, Demmel].
Computing the condition number is more difficult than computing
x . What can we hope? Will κ(A) be “in general” a small
quantity?
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A geometric property of κD
[Eckardt, Young, Smicht, Mirski, and even Banach (?)]’s theorem

We note that κD(A) depends only on the projective class of A.

Let Σn−1 be the set of all singular matrices of IP(Mn(C)) (which
is an algebraic variety.)

Theorem

κD(A) =
1

dIP (Mn(C))(A,Σn−1)
.

The probability that the condition number is big... equals the
probability of being close to Σn−1.
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The volume of tubes
The classical result by Weyl (Gray for the projective version) is only valid for smooth
varieties and small radius... not our case
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The volume of tubes
The classical result by Weyl (Gray for the projective version) is only valid for smooth
varieties and small radius... not our case. But there *is* a way to do it.

This approach produced the first theoretical statistical study of the
condition number. Smale, Renegar, Demmel and others.
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Computing kernels
This was probably first observed by Kahan. Let A of size m × n and rank(A) = s

The condition number of A for the problem of computing the
subspace such that Ax = 0 is the inverse of the distance to the set
of one–rank–less matrices.

[B.,Pardo]: a first technique for bounding studying the case C.
Carlos Beltrán



The estate of the art in the probabilistic estimation of the
condition number of matrices
B., Chen, Dongarra, Edelman, Pardo, Shub, Sutton...

A of size m × n and rank r . Let t ≥ n + m − 2r + 1. Then,

P

[
κ(A)
n+m−r

n+m−2r+1

> t

]
≈ 1

(2π)β/2

(
C

t

)β(n+m−2r+1)

Moreover,

E[log(κ(A))] ≤ log
n + m − r

n + m − 2r + 1
+ 2.6.

Here, β = 1 (resp. β = 2) if the matrices are real (resp. complex).
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How much precision should we use for solving “random”
problems Ax = b where A is an m × n matrix of rank r?
B., Chen, Dongarra, Edelman, Pardo, Shub, Sutton...

E[log(κ(A)) : A ∈ Σ] ≤ log
n + m − r

n + m − 2r + 1
+ 2.6.

For example, for 106 × 106 + 1 matrices of rank 106 − 200 that
quantity is 6 so you should be using at least 8 decimal digits of
precision, at least in the output. This is doable in our double
precision IEEE standard.
But for 1014 × 1014 matrices of rank 1014 − 1, that quantity is
around 17. Too much precision for our machines, right?
And for 1020 × 1025 matrices of rank 1019?The value of this
quantity is less than 3. So, that is doable!
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A question, or maybe a conjecture
This is strongly suggested by the facts above

Prove or disprove: The set Σ of rank r matrices in the set of
m× n matrices is a minimal variety in the vector space of matrices.
That is, for any open set U, the set U ∩ Σ has minimal Hausdorff
measure among all rectifiable (for the same Hausdorff dimension)
sets with the same boundary that U ∩ Σ.

In the complex case, this is consequence of a classical fact: every
complex algebraic variety has that minimizing property.
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Further
That was just a very particular thing!

1. Smooth analysis of the condition number (Spielman & Chen)
has been expanded in different directions with similar
techniques (Burgisser & Cucker and others).

2. Average results for other problems as linear optimization,
polynomial system solving, eigenvalue solving etc. also exist
(Smale, Renegar, Shub, B., Pardo, Armentano and others).

3. Other probability distributions have been analysed with some
success (Tao & Vu and others).

4. Many open questions. For example, average of the condition
number when the entries are uniformly distributed in [−1, 1]
or in {−1, 1}.

5. Do you want a paper in Annals of Math.? Prove a version for
sparse matrices.
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Now let us look at the problem of solving f : Kn→Kn

Robots in car factories
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Now let us look at the problem of solving f : Kn→Kn

20 people can use their mobiles at the same time in the same room. How is it possible?
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Why 0, 1 sequences are waves?
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Now let us look at the problem of solving f : Kn→Kn

So you can send a vector in CN , N the number of “antennas”, and your friend receives a
linear modification of it
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Now let us look at the problem of solving f : Kn→Kn

Interference Alignment: an idea of Jafar’s and Khandani’s research groups
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Now let us look at the problem of solving f : Kn→Kn

After engineering considerations have been taken into

Let K be the number of transmitters/receivers. Let

Φ = {(k , `) : transmitter ` interfers receiver k} ⊆ {1, . . . ,K}2.

Let transmitter ` have M` antennas, receiver k have Nk antennas.
Let dj ≤ min{Mj ,Nj}, 1 ≤ j ≤ K , and let

Hk` ∈MNk×M`
(C)

be fixed (known). Compute Uk ∈MMk×dk (C), 1 ≤ k ≤ K and
V` ∈MN`×d`(C), 1 ≤ ` ≤ K such that

UT
k Hk`V` = 0 ∈Mdk×d`(C), k 6= `.

This is a system of many polynomial equations (degree 2) in
many variables.
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Three facts

I Whenever a fast algorithm for some problem is devised, many
other problems are attacked by reducing them to the already
solved one. This was the case with linear algebra. It is also
becoming standard to reduce many problems to just solving a
system of polynomial equations f : Kn→Kn (i.e. wavelet
analysis by Bank, Lehmann and coworkers, or the study of the
Stuart platform by Giusti, Schost and coworkers, databases
analysis by Heintz and coworkers, and much more!).

I In the problem of linear algebra, the condition number
controls the precision, the stability w.r.t. changes in the
problem input, and the complexity of some of the most
important iterative algorithms (i.e. conjugate gradient).

I In the problem of the numerical solution of systems
f : Kn→Kn this will also happen.
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Polynomial systems f : Cn→Cn

Let f = (f1, . . . , fn) where fi ∈ C[X1, . . . ,Xn], deg(fi ) = di is a
system of equations. What do we do to find its solution set V (f )?
Different approaches:

I Find a Groebner basis ([Buchberger]) of the ideal I = (f1, . . . , fn),
with respect to lexicographical order. Possibly best implementation
by Faugére.

I Find a “Kronecker solution”, that is a projection π : V (f ) → L for
some line L, a polynomial p(T ) such that its zeros correspond to
points in π(V (f )), and rational functions which lift those zeros back
to V (f ). TERA team, leaded by B. Bank, M. Giusti, J. Heintz, L.M.
Pardo. Possibly best implementation by G. Lécerf.
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Polynomial systems f : Cn→Cn

Let f = (f1, . . . , fn) where fi ∈ C[X1, . . . ,Xn], deg(fi ) = di is a
system of equations. What do we do to find its solution set V (f )?
Different approaches:

I Direct search by the size of boxes containing approximate zeros.
Cucker, Krick, Malajovich & Wschebor. See the course by Gregorio
Malajovich.

I The method of moments ( Lasserre, Laurent & Rostalski).

I The use of polar varieties (Bank, Heintz, Lehmann, Mbakop, &
Pardo), see the talk by Marc Giusti.
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Polynomial systems f : Cn→Cn

Let f = (f1, . . . , fn) where fi ∈ C[X1, . . . ,Xn], deg(fi ) = di is a
system of equations. What do we do to find its solution set V (f )?
Different approaches:

These algorithms give us a lot of information, but take exponential
running time. The topic of this part of the course is: can we get
just a little information, but fast?
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Ask for less information and you might be faster

A simple question: can we approximate just one zero, but
guaranteeing polynomial running time?

Smale’s 17th Problem:

Can a zero of n complex polynomial equations in n unknowns
be found approximately, on the average, in polynomial time
with a uniform algorithm?

Stephen Smale, Mathematical problems for the next century.
Mathematics: frontiers and perspectives.

American Mathematical Society, 2000.
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Homotopy method.
Modern usage based on Shub & Smale’s fundamental work.
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An intuitive idea: why does this work?
Because we have reduced our original problem to a well–known problem!

Differentiate the expression

ft(ζt) = 0,

with respect to time, to get

ḟt(ζt) + D(ft)(ζt)ζ̇t .

That is, we have: {
ζ̇t = −(D(ft)(ζt))−1ḟt(ζt)

ζ0 known

This is an ODE system (Cauchy problem)!!! There are many
methods for something like this...
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Homogeneous systems of equations

Instead of solving g we can just solve f :

g =

{
x1x2 − x2 − 7 = 0

x3
1 + 7x2 − 9 = 0

f =

{
x1x2 − x2x0 − 7x2

0 = 0

x3
1 + 7x2x2

0 − 9x3
0 = 0

Note that the solutions of f are points in IP(C3), that is if
(x0, x1, x2) is a solution then so is (λx0, λx1, λx2) for any λ ∈ C.
Besides,

(x0, x1, x2) is a solution of f, x0 6= 0⇒ (x1/x0, x2/x0) is a solution of g.

(1, a, b) is a solution of f⇐ (a, b) is a solution of g.

Thus we consider just homogeneous systems f : Cn+1→Cn, and
look for zeros in IP(Cn+1). Let IP(H(d)) be the projective of the
vector space of homogeneous sytems.
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The solution variety V = {(f , ζ) : f (ζ) = 0}
Is an algebraic variety and a differential submanifold of IP(H(d))× IP(Cn+1)

This sketch is courtesy of Jean Pierre Dedieu.

Σ′ = {(f , ζ) ∈ V : rank(Df (ζ)) < n}, Σ = π1(Σ′).
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Homotopy method

I Convergence results for Newton’s Method (Kantorovich, Kim,
Smale, Shub & Smale, Dedieu & Malajovich, Wang & Hang,
Giusti, Lecerf, Salvy & J.-C. Yakoubsohn). See the talk by
Jean Claude Yakoubsohn for more.

I Precise statements about the length of the homotopy steps
and the complexity by Renegar, Shub & Smale, B. & Pardo,
Burgisser & Cucker.

I Required precision in operations and best choice of Newton’s
method by Malajovich.

I Different techniques to take advantage of sparsity, detect
singularities...

I More theory, applications, heuristics, software by Bates,
Hauenstein, Hubber, Kearfott, Leykin, Lee, Li, Rojas,
Sommese, Sottile, Sturmfels, Tsai, Van der Hoeven,
Verschelde, Wampler, Xing, Zhao...

I Enormous systems are solved this way.
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Approximate zero theory of Shub and Smale

Let f be a system and ζ a projective zero of f . Let z be a
projective point. We say that z is an approximate zero of f with
associated zero ζ if for every k ≥ 0

distance(Nk
f (z), ζ) ≤ 1

22k
distance(z , ζ),

where Nk
f is the result of applying k times the Newton iteration.
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Condition number µ(f , ζ) and approximate zeros

Let f be a system with a zero ζ and let z be a projective point.
Assume that

distance(z , ζ) ≤ 3−
√

7

2d3/2µ(f , ζ)
.

Then, z is an approximate zero of f with associate zero ζ.

Here,

µ(f , ζ) = ‖Diag(
√

d1, . . . ,
√

dn)
(
Df (ζ) |ζ⊥

)−1 ‖
is the condition number of f at ζ (the formula assumes
‖f ‖ = ‖ζ‖ = 1).
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Thank you for your attention

If we’re still in the first class... then we’re done for now!
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What do we mean by ‖f ‖?
One can think on ‖f ‖2 as simply taking all the coefficients of the
monomials in f , compute the square of their modulus, and add it
all up...

This is almost the Bombieri–Weyl product, in which each
coefficient is actually multiplied by a number: the coefficient of
Xα0
0 · · ·Xαn

n is multiplied by

α0! · · ·αn!

(α0 + · · ·+ αn)!
.

This is not an arbitrary or capricious choice!!! Indeed:
I It comes from a vector product (the same way that the usual

norm comes from the usual vector product)
I It satisfies a key property, physically meaningful and

mathematically helpful:

‖f ◦ U‖ = ‖f ‖,
for any unitary (n + 1)× (n + 1) matrix U.
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We recall the condition number µ(f , ζ)

There’s no need to assume ‖f ‖ = ‖ζ‖ = 1, we just need to write
down a more complicated formula:

µ(f , ζ) = ‖f ‖‖Diag(
√

d1‖ζ‖d1−1, . . . ,
√

dn‖ζ‖dn−1)
(
Df (ζ) |ζ⊥

)−1 ‖.

This number controls the stability of solutions, just as κ does in
the case of linear system solving: let G be the inverse function
associated to π1 near to (f , ζ). Then, ‖DG (f )‖ ≤ µ(f , ζ), where
‖DG (f )‖ is the norm of the derivative of G at f . This means that
if we have a smooth curve (ft , ζt), ft(ζt) = 0, then,

‖ζ̇0‖ ≤ µ(f0, ζ0)‖ḟ0‖.

That is, if f (ζ) = 0 and we change f to f̃ with distance(f , f̃ ) < ε
then the zero ζ̃ of f̃ satisfies

distance(ζ, ζ̃) . εµ(f , ζ).
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A geometric definition of the condition number
µ is the (essentially) smallest quantity that satisfies:
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A geometric definition of the condition number
µ is the (essentially) smallest quantity that satisfies:

Indeed, this is valid as far as ε < c/µ(f , ζ)2.
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A geometric definition of the condition number
µ is the (essentially) smallest quantity that satisfies:

If I have to move along a path ft keeping track of ζt , then, the
biggest the condition number, the slower I will need to go.

Carlos Beltrán



Let us put things together:

I If z is c/µ(f , ζ)–close to an actual root ζ of f , then the
Newton iterates converge to ζ.

I If we have a curve ft and if fε is c/µ(f0, ζ0)2–close to f , then
the zeros of fε and f0 are very similar, and so are µ(f0, ζ0) and
µ(fε, ζε).

I Thus, if z is c/µ(f , ζ)–close to an actual root ζ of f and if fε
is c/µ(f0, ζ0)2–close to f , then z is c/µ(fε, ζε)–close to ζε...
which means that the Newton iterates based on fε with initial
point z , rapidly converge to ζε.

I This gives a better approximation z1 to ζε than z . And allows
us to repeat the process. Using induction, if µ(ft , ζt) <∞ for
all t, at the end we reach an approximation of the zero of fend .

This is a “Newton–based homotopy”, it does not actually use ODE
solvers!
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I If z is c/µ(f , ζ)–close to an actual root ζ of f , then the
Newton iterates converge to ζ.

I If we have a curve ft and if fε is c/µ(f0, ζ0)2–close to f , then
the zeros of fε and f0 are very similar, and so are µ(f0, ζ0) and
µ(fε, ζε).

I Thus, if z is c/µ(f , ζ)–close to an actual root ζ of f and if fε
is c/µ(f0, ζ0)2–close to f , then z is c/µ(fε, ζε)–close to ζε...
which means that the Newton iterates based on fε with initial
point z , rapidly converge to ζε.

I This gives a better approximation z1 to ζε than z . And allows
us to repeat the process. Using induction, if µ(ft , ζt) <∞ for
all t, at the end we reach an approximation of the zero of fend .

This suggests us that the first step should be chosen as
c‖ḟt‖/µ2(f0, ζ0).
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Condition number and number of homotopy steps

A precedent by Shub & Smale related condition number and
complexity. This foundational work was later improved by Shub:

The number of Newton homotopy steps necessary to follow a
homotopy path Γt = (ft , ζt), 0 ≤ t ≤ 1 is bounded above by

Constant d3/2

∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt

This is the length of the curve (ft , ζt) in the condition metric,
see the talk by Mike Shub.

Thus, the condition number µ not only controls stability: it also
bounds complexity!
The previous slice may have suggested

∫ 1
0 µ

2(ft , ζt)‖ḟt‖ dt. This is

also valid, but is less precise because ‖ζ̇t‖ ≤ µ(ft , ζt)‖ḟt‖.
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Condition number and number of homotopy steps

I Constructive versions of Shub’s theoretical result by
[B.,Cucker & Bürgisser, Dedieu–Malajovich–Shub] (assuming
exact arithmetic computations).

I An algorithm performing this task (floating point, double
precission) [B., Leykin] implemented is included in the
Numerical Algebraic Geometry package of Macaulay 2,
NAG4M2.

I Using only rational arithmetic, in case the input systems and
initial zero have rational coordinates, the homotopy method
can be carried out in rational arithmetic in running time:

I Linear in
∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt

I Polynomial in the dimension of H(d) and the size of rationals,
I Polynomial in the logarithm of the max. of µ along the path.

(B. & Leykin). This algorithm is also implemented in
Macaulay 2, NAG4M2. Previous work by Malajovich.
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Thank you for your attention

If we’re still in the second class... then we’re done for now!
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Let us recall our last claim

Assume that we know a zero ζ0 of some system f0. The complexity
(number of arithmetic operations) of following a straight–line path
ft = (1− t)f0 + tf1 for finding a zero ζ1 of f1 is at most a small
quantity (polynomial in the size of the input) times∫ 1

0
µ(ft , ζt)‖(ḟ , ζ̇)‖ dt,

and as far as µ(ft , ζt) <∞ for t ∈ [0, 1] the homotopy algorithm
always gives an answer.

Recall Smale’s 17th problem: can a zero of n complex polynomial
equations in n unknowns be found approximately, on the average,
in polynomial time with a uniform algorithm?
That is, we would like to design a way to choose the initial pair
(f0, ζ0) in such a way that the average value of the integral above
is small.
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A complexity measure for a initial pair (f0, ζ0)

Define the complexity measure:

A(f0, ζ0) = Ef ∈IP (H(d))

[∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt

]
.

We say that (f0, ζ0) is a good starting pair for the homotopy if
A(f0, ζ0) is “small”.

Note that another option would be to bound

Ef ∈IP (H(d))

[∫ 1

0
µ(ft , ζt)

2 dt

]
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A seemingly more complicated integral

Let us take another integral here, that is compute the average
value of the function we want to compute:

Ef0∈IP (H(d))

 ∑
ζ0:f0(ζ0)=0

Ef ∈IP (H(d))

[∫ 1

0
µ(ft , ζt)

2 dt

]

We can use Fubini’s theorem: this last integral equals

Ef0,f ∈IP (H(d))

 ∑
ζ0:f0(ζ0)=0

∫ 1

0
µ(ft , ζt)

2 dt

 .

Because unless ft ∩ Σ 6= ∅, which happens with probability 0, the
zeros of f0 and those of f are in one–to–one correspondence, this
last integral equals

Ef0,f ∈IP (H(d))

∫ 1

0

∑
ζ:ft(ζ)=0

µ(ft , ζ)2 dt

 .
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A typical result from Integral Geometry

We’d like to compute

Ef0,f ∈IP (H(d))

∫ 1

0

∑
ζ:ft(ζ)=0

µ(ft , ζ)2 dt

 .

That is like the expected value of a function along the points
falling in a randomly chosen line. Does this sound like Santaló?

Here is an intuitive fact: there is no reason why any system
f ∈ IP(H(d)) should weight more than any other for
computing this integral. Thus, the expected value of the
function is (up to a constant) the same as the expected value of
µ2 in IP(H(d)). That is:

Ef ∈IP (H(d))

(
µ(ft , ζ)2

)
.
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Here is the average value of the condition number of linear
algebra

It turns out that, because µ is essentially the norm of the inverse
of the derivative, this quantity can be computed exactly (bound by
Shub & Smale, exact value by B. & Pardo):

Ef ∈IP (H(d))

(
µ(ft , ζ)2

)
= DN

(
n

(
1 +

1

n

)n+1

− 2n − 1

)
≤ nND,

where D is the product of the degrees and N the dimension of
IP(H(d)). This is done by reducing the computation to the linear
case:

Ef ∈IP (H(d)) (µ(ft , ζ)α) =
DΓ(N + 1)Γ(n2 + n − α/2)

Γ(N + 1− α/2)Γ(n2 + n)
×

EM and n×(n+1) matrix,‖M‖F=1(κ(M)α).
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Conclusion

Recall we defined

A(f0, ζ0) = Ef ∈IP (H(d))

[∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt

]
.

We say that (f0, ζ0) is a good starting pair for the homotopy if
A(f0, ζ0) is “small”.
Then, we have proved:

Ef0∈IP (H(d))

 ∑
ζ0:f0(ζ0)=0

Ef ∈IP (H(d)) [A(f0, ζ0)]

 nND.

That is to say: let f0 be chosen at random, let ζ0 be a zero of
f , chosen at random among the D zeros of f . Then, the
expected value of A(f0, ζ0) is less than nN. In particular, such a
randomly chosen pair is a good initial pair.
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µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt

]
.

We say that (f0, ζ0) is a good starting pair for the homotopy if
A(f0, ζ0) is “small”.
Then, we have proved:

Ef0∈IP (H(d))

 ∑
ζ0:f0(ζ0)=0

Ef ∈IP (H(d)) [A(f0, ζ0)]

 nND.

That is to say: let f0 be chosen at random, let ζ0 be a zero of
f , chosen at random among the D zeros of f . Then, the
expected value of A(f0, ζ0) is less than nN.

In particular, such a
randomly chosen pair is a good initial pair.

Carlos Beltrán



Conclusion

Recall we defined

A(f0, ζ0) = Ef ∈IP (H(d))

[∫ 1

0
µ(ft , ζt)‖(ḟt , ζ̇t)‖ dt
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A probabilistic problem

I This does not yield an algorithm for we must solve a random
f0. And this is precisely our goal!

I But we have turned the complexity problem into a
probabilistic problem: Generate (algorithmically) a random
pair system-solution (f0, ζ0).
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Naive strategy

I GOAL: Let f0 be chosen at random. Then, find all of the
solutions of f0 and choose one at random.

I INSTEAD: Let ζ0 be chosen at random. Then, choose a
random f0 such that f0(ζ0) = 0.

I This can be done: For fixed ζ0, the set {f0 : f0(ζ0) = 0} is a
vector space.

I Unfortunately, the probability distribution is not the same!

Carlos Beltrán



Naive strategy

I GOAL: Let f0 be chosen at random. Then, find all of the
solutions of f0 and choose one at random.

I INSTEAD: Let ζ0 be chosen at random. Then, choose a
random f0 such that f0(ζ0) = 0.

I This can be done: For fixed ζ0, the set {f0 : f0(ζ0) = 0} is a
vector space.

I Unfortunately, the probability distribution is not the same!

Carlos Beltrán



Generate a random pair (f0, ζ0)

[B., Pardo] The following is the correct way to do this:

I Choose a random matrix M, with n rows and n + 1 columns.

I Solve M, call ζ0 the solution.

I Construct a random system with linear part equal to M and
solution ζ0.

This yields an Average Las Vegas procedure to solve: Input f1,
choose random (f0, ζ0) and follow that homotopy. Total complexity
is Õ(N2).
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A “random” choice of starting pair is good
Summary

[Shub & Smale] Foundational results for an average complexity
analysis.

[B. & Pardo] A randomly chosen initial pair w.r.t. a particular
probability distribution is indeed a good starting point: expected
number of homotopy steps is O(nN). A Las Vegas algorithm for
Smale’s 17th problem.

[B. & Shub] Not only the expected complexity is polynomial in the
size of the input, also the variance and other higher moments.
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What about a deterministic algorithm?
Still an open problem, but it may be just around the corner!

It is natural to demand a deterministic algorithm, i.e. an algorithm
which does not need to invoke random choices. The most
promising approach is simply finding some (collection, for every n
and list of degrees of) (f0, ζ0) such that A(f0, ζ0) ≤ p(N), for some
fixed polynomial p.

In 1994, Shub & Smale conjectured that the following pair satisfies
this claim:

fgood =


d
1/2
1 xd1−1

0 x1 = 0
...

d
1/2
n xdn−1

0 xn = 0

, ζgood =


1
0
...
0

 .

Note that fgood is just a homogeneization of the identity.
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What about a deterministic algorithm?
Still an open problem, but it may be just around the corner!

It is natural to demand a deterministic algorithm, i.e. an algorithm
which does not need to invoke random choices. The most
promising approach is simply finding some (collection, for every n
and list of degrees of) (f0, ζ0) such that A(f0, ζ0) ≤ p(N), for some
fixed polynomial p.

In 2010 Burg̈ıser & Cucker proved that for any pair (f0, ζ0) we have

A(f0, ζ0) ≤ p(N) · q( max
ζ:f0(ζ)=0

µ(f0, ζ)),

p and q polynomials. Unfortunately, no f0 is known such that
maxζ:f0(ζ)=0 µ(f0, ζ) is small, so this does not give a polynomial time
algorithm...
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What about a deterministic algorithm?
Still an open problem, but it may be just around the corner!

It is natural to demand a deterministic algorithm, i.e. an algorithm
which does not need to invoke random choices. The most
promising approach is simply finding some (collection, for every n
and list of degrees of) (f0, ζ0) such that A(f0, ζ0) ≤ p(N), for some
fixed polynomial p.

But it turns out that the system whose zeros are the roots of unity:

ftotal =


xd1
0 − xd1

1 = 0
...

xdn
0 − xdn

n = 0

, ζtotal =


1
1
...
1

 ,

satisfies maxζ:f0(ζ)=0 µ(f0, ζ) ≤ 2(n + 1)d , where d is the maximum
of d1, . . . , dn.
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What about a deterministic algorithm?
Still an open problem, but it may be just around the corner!

It is natural to demand a deterministic algorithm, i.e. an algorithm
which does not need to invoke random choices. The most
promising approach is simply finding some (collection, for every n
and list of degrees of) (f0, ζ0) such that A(f0, ζ0) ≤ p(N), for some
fixed polynomial p.

So, for “small” values of the degrees the pair (ftotal , ζtotal) is a good
starting pair... And it turns out that for high degrees d1, . . . , dn,
a symbolic-numeric algorithm designed by James Renegar in the
80’s gives a polynomial time procedure! The combination of the
homotopy with starting pair (ftotal , ζtotal) and Renegar’s algorithm
yields average complexity which can be bounded above by

NO(log log(N)), that is almost polynomial.

Carlos Beltrán



What about a deterministic algorithm?
Still an open problem, but it may be just around the corner!

It is natural to demand a deterministic algorithm, i.e. an algorithm
which does not need to invoke random choices. The most
promising approach is simply finding some (collection, for every n
and list of degrees of) (f0, ζ0) such that A(f0, ζ0) ≤ p(N), for some
fixed polynomial p.

So, the state of the art in Smale’s 17th problem is:

I Solved using a Las–Vegas algorithm, quadratic running time
Õ(N2).

I No deterministic algorithm is known working in polynomial
time, but one working in NO(log log(N)) exists.
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Table with average number of homotopy steps

[B., Leykin]

system #sol. #steps/path (C) #steps/path (H)

Random(2,2) 4 198.5 31
Random(2,2,2) 8 370.125 23
Random(2,2,2,2) 16 813.812 44.375
Random(2,2,2,2,2) 32 1542.5 48.5312
Random(2,2,2,2,2,2) 64 2211.58 58.5312
Katsura3 4 569.5 25.75
Katsura4 8 1149.88 41.5
Katsura5 16 1498.38 39.0625
Katsura6 32 2361.81 55.5625
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Table with average number of homotopy steps
good: homogeneization of the identity [Shub & Smale]; random: random pair [B.&
Pardo];total: usual total homotopy (roots of unity) [Burg̈ıser & Cucker]

[B., Leykin]
Generate 1000 random degree 2 systems for n = 4, 5, 6, 7, 8 and
measure average running time.

n 4 5 6 7 8
Egood 634.674 1001.25 1452.57 2007.84 2622.45

#failgood 3 3 12 10 22
Etotal 825.927 1373.76 2028.24 2832.46 3966.77

#failtotal 1 3 5 13 16
Erand 1075.58 1777.03 2603.78 3714.34 5013.25

#failrand 2 1 7 16 26

Note that the third row is the only one with proven polynomial
running time! Yet, the two other ones are in this experiment
slightly faster, more or less as:

Egood ≤ Etotal ≤ Erand ≤ 2Egood .
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A differential topology–based proof of the Fundamental
Theorem of Algebra
Here is a beautiful theorem

Theorem (Ehresmann 1951)

Let X ,Y be smooth manifolds with Y connected. Let U ⊆ X be a
nonempty open subset of X , and let π : U → Y satisfy:

I π is a submersion.

I π is proper, i.e. π−1(compact) = compact.

Then, π : U → Y is a fiber bundle. In particular, it is surjective.

Corollary

If additionally we assume dim(X ) = dim(Y ) then π is a covering
map. In particular, the number of preimages of every y ∈ Y is
finite and constant.
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A proof of the Fundamental Theorem of Algebra
Let us see if for J.P.’s sketch: π1 : U → IP(H(d)) \ Σ

It is easy to see that, if we remove Σ from IP(H(d)) and let

U = π−11 (Σ), we are under the conditions of Ehresmann’s theorem!
In particular, every f ∈ IP(H(d)) with no singular zeros has the
same number of zeros, equal to D = d1, · · · dn. By continuity and
compactness, every f ∈ IP(H(d)) has at least one zero.
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That’s it!
Thanks for your attention

Carlos Beltrán


