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Abstract. In [16] and, later on, in [1] the authors introduced zeta Mahler measure functions for

multivariate polynomials ([16] called them “zeta Igusa” functions, but we follow here the terminology

of [1]). We generalize this notion by defining a zeta Mahler measure function ZX(·, f) : C −→ C,
where X is a compact probability space and f : X −→ C is a function bounded almost everywhere in

X. We give sufficient conditions that imply that this function is holomorphic in certain domains. Zeta

Mahler measure functions contains big amounts of information about the expected behavior of f on
X. This generalization is motivated by the study of several quantities related to numerical methods

that solve systems of multivariate polynomial equations. We study the functions Z(·, 1/‖ · ‖aff),
Z(·, 1/µnorm) and Z(·, JAC), respectively associated to the norm of the affine zeros (‖ · ‖aff), the

non-linear condition number (µnorm) and the Jacobian determinant (JAC) of complete intersection

zero-dimensional projective varieties. We find the exact value of these functions in terms of Gamma
functions and we also describe their respective domains of holomorphy in C. With the exact value of

these zeta functions we can immediately prove and exhibit expectations of some average properties

of zero-dimensional algebraic varieties. For instance, the exact knowledge of Z(·, 1/‖ · ‖aff) yields as
a consequence that the expectation of the mean of the logarithm of the norms of the affine zeros

of a random system of polynomial equations is one half of the n-th harmonic number Hn. Other

conclusions are exhibited along the manuscript. Using these generalized zeta functions we exhibit
the exact value of the arithmetic height of the hyper-surface known as the discriminant variety

(roughly speaking the variety formed by all systems of equations having a singular zero).

Keywords: Polynomial equation solving, affine and projective varieties, condition number, Discrim-
inant, zeta Mahler measure, Co-area Formula.

1. Introduction

In [16], J. Cassaigne and V. Maillot introduced zeta Mahler measure function for polynomials, based
on [8]. This was re-introduced in the same Journal by H. Akatsuka in his 2009 article [1]. These
holomorphic functions have been a useful mathematical concept that have been extensively used in
several works on the higher Mahler measures of polynomials (cf. [10, 11, 40] and references therein). In
this manuscript we explore several extensions and generalizations of the notion to analyze the average
behavior of several quantities related to zero-dimensional projective algebraic varieties and numerical
solving.
The natural extension of zeta Mahler measure functions can be stated as follows. Let X be a compact
topological space endowed with a measure µ such that µ(X) < +∞. Let f : X −→ C be a measurable
function, bounded almost everywhere on X and let t ∈ C be a complex number. Let g : X −→ C be
a continuous function defined on X and assume that g is not identically zero almost everywhere on
X. Zeta Mahler measure function associated to f and g over X is the complex function defined by
the following identity

ZX(t, f, g) :=
1

IX [|g|]

∫
x∈X
|f(x)|t|g(x)|dµ(x),

where
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(1.1) IX [|g|] =

∫
X

|g(x)|dµ(x) 6= 0,

provided that these integrals are defined and finite. Note that ZX(t, f, g) is the expectation of |f |t
with respect to the probability distribution of X defined by the measure µ and using |g| as probability
density function. We will write ZX(t, f) in the case g ≡ 1. In [16], X = S2n+1 ⊆ Cn+1 is the complex
unit sphere, g is constantly equal to 1 and f ∈ C[X0, . . . , Xn] is a homogeneous polynomial. In [16] the
authors also considered Zeta functions related to the Gaussian distribution on Cn+1 which is related
to the sphere case (see Identity (1.3) below, for instance). In [1], X :=

∏n
i=1 S

1 is the product of the

unit spheres S1 ⊆ C, g is again constantly equal to 1 and f ∈ C[X1, X
−1
1 , X2, X

−1
2 , . . . , Xn, X

−1
n ] is

a Laurent polynomial. In Lemma 2.1 and Lemma 2.2 we exhibit some conditions on f and X that
ensure that the function ZX(·, f) : DZ(f) ⊆ C −→ C is well-defined and holomorphic in some complex
region DZ(f) ⊆ C.
The relevance of a zeta Mahler measure function like ZX(·, f) is the large amount of information that
it contains. For instance, for values t ∈ iR := {ib : b ∈ R}, the function ZX(t, f) is the characteristic
function of log(|f |) as random variable. Additionally, if p ≥ 1 is a real number, and p ∈ DZ(f), the
value ZX(p, f) = ‖f‖pLp , where ‖ · ‖Lp is the Lp norm defined by the probability distribution induced
by µ on X. Moreover, according to Lemma 2.1, if 0 ∈ C is an interior point of the region DZ(f), we
can easily obtain the moments of log |f | just differentiating with respect to t in ZX(t, f). Namely,

EX [logk |f |] =
dkZX(·, f)

dtk

∣∣∣
t=0

,

where EX [logk |f |] denotes the k-th moment of log |f | with respect to the probability distribution
induced on X by the measure µ.
As this zeta function is so rich in information about the function f with respect to the measure µ on
X, it is very convenient to have explicit descriptions of these functions (and not merely bounds or
approximations).
The goal of this manuscript is to explicitely exhibit several zeta Mahler measure functions, mostly
related to properties of zero-dimensional complete intersection algebraic varieties. At the end of the
manuscript, we show an example on how this extension of Akatsuka’s zeta Mahler function can be
applied to compute the exact value of the arithmetic height of a classical Diophantine variety Σ(d),
known as the discriminant variety.

1.1. Main outcomes on explicit descriptions of some zeta Mahler functions. In this sub-
section we are going to exhibit the exact values of several zeta Mahler measure functions oriented to
understand several properties of zero-dimensional complete intersection projective varieties. In order
to achieve this purpose we need to introduce several notations.
Let {X0, . . . , Xn} be a set of variables and d ∈ N be a positive integer. We will denote byHd(X0, . . . , Xn)
(or Hd(X) when the number of variables n+ 1 is fixed) the complex vector space of all homogeneous
polynomials in the variables {X0, . . . , Xn} of degree d with complex coefficients. Namely,

Hd(X) := {f ∈ C[X0, . . . , Xn] : f is homogeneous, deg(f) = d}.

Note that Hd(X) is a complex vector space of dimension M(d, n) :=
(
d+n
n

)
= Nd+ 1. For a degree list

(d) := (d1, . . . , dn) we define H(d) as the complex space of lists (f1, . . . , fn) of polynomials fi ∈ Hdi .
Namely,

H(d) :=

n∏
i=1

Hdi(X).

Again,H(d) is a complex vector space of dimensionM(d) :=
∑n
i=1Ndi+n. Every list f := (f1, . . . , fn) ∈

H(d) defines a projective algebraic variety VP(f) ⊆ Pn(C) of their common zeros:

VP(f) := {ζ ∈ Pn(C) : fi(ζ) = 0, 1 ≤ i ≤ n} ⊆ Pn(C).
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The affine zeros of the system f are denoted by VA(f) ⊆ Cn. These affine zeros may be viewed as
follows. Let ϕ0 : Cn −→ Pn(C) \ {X0 = 0} be the canonical embedding of the complex affine space
into the complex projective space. This embedding ϕ0 is given by ϕ0(x1, . . . , xn) := (1 : x1 : . . . : xn),
for all x := (x1, . . . , xn) ∈ Cn, where (1 : x1 : . . . : xn) are the homogeneous coordinates of the
corresponding projective point. Hence, ϕ0 identifies some of the projective points in VP(f) with the
affine ones in the following form VA(f) = ϕ−1

0 (VP(f)). Note that VP(f) is always non-empty. We say
that VP(f) is zero-dimensional if it is a finite set. In this case, VP(f) is also complete intersection:
VP(f) is a finite set of projective points in Pn(C), given by n polynomial equations. We say that VP(f)
is smooth if it contains no singular points.
Let P(H(d)) be the complex projective space defined by H(d). Then , there is a Diophantine algebraic
hyper-surface Σ(d) ⊆ P(H(d)) such that ∀f ∈ P(H(d))\Σ(d), the algebraic variety VP(f) ⊆ Pn(C) of its
complex projective zeros is zero-dimensional, complete intersection and smooth. This hyper-surface
Σ(d) ⊆ P(H(d)) is usually called the discriminant variety. The discriminant variety Σ(d) is determined
as the zero set of a unique multi-homogeneous Diophantine polynomial Disc(d), which is known as
the discriminant polynomial (cf. [15] and below for more detailed discussions on the discriminant
polynomial Disc(d)).
As the zeta Mahler measure function ZX is, in fact, a function defined in terms of expectations, we
now discuss the natural probability distributions on the spaces Hd(X) and H(d) (cf. [9] or[14] and
references therein for more detailed discussions).
Each complex vector space Hdi(X) may be endowed with a unique Hermitian product which is in-
variant under the action of the unitary group U(n+ 1) on the elements of Hdi(X):

f 7−→ f ◦ U∗ ∈ Hdi(X),

where U∗ is the conjugate transpose of U ∈ U(n+1) and ◦ denotes composition. This unique Hermitian
product is Bombieri-Weyl Hermitian product (cf. Section 3.2 below for precise definitions).
For every i, 1 ≤ i ≤ n, let S(Hdi(X)) be the unit sphere in Hdi(X) with respect to the Bombieri-Weyl
Hermitian product. Namely,

S(Hdi(X)) := {f ∈ Hdi(X) : ‖f‖2di = 1},
where ‖ · ‖di is the norm associated to the Bombieri-Weyl Hermitian product on Hdi(X).
Bombieri-Weyl Hermitian product is naturally extended to H(d) by the obvious identity, yielding
Bombieri-Weyl norm that may be defined as follows:

‖f‖∆ := ‖(f1, . . . , fn)‖∆ =
( n∑
i=1

‖fi‖2di
) 1

2 , ∀f := (f1, . . . , fn) ∈ H(d),

we thus consider two natural Riemannian compact manifolds associated to these metrics.
On the one hand, we may consider the unit sphere on H(d) with respect to Bombieri-Weyl norm

S(H(d)) := {f ∈ H(d) : ‖f‖2∆ = 1}.
This sphere is naturally related to the complex projective space P(H(d)) and it becomes a very con-
venient structure when studying homogeneous functions φ : H(d) −→ C. Similarly, in the case φ is

multi-homogeneous, we may consider the product of spheres S
(n)
(d) ⊆ H(d)(X) (we also denote it by

S(d) when no confusion arises) given by the following identity:

(1.2) S(d) := S
(n)
(d) :=

n∏
i=1

S(Hdi(X)).

This product of spheres S(d) is naturally related to the product of complex projective spaces
∏n
i=1 P(Hdi(X))

and it is a natural space to study multi-homogeneous functions φ : H(d) −→ C.
Both S(H(d)) and S(d) are endowed with their respective natural volume forms, dνS and dνS, associ-
ated to their respective Riemannian structures. In both cases, the volumes are finite (i.e. νS[S(H(d))] <
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+∞, νS[S(d)] < +∞) and they induce natural probability distributions on S(H(d)) and S(d) respec-
tively. These probability distributions are equivalent to standard Gaussian distributions N∆(0, I) on
the complex space H(d). Similarly, in the case complex projective spaces (as Pn(C), P(Hd(X)) or
P(H(d))) occur in forthcoming pages, we also consider the natural volume form dνP associated to the
corresponding complex Riemannian structure. As these volumes of complex projective spaces are
also finite, they also induce probability measures, just dividing by the corresponding volumes. For
instance, if φ : H(d) −→ R is a function, homogeneous of degree k, provided that the real part satisfies

<( tk2 +M(d)) > 0, integrating in polar coordinates, the following equality holds :

(1.3) Ef∼N∆(0,I)

[
|φ|t
]

=
Γ
(
tk
2 +M(d)

)
Γ
(
M(d)

) ZS(H(d))(t, φ),

where Ef∼N∆(0,I) denotes expectation inH(d) with respect to the standard Normal distribution defined
by Bombieri-Weyl’s norm. Similarly, if φ is multi-homogeneous of degrees (k1, . . . , kn) with respect
to each group of variables in the cartesian product H(d) :=

∏n
i=1Hdi(X), then, provided that the real

parts satisfy <( tki2 +M(di, n)) > 0, for every i, 1 ≤ i ≤ n, the following equality also holds:

(1.4) Ef∼N∆(0,I)

[
|φ|t
]

=

(
n∏
i=1

Γ
(
M(di, n) + tki

2

)
Γ(M(di, n))

)
ZS(d)

(t, φ).

These two identities allow us to work freely either with ZS(d)
or ZS(H(d)). An immediate consequence

of these two equalities (just by differentiating with respect to t), is the following Corollary.

Corollary 1.1 (Relation between Mahler measures in spheres and products of spheres). With the same
notations as above, let φ : H(d) −→ R be a multi-homogeneous function of multi-degree (δ1, . . . , δn)
and total degree δ. Assume that the zeta Mahler measure functions ZS(H(d))(t, φ) and ZS(d)

(t, φ) exist
and are differentiable near t = 0. Then, the Mahler measures of φ satisfy:

mS(H(d))(φ) +
δ

2
ψ(M(d)) = mS(d)

(φ) +

n∑
i=1

δi
2
ψ(M(di, n)),

where ψ is the digamma function and for X = S(H(d)) or X = S(d), mX(φ) is the Mahler measure
of φ, namely

mX(φ) :=
1

V ol(X)

∫
X

log |φ(x)|dνx(x).

A reader interested in more detailed arguments supporting the use of Bombieri-Weyl Hermitian prod-
uct, and the probability distributions induced either on S(H(d)) or S(d), may follow [23], [9], [14], [56],
[59], [6], [7], [13] and references therein.
Now we introduce several functions defined either in H(d), S(H(d)) or S(d), through functions that
depend on the set of projective zeros VP(f) associated to f .
We begin our short catalogue of zeta Mahler measure functions with the following one which was
already clued in [6]. As above, ϕ0 : Cn −→ Pn(C) is the canonical embedding of the affine space Cn
into the complex projective space Pn(C). For every system of equations f ∈ H(d) and every affine

zero ζ ∈ VA(f), we consider the norm of this point in Cn+1 with respect to the canonical Hermitian
product. Namely,

‖ϕ0(ζ)‖aff = (1 + ‖ζ‖2)
1
2 .

We then consider the following zeta Mahler measure function:

(1.5) Z(t, 1/‖ · ‖aff) :=
1

νS[S(d)]

∫
f∈S(d)

1

D(d)

(∫
ζ∈VA(f)

(
1

(1 + ‖ζ‖2)
1
2

)t
dζ

)
dνS(f),

where D(d) :=
∏n
i=1 di is the Bézout number (see Subsection 5.1 for details). We have considered the

multi-homogeneous case (i.e. S(d)). Generically for f ∈ H(d) (and also for f ∈ S(d)), the number of
affine zeros satisfies ] (VA(f)) = D(d). As the number of finite zeros is generically finite, one could have
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used
∑
ζ∈VA(f) instead of

∫
ζ∈VA(f)

as they agree up to a zero measure set of f ’s in S(d). We prefer to

use the integral sign
∫
ζ∈VA(f)

whenever possible. We used the simplified notation Z(t, ·) although, in

fact, this function is the zeta Mahler measure function given by

Z(t, 1/‖ · ‖aff) := ZV(d)
(t, 1/‖ · ‖aff , NJπ1),

where V(d) is the solution variety described in Identity (5.1) and NJπ1 is the Normal Jacobian of the
projection π1 : V(d) −→ S(d).
In [6] a positive answer to Smale 17th Problem (cf. [61]) is exhibited by introducing a Las Vegas
algorithm that solves multi-variate polynomial equations in polynomial time, on the average. The
algorithm introduced in [6] is shown to compute both affine and projective solutions due to Theorems
1.9 and 4.7 of [6]. These two theorems, use the fact that the expected norms of the affine solutions
of systems of polynomial equations are of controlled norm on the average. In our previous notations,
Theorem 4.7 of [6] gives an exact description of the value of Z(t, 1/‖ · ‖aff) for real values t ∈ R satisfying
−2 < t < 2n − 1. The following Proposition extends Theorem 4.7 of [6], by showing the complete
description of Z(t, 1/‖ · ‖aff) for complex values of t:

Proposition 1.2. With the same notations as above, let G ⊆ C be the region given by G := {t ∈ C :
<(t) > −2}. Then, for every t ∈ G, the zeta Mahler measure function Z(t, 1/‖ · ‖aff) satisfies:

Z(t, 1/‖ · ‖aff) = nB
(
n, 1 +

t

2

)
=

Γ(n+ 1)Γ(1 + t
2 )

Γ((n+ 1) + t
2 )

,

where B and Γ are, respectively, beta and gamma functions. In particular, this function admits analytic
continuation to C \ {z ∈ Z : z ≤ −2}, which is the domain of holomorphy of Z(t, 1/‖ · ‖aff).

The knowledge of the exact value of this zeta Mahler measure function easily yields almost inmediate

relevant properties. As usual, we denote by Hk :=
∑k
i=1

1
i the k-th harmonic number. As this function

is homogeneous of degree 0, we immediately obtain:

Ef∼N∆(0,I)

[ 1

]VA(f)

∑
z∈VA(f)

log(1 + ‖z‖2)
1
2

]
=

= −dZ(t, 1/‖ · ‖aff)

dt

∣∣∣
t=0

=
1

2
[ψ(n+ 1)− ψ(1)] =

1

2
Hn.

Namely, the expectation of the mean of the logarithm of the norms of the affine zeros of a randomly
chosen system of polynomial equations equals one half of the n-th harmonic number (i.e. 1

2Hn). This
expected norm of the affine solution of systems of polynomial equations shows that the extreme cases of
large zeros of systems of polynomial equations are not very probable. For instance, this expected bound
of order 1

2Hn ∈ O(log(n)) is amazingly far away from the Mora-Lazar-Masser-Philippon example of
worst case arithmetic solution of Diophantine equations (cf. [38], [39], [21] and references therein on
the heights of solutions of systems of polynomial equations). This classical example is given by the
homogeneous equations:

f1 := X1 − 2X0, f2 := Xd2−1
0 X2 −Xd2

1 , . . . , fn := Xdn−1
0 Xn −Xdn

n−1.

The unique affine solution of this system is (2, 2d2 , 2d2d3 , . . . , 2d2···dn). Its logarithmic norm is expo-
nential in the number of variables.
A second example of zeta Mahler measure functions we discuss in this short catalogue is the zeta
Mahler measure function associated to the inverse of the non-linear condition number µnorm. The
normalized condition number µnorm was first introduced in the manuscript [55] of the series written
by M. Shub and S. Smale around the complexity of the Bézout’s Theorem (cf. [56, 57, 58]). Since
then, the condition number µnorm has been systematically used in the treatment and analysis of the
complexity of the algorithms solving Smale’s 17th Problem (cf. [61]). Among the many contributions
dealing with this problem we may cite [5], [6], [7], [60], [13] and the books [9], [14] and references
therein. The following zeta Mahler measure function was clued in [7].



6 LUIS M. PARDO AND MARIO PARDO

Let ζ ∈ Pn(C) be a projective point and pS : S2n+1 −→ Pn(C) the canonical onto projection from
the sphere of radius one S2n+1 ⊆ Cn+1. The tangent space TζPn(C) is given as the orthogonal
complement < ζ >⊥ of the complex subspace < ζ > generated by ζ in Cn+1, with respect to the
canonical Hermitian product in Cn+1. We sometimes simplify notations by writing ζ⊥ instead of
< ζ >⊥. For every homogeneous system f ∈ H(d) such that ζ ∈ VP(f), we may consider the tangent
mapping

Tζf : TζPn(C) −→ T0Cn = Cn.
This tangent mapping may be determined as follows. Let z ∈ S2n+1 be a point in the complex sphere
such that pS(z) = ζ. Let Df(z) ∈ Mn×(n+1).(C) be the Jacobian matrix of f at z. Then, Tζf is the

restriction of Df(z) to the orthogonal complement of ζ in Cn+1:

Tζf = Df(z)
∣∣
ζ⊥
.

The normalized condition number of f at ζ is given by the following identity:

µnorm(f, ζ) := ‖f‖∆‖Diag(d
− 1

2
i )(Tζf)†‖op,

where Diag(d
− 1

2
i ) is the diagonal marix where diagonal entries are d

− 1
2

1 , . . . , d
− 1

2
n , ‖ · ‖∆ is Bombieri-

Weyl’s norm of f , (Tζf)† is Moore-Penrose pseudo-inverse and ‖ · ‖op is the norm as linear operator.
In the case (d) := (1, . . . , 1), systems f = M are matrices with n rows and n + 1 columns (i.e. in

Mn×(n+1)(C)), ‖·‖∆ is the usual Frobenius norm of the matrix and ‖Diag(d
− 1

2
i )(Tζf)†‖op is the norm

as linear operator of the Moore-Penrose pseudo-inverse of M. Namely, in the linear case, the condition
number becomes the usual Demmel’s condition number µ(M) = ‖M‖F ‖M†‖op. Associated to the
normalized condition number µnorm we also have a zeta Mahler measure function which can be defined
as follows

Z(t, 1/µnorm) :=
1

νS[S(H(d))]

∫
f∈S(H(d))

(
1

D(d)

∫
ζ∈VP(f)

µnorm(f, ζ)−t
)
dνS(f).

The same comment about the interchangeability of the usage of
∑
ζ∈VP(f) or

∫
ζ∈VP(f)

as in Equation

(1.5) applies. We do not insist on this aspect again. Note that we have chosen the unit sphere S(H(d))
here since this normalized condition number is a homogeneous function of degree 0. Once again, we
have simplified our notation writing Z(t, 1/µnorm). In fact, the zeta Mahler measure function of the
inverse of the normalized condition number is given as

Z(t, 1/µnorm) := ZV(d)
(t, 1/µnorm, NJπ1),

where V(d) := V
(n)
(d) is the solution variety discussed in Subsections 3.3 and NJπ1 is the Normal

Jacobian of the projection π1 : V(d) −→ P(H(d)).
In [7], a second answer to Smale 17th Problem is exhibited. This time the algorithm is much faster,
on the average, than the one in [6]. One of the main ingredients of this second algorithm was the
knowledge of the exact values of Z(t, 1/µnorm) for real values of t in the open interval −4 < t < 0 (i.e.
Theorems 19, 20 and Proposition 22 of [7]). As in the case of the previous Proposition, we now give
the complete description of the values of Z(t, 1/µnorm) for complex values of t, generalizing Theorem
20 and Proposition 22 of [7]:

Proposition 1.3. With these notations, let let G ⊆ C be the region given by G := {t ∈ C : <(t) >
−4} ⊆ C. Then, the zeta Mahler measure function Z(t, 1/µnorm) is well-defined and holomorphic in G.
Moreover, for every t ∈ G, the following equality holds:

(1.6) Z(t, 1/µnorm) =
Γ(M(d))

Γ(M(d) + t
2 )

n−1∑
k=0

(
n+1
k

)
Γ(n+ 1− k + t

2 )

nn−k+1+ t
2 Γ(n− k)

,
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where M(d) is the dimension of H(d). In particular, this function admits analytic continuation to
C \ {z ∈ Z : z ≤ −4}, which is the domain of holomorphy of Z(t, 1/µnorm).

The same expression holds for the case of Demmel’s condition number µ(A), and matrices A ∈
Mn×(n+1)(C). Note that, for instance, we may determine the exact value of the expectations of the

norm ‖A†‖op for matrices A in the unit sphere S2n(n+1)−1. ⊆ Mn×(n+1)(C). For instance, in the
linear case (d) = (1, . . . , 1) and µnorm = µ, we may compute the expectation of the logarithm of the
condition number E[log |µ|], noting that E[log |µ|] = −E[log(1/|µ|), just differentiating the expression
above. These results yield:

E[log |µ|] = −dZ(·, 1/µ)

dt

∣∣∣
t=0

=
1

2

n−1∑
i=0

(
n+ 1

k

)
n− k
nn−k+1

[
Hn2+n−1 + log n−Hn−k

]
.

The reader may compare this formula with the bounds obtained in [20], for instance. However, as
pointed out by T. Tao in his blog (cf. also [62], Section 2.3) the exact values of the moments of ‖A‖op

seem not to be known (only estimates). Similarly, we do not have an exact description of a zeta
Mahler function Z(t, ‖A‖op) yet.
The next zeta Mahler measure function we explicitely exhibit in this manuscript is also related to the
tangent mapping Tζf . We now consider the following zeta Mahler measure function.

Definition 1.1. With the previous notations, we define the zeta Mahler measure function of the
Jacobian determinant Z(t, JAC) by the following identity:

Z(t, JAC) := ZV(d)
(t, JAC, NJπ1) =

1

νS[S(d)]

∫
f∈S(d)

(
1

D(d)

∫
ζ∈VP(f)

|JAC(f, ζ)|tdVP(f)(ζ)

)
dνS(f),

where the absolute value of the Jacobian determinant |JAC(f, ζ)| is defined as |JAC(f, ζ)| = |det(Tζf)| =
|det(Df(z)Df(z)∗| 12 , being z ∈ S2n+1 any point such that pS(z) = ζ, t ∈ C is a complex number and
the quantities Vd, NJπ1 and D(d) :=

∏n
i=1 di are the same as above.

We prove the following complete description of Z(t, JAC).

Theorem 1.4. With these notations, let G ⊆ C be the complex region given by G := {t ∈ C :
<(t) > −4} ⊆ C. Then, the function Z(t, JAC) is a well-defined holomorphic function whose domain
of holomorphy contains G. Moreover, for every t ∈ G ⊆ C, the following equality holds:

(1.7) Z(t, JAC) = (D(d))
t
2

n∏
i=1

(
Γ(i+ t

2 + 1)

Γ(i+ 1)
· Γ(Mi)

Γ(Mi + t
2 )

)
,

where Mi := M(di, n) is the complex dimension of Hdi(X). In particular, Z(t, JAC) admits analytic
continuation to the complex domain C \ {z ∈ Z : z ≤ −4}, which is its domain of holomorphy.

For some applications to come, we may introduce the following quantity

(1.8) m(JAC) :=
1

νS[S(d)]

∫
f∈S(d)

(∫
ζ∈VP(f)

log |JAC(f, ζ)|dVP(f)(ζ)

)
dνS(f).

Then, the following equality holds:

m(JAC) = D(d)

(
dZ(t, JAC)

dt

∣∣∣
t=0

)
=
D(d)

2

(
logD(d) +

n∑
i=1

ψ(i+ 1)− ψ(Mi)
)
.

Other zeta Mahler functions are discussed in the manuscript as Z∏n
i=1 S

2n+1(t,DET) (the zeta Mahler

measure function of complex Wishart matrices) in Corollary 5.8.
As a referee also pointed us out, in the linear case (d1, . . . , dn) = (1, . . . , 1), the value of m(JAC) can
be obtained directly without recourse to Theorem 1.4 or to Corollary 5.8, by an elegant argument
combining Binet-Cauchy formula with the knowledge of the height of the projective space.
As an application of zeta Mahler measure functions, we exhibit the exact value of the height of the
discriminant variety Σ(d) as follows. According to [15], the discriminant variety Σ(d) is a hyper-surface
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defined by a multi-homogeneous polynomial Disc(d) known as the discriminant polynomial (cf. also
[22], [24] or [30]). Here, we compute the exact value of the arithmetic height of this variety (in the
sense of [27], [47, 48, 49, 50], [41], [16] and sequels. We have chosen the height with respect to its
multi-homogeneous nature, although other heights are comparable in view of equalities (1.3) and (1.4)
above.

Theorem 1.5. With the previous notations, let (d) := (d1, . . . , dn) be a list of degrees and let δ(d) :=∑n
i=1 di be the sum of the degrees in the list (d). Assume that δ(d)−n =

∑n
i=1(di−1) ≥ 1 holds. Then

the arithmetic logarithmic height of the discriminant in the case of generically dense homogeneous
polynomials defining a zero-dimensional variety is given by the following equality

ht(Σ(d)) := ht(Disc(d)) =
D(d)

2

[
(δ(d) − n)

( n∑
i=1

Hi

)
+ logD(d)

]
.

In the simplest case n = 1, the discriminant Discd of a generic homogeneous polynomial of degree d
is the determinant of the Sylvester matrix defined by a generic polynomial f and its derivative f ′.
Namely, if f := AdX

d
1 +Ad−1X

d−1
1 + · · ·+A0, then

Discd(A0, . . . Ad) := det (Sylv(f, f ′)) ,

where Sylv(f, f ′) is the Sylvester matrix defined by f and f ′. Theorem 1.5 yields the following exact
value of the arithmetic logarithmic height of Discd:

ht(Discd) =
d

2
((d− 1) + log(d)) .

1.2. Structure of the manuscript. The manuscript is structured as follows. Section 2 is devoted
to show the most elementary properties of the generalization of zeta Mahler measure function used
in this manuscript. Section 3 is devoted to recall some basic facts about the underlying Algebraic
Geometry involved in this manuscript. In particular, we include some basic facts about the multi-
variate discriminant, most of them taken from [15]. Section 4 is devoted to introduce some basic facts
from Integral Geometry. For instance, we recall Federer’s Co-area Formula. Section 5 is devoted to
compute some of the zeta Mahler measure functions stated at the Introduction. In Subsubsection
5.1.1 we prove Proposition 1.2. In Subsubsection 5.2.1 we Prove Proposition 1.3. In this Section we
also recall the main outcomes of the work of N.R. Goodman [31], [32] and we rewrite them as a zeta
Mahler measure function Z∏n

i=1 S
2n+1(t,DET), where DET is the determinant of a complex Wishart

matrix (see Subsection 5.3). Finally, Section 6 is devoted to prove Theorem 1.4 by computing the
exact value of Z(t, JAC). Last but not least, Section 7 is devoted to derive the arithmetic height of
Σ(d) (and its defining polynomial Disc(d)) using the knowledge of computation of Z(t, JAC), proving
Theorem 1.5. Although some of the zeta Mahler functions treated in these pages have immediate
translation to numerical analysis algorithms (as those associated to condition numbers), it may be
less clear in the case of the main outcome of Theorem 1.5. At the end of the manuscript we have
included Subsection 7.2 which sketches how the main outcome of Theorem 1.5 can be applied to show
upper bounds for the error probability of some modular arithmetics algorithms. As the goal of these
pages was not to show these applications to algorithms, we just sketch the ideas leaving the details to
other discussions.

2. On the existence of holomorphic generalized zeta Mahler measure functions

We begin by the following statement which generalizes and quantifies Proposition 2.1 of [1], provided
that the main outcome of [43] is taken into account. It also generalizes the usage done in [16] of
[8] to further classes of functions (other than polynomials) and other probability spaces. The proof
of Theorem 8 in [1] is based on a result by [26] and both are based on a confuse hypothesis which
make somehow difficult to follow the arguments. Both publications ([1] and [26]) use an inductive
argument, based on the existence of a particular factorization of multi-variate polynomials that does
not apply to many of them as, for instance, f := X2(Xq

1 − 1)− 1, among others easy to construct(see
Remark 2.2 below for details). Additionally, our generalization introduces quantitative bounds for
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the domain of holomorphy of a zeta Mahler measure function ZX(t, f), which are not present in any
former statement of similar results.

Lemma 2.1 (Complex differentiation under the integral sign). Let X be a compact topological space
endowed with a measure (X,A, µ) such that µ(X) <∞ and the Borel measurable subsets of X are in
the σ−algebra A. Let f, g : X −→ C be two continuous real-valued functions defined on X. Assume
that the following properties hold:

• f and g are not equal to 0 almost everywhere,
• there is some positive real number p ∈ R, p > 0 such that for all positive real number ε > 0,

the following equality holds

(2.1)
1

µ(X)

∫
X

χ
X(f,ε)

(x)|g(x)|dµ(x) ≤ C(f, g)εp,

where χ
X(f,ε)

is the characteristic function of the set

X(f, ε) := {x ∈ X : |f(x)| ≤ ε},

and C(f, g) is a constant which only depends on f , g and X.

Then, the following function

ZX(t, f, g) :=
1

IX [|g|]

∫
X

|f(x)|t|g(x)|dµ(x),

is well-defined and holomorphic in the complex domain {t ∈ C : <(t) > −p}, where <(t) denotes the
real part of t and IX [|g|] denotes the integral

∫
x∈X |g(x)|dµ(x). Moreover

dkZX(t, f, g)

dtk
=

1

IX [|g|]

∫
X

|f(x)|t(log |f(x)|)k|g(x)|dµ(x)

Proof. Let G ⊆ C the complex domain given by the following identity:

G := {t ∈ C : <(t) > −p}.

We first prove the following two inequalities for every t ∈ G. Let us denote by I(t, f, g) the following
integral:

I(t, f, g) :=

∫
X

||f(x)|t|g(x)||dµ(x) =

∫
X

|f(x)|<(t)|g(x)|dµ(x).

Then, we have

(2.2)


I(t, f, g) ≤ µ(X)M<(t)N if <(t) ≥ 0,

I(t, f, g) < µ(X)
(
N + C(f,g)

2<(t)−2−p

)
if −p < <(t) < 0,

where M := max{1,max{|f(x)| : x ∈ X}} and N := max{|g(x)| : x ∈ X}. The case <(t) ≥ 0 being
obvious, we concentrate our arguments in the case −p < <(t) < 0. We prove the inequality of this
case by following the same arguments as in the proof of Proposition 2.1 of [1].
First of all, we introduce the following two measurable subsets of X:

X+(f) := {x ∈ X : |f(x)| > 1}, and X−(f) := {x ∈ X : |f(x)| ≤ 1}.

Then,

I(t, f, g) = I+(t, f, g) + I−(t, f, g),

where

I+(t, f, g) :=

∫
X+(f)

|f(x)|<(t)|g(x)|dµ(x),

and

I−(t, f, g) :=

∫
X−(f)

|f(x)|<(t)|g(x)|dµ(x).
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We obviously conclude that

(2.3) I+(t, f, g) ≤ µ(X)N.

As for I−(t, f, g) we decompose X−(f) as the disjoint union of the following measurable subsets:

X−(f) = f−1(0) ∪
∞⋃
k=0

X
(k)
− (f),

where

X
(k)
− (f) := {x ∈ X :

1

2k+1
< |f(x)| ≤ 1

2k
}.

Then, as µ(f−1(0)) = 0, we have

I−(t, f, g) =

∞∑
k=0

I
(k)
− (t, f, g),

where

I
(k)
− (t, f, g) :=

∫
X

(k)
− (f)

|f(x)|<(t)|g(x)|dµ(x).

Now, for x ∈ X
(k)
− (f), we have 1

2k+1 < |f(x)| ≤ 1
2k

and, as <(t) < 0, we conclude that for all

x ∈ X(k)
− (f) we have:

|f(x)|<(t) < 2−<(t)(k+1).

Then, we have:

(2.4) I
(k)
− (t, f, g) < 2−<(t)(k+1)

∫
X

(k)
− (f)

|g(x)|dµ(x).

Then, applying the hypothesis described in Equation (2.1), we conclude:

(2.5) I
(k)
− (t, f, g) < 2−<(t)µ(X)C(f, g)( 1

2k
)p

2<(t)k
<

2−<(t)C(f, g)µ(X)

2(<(t)+p)k
.

Hence, if <(t) > −p, we have

(2.6) I−(t, f, g) < 2−<(t)C(f, g)µ(X)

( ∞∑
k=0

1

2(<(t)+p)k

)
=

2−<(t)C(f, g)µ(X)

1− 2−(<(t)+p)
=
C(f, g)µ(X)

2<(t) − 2−p
<∞.

Putting together inequalities in Equations (2.3) and (2.6) we obviously conclude the second inequality
in Equation (2.2) and both inequalities are then proved.
Now, we have proved that the function |f(x)|t|g(x)| is in L1(X,A, µ) (i.e. it is absolutely integrable)
for every t ∈ G. Moreover, under our hypothesis,

(2.7) IX [|g|]ZX(t, f, g) =

∫
X′
|f(x)|t|g(x)|dµ(x),

where X ′ ⊆ X is the set of points in X where f does not vanish. Namely,

X ′ := {x ∈ X : f(x) 6= 0}.

Now, we are in conditions to apply the main outcome of [43] to the function h : G×X ′ −→ C given
by the following identity:

h(t, x) := |f(x)|t|g(x)|.
Namely, we observe that we have:

• The function h(t, ·) is measurable for every t ∈ G (in fact, we have seen that h(t, ·) is in L1(X ′)
for every t ∈ G),

• the function h(·, x) is holomorphic for every x ∈ X ′ and,
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• the integral
∫
|h(·, x)|dµ(x) is locally bounded, namely for all t0 ∈ G, there is some positive

real number δ > 0 such that

sup
t∈G,|t−t0|<δ

∫
X′
|h(t, x)|dµ(x) <∞.

The third claim follows from the inequalities given in Equation (2.2). From these two inequalities it
is obvious how to find for every t ∈ G a neighborhood such that I(t, f, g) is absolutely and uniformly
bounded in this neighborhood.
Thus, applying the main outcome from [43], we conclude that ZX(t, f, g) is a holomorphic function
in G and we can differentiate under the integral sign. This yields the statement and the proof is
finished. �

The following Lemma exhibits sufficient conditions for Lemma 2.1 to hold.

Lemma 2.2. Let X be a compact topological space and let f, g : X −→ C be two continuous real-valued
functions defined on X. Assume that X is endowed with a measure (X,A, µ) such that µ(X) < ∞
and the Borel measurable subsets of X are in the σ−algebra A. Let q < 0 be a negative real number
and assume that the following two properties hold:

• the functions f and g are not equal to 0 almost everywhere,
• the moment of order q of f is finite (i.e. f ∈ Lq(X) for the measure µ).

Then, with the same notations as in Equation (2.1) above, the following inequality holds

(2.8)
1

µ(X)

∫
X

χ
X(f,ε)

(x)|g(x)|dµ(x) ≤ C(f, g)ε−q.

In particular, the function ZX(t, f, g) is well-defined and holomorphic in the complex domain G :=
{t ∈ C : <(t) > q} and we may differentiate inside the integral sign.

Proof. We just use the Markov inequality in the following form. Let us introduce the function h(x) :=

(f(x))
−1

defined almost everywhere in X (since µ[{x ∈ X : f(x) = 0}] = 0). Then, observe that for
every δ > 0 the following inequalities hold:

L(f, q) :=

∫
X

|f(x)|qdµ(x) =

∫
X

|h(x)|−qdµ(x) ≥
∫
T (h,δ)

|h(x)|−qdµ(x),

where
T (h, δ) := {x ∈ X : |h(x)| ≥ δ}.

Then,

L(f, q) ≥
∫
T (h,δ)

δ−qdµ(x) = δ−qµ[T (h, δ)].

Hence,
µ[T (h, δ)] ≤ L(f, q)δq.

Replacing δ = ε−1 and noting that
T (h, ε−1) = X(f, ε),

we immediately conclude that Inequality (2.1) holds with p = −q and C(f, g) := NL(f,q)
µ(X) where

N := max{|g(x)| : x ∈ X}. The rest of the claims of Lemma 2.1 also hold. �

From now own, we shall denote by ZX(t, f) := Z(t, f, 1) the zeta Mahler measure function in the
case g = 1. The following Proposition replaces Theorem 8 of [1] and gives quantitative bounds for the
neighborhood of t = 0 where the zeta Mahler measure function is defined according to [16].

Proposition 2.3. Let f ∈ C[X0, . . . , Xn] \ C be a non-constant complex homogeneous polynomial of
degree d. Let G ⊆ C be the complex domain G := {t ∈ C : <(t) > −2/d}. Then, the zeta Mahler
measure function of f in S2n+1:

ZS2n+1(t, f) :=
1

νS2n+1 [S2n+1]

∫
S2n+1

|f(z)|tdνS2n+1(z),

is well-defined and holomorphic in G.
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Proof. According to  Lojasiewicz Inequality as in [37], the following property holds for every non-
constant homogeneous polynomial f ∈ C[X0, . . . , Xn] and for every z ∈ S2n+1 ⊆ Cn+1:

dist(z, V )d ≤ C|f(z)|,

where C is a constant, V := VA(f) is the complex hyper-surface defined by f on Cn+1, and

dist(z, V ) := inf{‖z − x‖ : x ∈ VA(f)}.

Let us denote by VS(f) := VA(f) ∩ S2n+1. Let pS : S2n+1 −→ Pn(C) be the canonical projection
onto Pn(C), let dP : Pn(C)2 −→ R be the sine of the Fubini–Study distance in Pn(C) and let VP(f) be
the projective hyper-surface defined by f . As V is a cone (f is homogeneous), the following property
holds:

dist(z, V ) = dP(pS(z)), VP(f)).

Then, we return to Lemma 2.1 above (with g ≡ 1) and we want to study the probability of the set
X(f, ε) := {z ∈ S2n+1 : |f(z)| ≤ ε}. From  Lojasiewicz Inequality, we conclude that:

X(f, ε) ⊆ {z ∈ S2n+1 : dP(pS(z), VP(f))d ≤ Cε} = (VS(f))C1/dε1/d ,

where (VS(f))C1/dε1/d is the inverse image under the canonical projection pS of the tube (with respect

to the projective distance dP) around VP(f) of radius C1/dε1/d. According to [4], Theorem 1, as VP(f)
is a projective hyper-surface of degree at most d, we have

νP[(VP(f))C1/dε1/d ]

νP[Pn(C)]
≤ 2d

(
enC1/dε1/d

)2

= C(f)ε2/d,

where e is the basis of the natural logarithm and C(f) is a constant that depends on f .
As the covering pS : S2n+1 −→ Pn(C) has constant Jacobian determinant, just by integrating by
change of variables, it is easy to conclude that

νS [(VS(f))ε(f)]

νS [S2n+1]
=
νP[(VP(f))ε(f)]

νP[Pn(C)]
≤ C(f)ε2/d.

Finally, as VS(f) is a hyper-surface, it is of measure 0. Then, according to Lemma 2.1 and Equation
(2.1) we conclude that the following function is well-defined and holomorphic in the complex domain
{t ∈ C : <(t) > −2/d}:

ZS2n+1(t, f) :=
1

νS [S2n+1]

∫
S2n+1

|f(z)|tdνS(z),

and the Proposition is proved.
�

Remark 2.1. We believe that this bound −2/d is not satisfactory. As a consequence of Theorem
1.2 of [29], the domain of holomorphy of the zeta Mahler measure function ZS2n+1(t, p) of a random
homogeneous polynomial p ∈ Hd(X) should contain G := {t : <(t) > −2}, on the average.

Remark 2.2. We had some troubles when verifying the correctness of the proof of Theorem 8 of [1]
that does not change the essentials of its claim (as the reader may see in Proposition 2.3 above). As
required by some referee, we give some more details on these troubles. In the proof of his Theorem
8, the author of [1] used his Proposition 2.1 and a Lemma (Lemma 2.5) which is, in his own words,
“essentially due to Everest and Ward”. The author means Lemma 3.8 of [26].
However, both the proof of Lemma 2.5 in [1] and the proof of Lemma 3.8 of [26] are based on an
inductive argument based on a hypothesis which is not completely true as stated in both manuscripts.
This hypothesis is the existence of a “factorization” of multi-variate polynomials that we reproduce
here:
“Let f be r-variable nonzero polynomials. For (z1, ..., zr−1) ∈ Cr−1 we factorize f as

(2.9) f(z1, ...zr−1, Xr) = a(z1, ..., zr−1)

m∏
j=1

(Xr − gj(z1, ..., zr−1)),
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where m = degXr (f), a(X1, ..., Xr−1) ∈ C[X1, ..., Xr−1] \ {0} is the coefficient of Xm
r for f and gj are

suitable branches of algebraic functions.”
The meaning of the words “suitable branches of algebraic functions” is somehow confuse. And it is
even more confuse if the “functions” gi are defined “for (z1, . . . , zr) ∈ Cr−1”. It is rather easy to find
bi-variate polynomials as f ∈ C[X1, X2], given by

f := X2(Xq
1 − 1)− 1,

where q ∈ N, and such that f does not admit any “factorization” of the kind

(2.10) f = a(z1)(X2 − g(z1)), z1 ∈ C.
No g1 : C −→ C exists satisfying this equality. Even if we restrict ourselves to values z1 in the
complex torus z1 ∈ S1 = T1 ⊆ C, no function g1 : T1 −→ C exists such the Equality (2.10) holds
for all z1 ∈ T1. This happens because not every hyper-surface is in Noether position with respect to
some of the variables. This may be arranged just by a generic linear change of variables. However, a
linear change of variables changes the Mahler measure of a polynomial when defined on the product
of spheres (T1)n = (S1)n.
Probably, the authors of [1] or [26] mean something different to what they claimed in their respective
(and similar) proofs. But, in their way to prove the statement, they are facing the problem of gluing
multi-valued functions or some Riemann surface theory (which none of them do in their manuscript).
We do not now how to arrange their argument. There may be additional arguments to replace this
hypothesis and fix the difficulty in the proof. Anyway, our goal was not to correct their proof but to
give a new one. In this sense, Proposition 2.3 above imply Theorem 8 of [1] and there is no risk of
serious error in his statement.

3. The underlying Geometry

3.1. Notations for Lists of polynomials. We follow most of the notations in [9] and those used
at the Introduction. Let n, d ∈ N be two positive integers. We denote by Pd(X) the complex vector
space of all polynomials of degree at most d in C[X1, . . . , Xn]. Complex vector spaces Hd(X) and

Pd(X) are obviously isomorphic of dimension M(d, n) :=
(
d+n
n

)
and the isomorphism is given by the

mapping a : Hd(X) −→ Pd(X), which associates to every homogeneous polynomial f ∈ Hd(X) its
affine trace af := f(1, X1, . . . , Xn) ∈ Pd(X).
As for lists of polynomial equations, let (d) := (d1, . . . , dn) ∈ Nn be a list of degrees. As in the
Introduction, we introduce the complex vector space of affine polynomials P(d) :=

∏n
i=1 Pdi(X), given

as lists f := (f1, . . . , fn) of polynomials fi ∈ C[X1, . . . , Xn] of respective degrees bounded by the list
(d) := (d1, . . . , dn). The affine trace obviously defines an isomorphism between P(d) and H(d). The
complex dimension of both vector spaces satisfies:

M(d) := dimC(H(d)) = dimC(P(d)) =

n∑
i=1

(
di + n

n

)
=

n∑
i=1

M(di, n).

We sometimes consider the complex projective space defined by any of these spaces. We denote by
P(H(d)) this complex vector space and we denote by N(d) := M(d) − 1 (or simply by N) its complex
dimension. Analogously we denote by N(di, n) (or Ndi) the complex dimension of P(Hdi(X)).
For every list f := (f1, . . . , fn) ∈ H(d), let VP(f) ⊆ Pn(C) be the complex projective variety of their
common zeros as stated at the Introduction. Similarly, for every list g := (g1, . . . , gn) ∈ P(d), we define
the affine algebraic variety VA(g) ⊆ Cn of their common affine zeros:

VA(g) := {x ∈ Cn : gi(x) = 0, 1 ≤ i ≤ n} ⊆ Cn.
As in the Introduction, let ϕ0 be the standard embedding of Cn into Pn(C). Observe that ϕ0 identifies
VA(af) with VP(f)∩ (Pn(C)r {X0 = 0}). Namely, VA(af) = ϕ−1

0 (VP(f)), for every f ∈ H(d). Because
of this obvious identification between P(d) and H(d), we usually omit the super-script a in forthcoming
pages. So, we will simply write VA(f), for f ∈ H(d), to denote the affine zeros in VA(af).

In what follows, we denote by δ(d) :=
∑n
i=1 di the sum of the degrees in the list and by D(d) :=

∏n
i=1 di

we denote the Bézout number associated to the degree list (d) := (d1, . . . , dn).
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3.2. A more precise description of Bombieri–Weyl Hermitian product. As in [55] or [9] (Sec.
12.1) we may equip H(d) with the unitarily invariant Bombieri-Weyl Hermitian product,

〈·, ·〉∆ : H(d) ×H(d) −→ C.

This Hermitian product may be introduced as follows. Let f, g ∈ Hd(X) be two homogeneous complex
polynomials of degree d in n+1 variables and assume that the following are their respective monomial
expansions:

f :=
∑

µ∈Nn+1

|µ|=d

aµX
µ0

0 · · ·Xµn
n , g :=

∑
µ∈Nn+1

|µ|=d

bµX
µ0

0 · · ·Xµn
n ,

where µ := (µ0, . . . , µn) ∈ Nn+1 and |µ| := µ0 + . . . + µn, ∀µ ∈ Nn+1. We define the Bombieri–Weyl
Hermitian product 〈f, g〉d by the following identity:

(3.1) 〈f, g〉d :=
∑

µ∈Nn+1

|µ|=d

(
d

µ

)−1

aµbµ, where

(
d

µ

)
:=

d!

µ0! · · ·µn!
,

is the multi-nomial coefficient and · denotes complex conjugation. For every polynomial f ∈ Hd(X)

we denote by ‖f‖d :=
√
〈f, f〉d the Bombieri-Weyl norm of f . For every degree list (d) we extend this

Hermitian product in the obvious way. Namely, if f := (f1, . . . , fn) ∈ H(d) and g := (g1, . . . , gm) ∈
H(d), then we define 〈f, g〉∆ :=

∑n
i=1〈fi, gi〉di . We denote by ‖ · ‖∆ :=

√
〈·, ·〉∆ the corresponding

norm. As in the Introduction, we denote by S(H(d)) the sphere of radius one in H(d) with respect to
the norme ‖ · ‖∆. Similarly, for every degree list (d) we denote by S(d) the product of spheres (with

Bombieri-Weyl metric) given by the following identity S(d) :=
∏m
i=1 S(Hdi(X)), where S(Hdi(X)) :=

{f ∈ Hdi(X) : ‖f‖2di = 1}.
The following well–known statement shows that Bombieri–Weyl norm is simply an expectation.

Proposition 3.1 (Bombieri-Weyl’s norm as L2 norm (cf. [23], for instance)). For every homogeneous
polynomial f ∈ Hd(X), its Bombieri-Weyl norm satisfies:

‖f‖2d =

(
d+ n

n

)
1

νS [S2n+1]

∫
S2n+1

|f(z)|2dνS(z) =

(
d+ n

n

)
ZS2n+1(2, f),

where dνS is the canonical volume form in S2n+1 associated to its Riemannian structure, νS [S2n+1] :=
2πn+1

Γ(n+1) , is the volume of the complex sphere S2n+1 := {z ∈ Cn+1 : ‖z‖ = 1} and ZS2n+1(2, f) is the

value of the zeta Mahler measure function of f over S2n+1 at t = 2.

This Proposition yields a direct proof of the unitary invariance of Bombieri–Weyl Hermitian product
(cf. [9], for instance). Namely, let U(n+1) be the unitary group of (n+1)× (n+1) complex matrices.

Let us consider the following action of U(n+ 1) on H(m)
(d) (X):

(3.2)
U(n+ 1)×H(m)

(d) (X) −→ H(m)
(d) (X)

(U, (f1, . . . , fm)) 7−→ (f1 ◦ U∗, . . . , fm ◦ U∗),
where f ◦ U∗ denotes composition. Then, this action is isometric with respect to Bombieri-Weyl

Hermitian product: For every f, g ∈ H(m)
(d) (X) and for every U ∈ U(n+1) the following equality holds:

〈f, g〉∆ = 〈f ◦ U∗, g ◦ U∗〉∆.

3.3. The solution variety. Some of the main advances in [55, 56, 58, 59] are due to the smart
exploration of a geometric structure related to the polynomial system solving: the solution variety.
Same can be said about [6, 7]. We follow the notations used in these manuscripts.
We begin by introducing some notations. We consider the canonical Hermitian form 〈·, ·〉 : Cn+1 ×
Cn+1 −→ C and the bilinear mapping:

· : Cn+1 × Cn+1 −→ C
(u, v) 7−→ u · v :=

∑n
i=0 uivi,
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where u := (u0, . . . , un) ∈ Cn+1, v := (v0, . . . , vn) ∈ Cn+1. We denote by ‖u‖ ∈ R the norm of a
vector u ∈ Cn+1 with respect to the canonical Hermitian form. The bilinear mapping · has isotropic
vectors given as the zero set VP(Q) ⊆ Pn(C) of the quadratic polynomial

(3.3) Q(X) :=
1

2
X ·X =

1

2

n∑
i=0

X2
i ∈ C[X0, . . . , Xn].

Let us fix the set {X0, . . . , Xn} of homogeneous variables and let (d) := (d1, . . . , dn) be a list of positive
degrees. We define the projective solution variety V(d) ⊆ P(H(d))× Pn(C) by the following equality:

V(d) := {(f, ζ) ∈ P(H(d))× Pn(C) : fi(ζ) = 0, 1 ≤ i ≤ n}.

This algebraic variety V(d) is a complex smooth multi–homogeneous algebraic variety of co-dimension
n. Thus, its complex dimension is N(d).
The tangent space TζPn(C) of the complex Riemannian manifold Pn(C) at ζ ∈ Pn(C) is identified
with the orthogonal complement of the complex vector space spanned by ζ in Cn+1 which we simply
denote by ζ⊥. For a zero ζ ∈ VP(f) we may consider the tangent mapping

Tζf : TζPn(C) −→ T0Cn = Cn.

As in the Introduction, for every f := (f1, . . . , fn) ∈ H(d) and every ζ ∈ VP(f), we denote by
Df(ζ) := Df(z) ∈ Mn×(n+1)(C) the Jacobian matrix of f at some representant z of ζ ∈ Pn(C) in

S2n+1. The rows of this matrix Df(ζ) are the gradients ∇zf1, . . . ,∇zfn. Leibnitz rule implies that
Df(z)zt = 0 or, equivalently, ∇zfi · z = 0 for every i, 1 ≤ i ≤ n.
At every point (f, ζ) ∈ V(d) the tangent space T(f,ζ)V(d) is given by the following equality:

T(f,ζ)V(d) := {(ḟ , ζ̇) ∈ TfP(H(d))× TζPn(C) : ḟ(ζ) + Tζf(ζ̇) = 0},

where Tζf : TζPn(C) −→ Cn is the restriction of the Jacobian matrix Df(ζ) to TζPn(C) = ζ⊥, which
is the orthogonal complement of ζ in Cn+1 with respect to the canonical Hermitian product in Cn+1.
Namely, we have

Tζf = Df(ζ)|ζ⊥ .

We have two canonical projections defined in the solution variety:

π1 : V(d) −→ P(H(d)), π2 : V(d) −→ Pn(C)
(f, ζ) 7−→ f (f, ζ) 7−→ ζ.

The following proposition resumes the main properties of these two canonical projections.

Proposition 3.2 (cf. [9] and [5]). With these notations, the following properties hold:

i) Both mappings π1 and π2 are onto.
ii) The mapping π2 : V(d) −→ Pn(C) is a submersion at every point (f, ζ) ∈ V(d) and for every

ζ ∈ Pn(C) the fiber π−1
2 ({ζ}) can be identified with a complex projective linear submanifold of

P(H(d)) of co-dimension n given by the following equality:

Vζ := π−1
2 ({ζ}) = {f ∈ P(H(d)) : fi(ζ) = 0, 1 ≤ i ≤ m}.

iii) For every f ∈ P(H(d)) we have VP(f) = π−1
1 ({f}).

iv) The set of critical values of π1 is a projective hyper–surface Σ(d) ⊆ P(H(d)), known as the
discriminant variety.

v) For every system f ∈ P(H(d)) \ Σ(d), outside the discriminant variety, the fiber VP(f) =

π−1
1 ({f}) is a smooth complete intersection complex projective subvariety of dimension zero.

vi) A system f ∈ P(H(d)) is in the discriminant variety Σ(d) if and only if there is some zero
ζ ∈ VP(f) such that the tangent mapping Tζf is singular.
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3.4. The discriminant of a family of polynomials. In this section we discuss some basic prop-
erties of the discriminant variety Σ(d) and its defining equation: the discriminant polynomial. We
shall follow the notations of Section 3.3 and [15]. As in Subsection 3.3 above, we consider the “so-
lution variety” V(d) ⊆ P(H(d)) × Pn(C) and the two canonical projections π1 : V(d) −→ P(H(d)) and
π2 : V(d) −→ Pn(C). The discriminant variety Σ(d) is the hyper-surface of the critical values of π1. It
is determined by the set of zeros of a polynomial Disc(d). Moreover, this variety Σ(d) is definable over
the rationals and, hence, we may assume Disc(d) is a primitive polynomial with integer coefficients.
Here we discuss a few properties of Disc(d), most of them extracted from [15], which are going to be
used in Section 7 below.
In forthcoming pages we shall use the notation Res to denote the multi-variate resultant polynomial.
Given a degree list (d) := (d1, . . . , dn+1), with n+ 1 terms, there is a unique multi-variate, irreducible
and primitive Diophantine polynomial Res(d), whose variables are the coefficients of a list of n + 1

homogeneous polynomials in n + 1 variables f := (f1, . . . , fn+1) ∈
∏n+1
i=1 Hdi(X0, . . . , Xn) such that

the following property holds:

Res(d)(f1, . . . , fn+1) = 0 ⇐⇒ ∃ζ ∈ Pn(C), f1(ζ) = · · · = fn+1(ζ) = 0.

Observe that in Res(d) the number of polynomials involved in the list f = (f1, . . . , fn+1) equals the
number of homogeneous variables {X0, . . . , Xn}. Sometimes, the multi-variate resultant is called an
elimination polynomial. As the resultant is not a primary object of our study, we refer to [36], [19],
[24], [18], [15], [52] or [29] and references there in for more detailed expositions on the properties on
the Resultant polynomial Res(d).
Much literature has been devoted for years to understand the resultant polynomial Res(d). Much less
has been written about the discriminant Disc(d). We may cite [15] which strongly inspired us. The
discriminant polynomial Disc(d) and the variety of its zeros Σ(d) are central mathematical (arithmetic)
objects with applications in many different fields. The discriminant variety Σ(d) plays a central role
in many different fields as Foundations of Numerical Analysis (cf [55], [59], [6], [9], [14] and references
therein) or Algebraic Geometry and Singularity Theory (cf. [15], [22], [24] and references therein).
Another central text which discusses resultants and discriminants is [30].
An essential feature distinguishes the nature of resultants and discriminants. In the multi-variate
resultant, the polynomial “to eliminate” is the polynomial fn+1 whose coefficients are algebraically
independent from the coefficients of the “given” polynomials in the list f := (f1, . . . , fn). This facili-
tates the determination and formalization of the resultant. However, in the case of the discriminant
Disc(d), “the polynomial to eliminate” is the “function” det(Tζf), whose “coefficients” are also the
coefficients of the given list f := (f1, . . . , fn). This dependence makes a little bit harder to operate
with the discriminant and, in particular, it makes more complicated any calculation of integrals and
expectations of functions of Disc(d) when trying to determine the height of Σ(d) (see Section 7).
In [15], the discriminant is characterized in the following terms. For every homogeneous polynomial
F ∈ C[X0, . . . , Xn] of degree d we consider the extended (n+ 1)× (n+ 1) matrix:

∆(Df(X),∇XF ) :=


∂F
∂X0

∂F
∂X1

· · · ∂F
∂Xn

∂f1

∂X0

∂f1

∂X1
· · · ∂f1

∂Xn
... · · ·

...
∂fn
∂X0

∂fn
∂X1

· · · ∂fn
∂Xn

 =

 ∇XF

Df(X)

 .

Namely, ∆(Df(X),∇XF ) is the matrix obtained by extending the Jacobian matrix Df(X) with a new
row given as the gradient ∇XF of F . Let us denote by J(f1, . . . , fn, F ) the determinant of this matrix.
This is an homogeneous polynomial in C[X0, . . . , Xn] of total degree δ

(
(d), d

)
:= d−1+

∑n
i=1(di−1).

According to Definition 3.5, and Identity (3.1.5) of [15], we may define the discriminant as follows:

For every given a degree list (d) = (d1, . . . , dn), for every i, 1 ≤ i ≤ n, let A(i)
di

be the following set of
algebraically independent variables

(3.4) A(i)
di

:= {A(i)
µ : µ ∈ Nn+1, |µ| = di},
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where µ := (µ0, . . . , µn) ∈ Nn+1, and |µ| := µ0 + . . . + µn. The variables in the list A(i)
di)

are exactly

the list of coefficients of a generic (dense) polynomial Fi in Hdi(X) given by

Fi(A(i)
di
, X) :=

∑
µ∈Nn+1

|µ|=d

A(i)
µ Xµ0

0 · · ·Xµn
n .

In particular, every fi ∈ Hdi(X) is obtained by specializing the variables in A(i)
(di)

into constants

a(i) ∈ CNdi+1 such that fi = Fi(a
(i), X). We also consider a complete set of variables, algebraically

independent over C, formed by all these sets of variables:

A(d) :=

n⋃
i=1

A(i)
di
,

where (d) := (d1, . . . , dn). As usual, for every P ∈ Z[A(d)], we denote by P (f1, . . . , fn) the value of P
at the coefficients of the polynomials in the list f := (f1, . . . , fn).

Definition 3.1 (cf. [15]). Let Q(X) := 1
2

∑n
i=0X

2
i ∈ C[X0, . . . , Xn] be the quadratic polynomial

introduced above. For every degree list (d) := (d1, . . . , dn) such that δ(d) − n =
∑n
i=1(di − 1) ≥ 1, the

discriminant is the unique non–zero Diophantine polynomial Disc(d) ∈ Z[A(d)], such that the following
property holds:

(3.5) Res
(̃d)

(f1, . . . , fn, J(f1, . . . , fn,Q)) = 2D(d) Disc(d)(f1, . . . , fn) Res ¯(d)(f1, . . . , fn,Q),

where (̃d) := (d1, . . . , dn, δ
(
(d), 2

)
) and ¯(d) := (d1, . . . , dn, 2) are degree lists and Res

(̃d)
and Res ¯(d) are

the respective multi-variate resultants corresponding to these degree lists.

The following statement resumes the main properties of this discriminant polynomial as shown in [15].

Theorem 3.3. Let (d) := (d1, . . . , dn) be a list of degrees such that δ(d) − n ≥ 1. Then, the discrimi-
nant polynomial Disc(d) ∈ Z[A(d)] is a polynomial with integer coefficients that satisfies the following
properties:

i) Disc(d) is irreducible and, in particular, the integer coefficients are set-wise co-prime (i.e. their
greatest common divisor is 1).

ii) Disc(d) is a multi-homogeneous polynomial with respect to each group of variables A(i)
di

:=

{A(i)
µ : µ ∈ Nn+1, |µ| = di} determined as the generic coefficients of fi. Moreover, the degree

of Disc(d) with respect to the coefficients of fi is given by the following identity:

degfi Disc(d) =
(∏
j 6=i

dj

)(
δ(d) + di − (n+ 1)

)
.

iii) The total degree of Disc(d) is given by the following identity:

deg Disc(d) =

n∑
i=1

degfi Disc(d) =

n∑
i=1

(∏
j 6=i

dj

)(
δ(d) − (n+ 1)

)
+ nD(d).

iv) The zero set of Disc(d) in P(H(d)) is the discriminant variety Σ(d), i.e.

VP(H(d))(Disc(d)) = Σ(d).

For every system f ∈ H(d) and for every ζ := (ζ0, . . . , ζn) ∈ Cn+1 \ {0}, we may consider the following
two square matrices in Mn+1(C):

∆(Df(ζ), ζ) :=

 ζ

Df(ζ)

 , ∆(Df(ζ), ζ) :=

 ζ

Df(ζ)

 ,

where Df(ζ) has been extended by adding ζ as row (in the case of ∆) or adding the conjugate
ζ := (ζ0, . . . , ζn) (in the case of ∆). Note that

∆(Df(ζ), ζ) = ∆(Df(ζ),∇ζQ),
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where Q := 1
2

∑n
i=0X

2
i .

The following is an elementary exercise of Linear Algebra.

Lemma 3.4. With the same notations. Let f ∈ H(d) be a system of polynomial equations and let

ζ ∈ Cn+1 \{0} be any non–zero point in the complex affine cone over VP(f). Assume that the Jacobian
matrix Df(ζ) is of maximal rank. Then, if ζ 6∈ VP(Q), the matrix ∆(Df(ζ), ζ) is non-singular and
satisfies:

|det(∆(Df(ζ), ζ))| = |2Q(ζ)|
‖ζ‖2

|det(∆(Df(ζ), ζ))| = |2Q(ζ)|
‖ζ‖

√
det(Df(ζ)Df(ζ)∗).

Otherwise, if ζ ∈ VP(Q), det(∆(Df(ζ), ζ)) = 0 and the equality obviously holds.

Proposition 3.5. Let (d) := (d1, . . . , dn) be a degree list such that
∑n
i=1(di − 1) ≥ 1. Let f :=

(f1, . . . , fn) ∈ H(d) be a list of polynomials and let Q ∈ C[X0, . . . , Xn] be the quadratic form introduced
in Equation (3.3) above. Assume that the following properties hold:

i) No point in VP(f) is isotropic with respect to ·. Namely, VP(f1, . . . , fn) ∩ VP(Q) = ∅.
ii) The list f is outside the discriminant variety, i.e. f 6∈ Σ(d).

iii) The list f := (f1, . . . , fn) is a generalized Pham system, i.e. no point in VP(f1, . . . , fn) lies in
the infinity hyper-plane {X0 = 0} ⊆ Pn(C).

iv) The multiplicity of all affine zeros of VA(f) is one.

Then, the absolute value |Disc(d)(f)| := |Disc(d)(f1, . . . , fn)|satisfies:

(3.6)
|Disc(d)(f)|

2](VA(f))−D(d)
= |Res(d)(f1,0, . . . , fn,0)|δ(d)−(n+1)

∏
ζ∈VA(f)

|det (Df(1, ζ)Df(1, ζ)∗) |1/2

(1 + ‖ζ‖2)1/2
,

where fi,0 := fi(0, X1, . . . , Xn) ∈ C[X1, . . . , Xn] is the restriction of the polynomials fi to the infinity
hyper-plane {X0 = 0} ⊆ Pn(C), Res(d) is the multivariate resultant in n homogeneous variables

{X1, . . . , Xn}, determined by the degree list (d) = (d1, . . . , dn) and δ(d) :=
∑n
i=1 di.

Proof. Let us denote by R̃ := Res
(̃d)

(
f1, . . . , fn, J(f1, . . . , fn,Q)

)
the value of the resultant Res(d) at

the coefficients of the polynomials in the list
(
f1, . . . , fn, J(f1, . . . , fn,Q)

)
. Then, according to Poisson

Formula (see [19] or [36]), noting that the degree of J(f1, . . . , fn,Q) is 1 +
∑n
i=1(di − 1), we conclude

R̃ = Res(d)(f1,0, . . . , fn,0)1+(
∑n
i=1(di−1))

∏
ζ∈VA(f)

J(f1, . . . , fn,Q)(1, ζ),

and
Res

(d)
(f1, . . . , fn,Q) = Res(d)(f1,0, . . . , fn,0)2

∏
ζ∈VA(f)

Q(1, ζ),

where (fi,0 := fi(0, X1, . . . , Xn) ∈ C[X1, . . . , Xn] is the restriction of the polynomials fi to the infinity
hyper-plane {X0 = 0} ⊆ Pn(C), and

(̃d) := (d1, . . . , dn, 1 +

n∑
i=1

(di − 1)), (d) := (d1, . . . , dn, 2).

From our assumption (iii), VP(f1,0, . . . , fn,0) = ∅ and, hence,

Res(d)(f1,0, . . . , fn,0) 6= 0.

Accordingly, assumption (i) implies that Q(1, ζ) 6= 0, for all ζ ∈ VA(f). Next, from Equation (3.5) of
Definition 3.1 and the previous identities, we conclude:

2D(d) Disc(d)(f) = Res(d)(f1,0, . . . , fn,0)(
∑n
i=1(di−1))−1

∏
ζ∈VA(f)

J(f1, . . . , fn,Q)(1, ζ)

Q(1, ζ)
.

Now, recall that J(f1, . . . , fn,Q) := det (∆(Df(X), X)) . Hence, from Lemma 3.4 we conclude:

|J(f1, . . . , fn,Q)(1, ζ)|
|Q(1, ζ)|

=
|det (∆(Df(1, ζ), (1, ζ))) |

|Q(1, ζ)|
=

2|det(Df(1, ζ)Df(1, ζ)∗|1/2

||(1, ζ)||
.
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In other words, we have:

Disc(d)(f)

2](VA(f))−D(d)
= Res(d)(f1,0, . . . , fn,0)(

∑n
i=1(di−1))−1

∏
ζ∈VA(f)

|det(Df(1, ζ)Df(1, ζ)∗|1/2

(1 + ‖ζ‖2)1/2
,

as wanted. �

4. Some basic Integral Geometry

4.1. Normal Jacobians and the Co-area Formula. The Co-area Formula is a classic integral
formula which generalizes Fubini’s Theorem. The most general version we know is Federer’s Co-area
Formula (cf. [28]), but for our purposes a smooth version as used in [9] and references therein, or [34]
suffices.

Definition 4.1. Let X and Y be Riemannian manifolds, and let F : X −→ Y be a C1 surjective map.
Let k = dim(Y ) be the real dimension of Y . For every point x ∈ X such that the differential DF (x)
is surjective, let vx1 , . . . , v

x
k be an orthonormal basis of Ker(DF (x))⊥. Then, we define the Normal

Jacobian of F at x, NJxF , as the volume in the tangent space TF (x)Y of the parallelepiped spanned
by DF (x)(vx1 ), . . . , DF (x)(vxk). In the case that DF (x) is not surjective, we define NJxF = 0.

The following Proposition is easy to prove from this Definition.

Proposition 4.1. Let X,Y be two Riemannian manifolds, and let F : X −→ Y be a C1 map. Let
x1, x2 ∈ X be two points. Assume that there exist isometries ϕX : X −→ X and ϕY : Y −→ Y such
that ϕX(x1) = x2, and

F ◦ ϕX = ϕY ◦ F.
Then, the following equality holds:

NJx1
F = NJx2

F.

Moreover, if there exists an inverse G : Y −→ X, then

NJxF =
1

NJF (x)G
.

A relevant tool to be used in forthcoming pages is the following classical statement of Integral Geom-
etry:

Theorem 4.2 (Co–area Formula). Consider a surjective C1 differentiable map F : X −→ Y , where
X,Y are Riemannian manifolds of real dimensions n1 ≥ n2. Assume that F is a submersion almost
everywhere on X. Consider a measurable function f : X −→ R, such that f is integrable. Then, for
every y ∈ Y except a zero–measure set, F−1(y) is empty or a real submanifold of X of real dimension
n1 − n2. Moreover, the following equality holds (and the integrals appearing on it are well-defined):∫

X

fNJxF dX =

∫
y∈Y

∫
x∈F−1(y)

f(x) dF−1(y)dY.

The following statement is Lemma 21 of [4].

Lemma 4.3. Let ϕ0 : Cn −→ Pn(C) be the canonical embedding .Then, the following equality holds
for every z ∈ Cn:

NJzϕ0 :=
1

(1 + ‖z‖2)
n+1 .

In particular, for every f ∈ C[X1, . . . , Xn], the following inequality holds:∫
z∈Cn

log |f(z1, . . . , zn)|
(1 + ‖z‖2)

n+1 dz =

∫
x∈Pn(C)

log |f(ϕ−1
0 (x))|dνP(x),

where dνP is the canonical form associated with the Fubini–Study metric in Cn+1.
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4.2. An integral equality from [7]. Prior to recall this integral equality, we need to introduce some
of the notations used in [7]. For every system of polynomial equations f ∈ H(d), we consider the set

of solutions of f along the complex sphere S2n+1 ⊆ Cn+1. Namely, we introduce:

VS(f) := {ζ ∈ S2n+1 : f(ζ) = 0}.

Using this spherical zero set, we also consider the cone over the solution variety V(d), defined as follows:

Ṽ(d) := {(f, ζ) ∈ H(d) \ {0} × S2n+1 : f(ζ) = 0} ⊆ H(d) × S2n+1.

For ζ ∈ Pn(C) we consider the vector subspaces of H(d),

Rζ := {h ∈ H(d) : h(ζ) = 0, Dh(ζ) = 0}, Lζ := (Rζ)
⊥,

where ⊥ here denotes orthogonal complement with respect to Bombieri-Weyl Hermitian product.
The structures of Rζ and Lζ are better understood if we first fix ζ := e0 := (1, 0, . . . , 0)t. Indeed, Re0
is the set of polynomial systems h := (h1, . . . , hn) ∈ H(d) such that h(e0) = 0 and Dh(e0) = 0, namely

hi(X) = Xdi−2
0 pdi−2(X1, . . . , Xn) + · · ·+X0p1(X1, . . . , Xn) + p0(X1, . . . , Xn),

for some homogeneous polynomials pj , 0 ≤ j ≤ di−2. Thus, a polynomial system h is in Re0 if all the

coefficients of the monomials containing Xdi
0 and Xdi−1

0 are zero. Reciprocally, a polynomial system

h is in Le0 if all the non zero monomials contain Xdi
0 or Xdi−1

0 . Note that for such a h ∈ Le0 we have
that h(1, X1, . . . , Xn) defines a linear function of X1, . . . , Xn. Thus, for any h ∈ H(d) we can think on
the orthogonal projection of h onto Lζ as the “linear part” of h with respect to e0.
Now, let ζ ∈ S2n+1 and consider a (n + 1)× (n + 1) unitary matrix U such that Ue0 = ζ. Then, by
the unitary invariance of the Bombieri–Weyl product in H(d) we have

Rζ = {h ◦ U∗ : h ∈ Re0}, Lζ = {h ◦ U∗ : h ∈ Le0}.

For every matrix M ∈ H(1), we denote by VS(M) ⊆ S2n+1 the intersection of its kernel with the

complex unit sphere S2n+1 ⊆ Cn+1. Namely, VS(M) = {ζ ∈ S2n+1 : Mζ = 0}. Let ϕ(M, ζ) ∈ Lζ be
the system of equations defined by

(4.1) ϕ(M, ζ)(z) := Diag(〈z, ζ〉di−1d
1/2
i )Mz ∈ H(d).

The following equalities are claimed in [7]:

(4.2) ‖ϕ(M, ζ)‖∆ = ‖M‖F ,

where ‖ · ‖F is the usual Frobenius norm on H(1), and

(4.3) D(ϕ(M, ζ))(ζ) = Diag(d
1/2
i )M.

Again, these formulas become clearer if we first fix ζ := e0. Then, M = (0 | A) where A is a square
matrix of size n. Let aij , 1 ≤ i, j ≤ n be the entries of A, and let ϕ(M, ζ) := (f1, . . . , fn). Then,

fi(X0, . . . , Xn) = d
1/2
i Xdi−1

0

∑
1≤j≤n

aijXj .

Theorem 4.4 ([7]). Let Θ̃ : Ṽ(d) −→ [0,∞] be a measurable mapping. Then, the following equality
holds: ∫

f∈H(d)

∫
ζ∈VS(f)

Θ̃(f, ζ)dVS(f)dH(d) =

= D(d)

∫
M∈H(1)

∫
ζ∈VS(M)

∫
h∈Rζ

Θ̃(h+ ϕ(M, ζ), ζ)dRζdVS(M)dH(1).

5. Computing some zeta Mahler function

In this Section we compute some of the zeta Mahler functions defined at the Introduction.
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5.1. Zeta Mahler measure function of the norm of the affine solutions. Let (d) := (d1, . . . , dn)
be a degree list. We may introduce a variation of the solution variety V(d) introduced in previous pages.
We define the incidence variety V(d) ⊆ S(d) × Pn(C) in the following terms:

(5.1) V(d) := {(f, ζ) ∈ S(d) × Pn(C) : fi(ζ) = 0, 1 ≤ i ≤ n, f := (f1, . . . , fn)}.
As in previous pages we may also consider two canonical projections:

• π1 : V(d) −→ S(d), π1(f, ζ) := f, ∀(f, ζ) ∈ V(d).
• π2 : V(d) −→ Pn(C), π2(f, ζ) := ζ, ∀(f, ζ) ∈ V(d).

From the unitary invariance of the Bombieri-Weyl metric, there is an isometric action of the unitary
group U(n+ 1) on V(d) given in the following terms:

(5.2)
U(n+ 1)× V(d) −→ V(d)

(U, (f, ζ)) 7−→ (f ◦ U∗, Uζ).

The following double fibration argument is a well-known statement with several formulations. We
include here the version of [29].

Proposition 5.1. Let g : Pn(C) −→ R+ be an integrable function. Then, the following equality holds:∫
f∈S(d)

 ∑
ζ∈VP(f)

g(ζ)

 dνS(f) =
D(d)νS[S(d)]

νP[Pn(C)]

∫
z∈Pn(C)

g(z)dνP(z),

where dνP is the differential form associated to the canonical Fubini-Study metric in Pn(C).

Corollary 5.2 (cf. [29]). With the previous notations and assumptions, this Proposition may be
rephrased:

ES(d)

 ∑
ζ∈VP(f)

g(ζ)

 = D(d)EPn(C) [g] .

As in Identity (1.1) of the Introduction, we denote by IX [|g|] the following integral:

IX [|g|] =

∫
X

|g(x)|dµ(x)s.

Corollary 5.3. With the previous notations, the following equalities hold:

• Let X := V(d) ⊆ P(H(d)) × Pn(C) be the solution variety introduced in Subsection 3.4 and
π1 : V(d) −→ P(H(d)) the canonical projection associated to this case. Then, IX [|NJπ1|]
satisfies:

IV(d)
[|NJπ1|] = D(d)νP[P(H(d))].

• Similarly, let X := V(d) ⊆ S(d) × Pn(C) be the solution variety introduced above in this
Subsection and π1 : V(d) −→ S(d) the corresponding canonical projection. Then, we have

IV(d)
[|NJπ1|] = D(d)νS[S(d)].

Proof. We just prove the first one. The second one having the same proof. We recall that

IVd [|NJπ1|] :=

∫
(f,ζ)∈V(d)

|NJ(f,ζ)π1| dV(d)(f, ζ).

Using the Co-area Formula, the following equality holds for every function ϕ : V(d) −→ R:∫
f∈P(H(d))

∫
ζ∈VP(f)

ϕ(f, ζ) dVP(f)(ζ)dνP(f) =

∫
(f,ζ)∈V(d)

ϕ(f, ζ)NJ(f,ζ)π1 dV(d)(f, ζ).

Hence, taking ϕ ≡ 1 we conclude that∫
(f,ζ)∈V(d)

1NJ(f,ζ)π1 dV(d)(f, ζ) = IV(d)
[NJπ1],
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and generically for f ∈ P(H(d)) the following equality holds:∫
ζ∈VP(f)

1 dVP(f)(ζ) = ]VP(f) = D(d),

where ]VP(f) is the number of points in VP(f). Finally, we have

IV(d)
[NJπ1] =

∫
P(H(d))

D(d) dνP(f) = D(d)νP[P(H(d))]

�

Now we are in conditions to prove Proposition 1.2 as stated in the Introduction.

5.1.1. Proof of Proposition 1.2.

Proof. We proceed as in the proof of Lemma 4.6 of [6]. From the results stated in Subsection 2 it
is enough to prove that the integral involved in Z(t, 1/‖ · ‖aff) is finite for every real number t, such
that t > −2. Moreover, as both sides of the main equality are holomorphic functions in the complex
region G, it is enough to prove that the equality holds for every real number t > −2. Now, observe
that Z(t, 1/‖ · ‖aff) is the following expectation:

Z(t, 1/‖ · ‖aff) = ES(d)

[
1

D(d)

∑
ζ∈VA(f)

(1 + ‖ζ‖2)−
t
2

]
.

Now, from Proposition 5.1 we conclude:

Z(t, 1/‖ · ‖aff) = Ex∈Pn(C)[(1 + ‖ϕ−1
0 (x)‖2)−

t
2 ],

where ϕ0 : Cn −→ Pn(C) is the canonical embedding of the affine space Cn into the complex projective
space.
Now, as in the proof of Lemma 4.6 of [6], we use Lemma 21 of [4] (cf. Lemma 4.3 above). Then, we
have

Z(t, 1/‖ · ‖aff) = EPn(C)[(1 + ‖ϕ−1
0 (x)‖2)−

t
2 ] =

1

νP[Pn(C)]

∫
Cn

(1 + ‖x‖2)−
t
2

(1 + ‖x‖2)n+1
dx.

Using spherical coordinates, we conclude:

Z(t, 1/‖ · ‖aff) =
1

νP[Pn(C)]

∫
S2n−1

∫ ∞
0

(1 + r2)−
t
2 r2n−1

(1 + r2)n+1
dr.

Hence,

Z(t, 1/‖ · ‖aff) =
νS [S2n−1]

νP[Pn(C)]

∫ ∞
0

(1 + r2)−
t
2 r2n−1

(1 + r2)n+1
dr.

Replacing s := r2, we conclude:

Z(t, 1/‖ · ‖aff) =
νS [S2n−1]

2νP[Pn(C)]

∫ ∞
0

sn−1

(1 + s)(n+1)+ t
2

ds =
νS [S2n−1]

2νP[Pn(C)]
B(n, 1 + t

2 ),

Now, replacing νS [S2n−1] and νP(Pn(C)] by their values, we get:

Z(t, 1/‖ · ‖aff) = nB(n, 1 + t
2 ) =

nΓ(n)Γ(1 + t
2 )

Γ
(
(n+ 1) + t

2

) =
Γ(n+ 1)Γ(1 + t

2 )

Γ
(
(n+ 1) + t

2

) .

�

Corollary 5.4. With the same notations as above, the following holds:

ES(d)

[
1

D(d)

∑
ζ∈VA(af)

log(1 + ‖ζ‖2)

]
= ψ(n+ 1)− ψ(1) = Hn,

where Hn is the n−th harmonic number and ψ is the digamma function.
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Proof. Now, observe that

(5.3) − dZ(t, 1/‖ · ‖aff)

dt

∣∣∣∣
t=0

= ES(d)

[
1

D(d)

∑
ζ∈VA(f)

1

2
log(1 + ‖ζ‖2)

]
.

The derivative of Z(t, 1/‖ · ‖aff) at t = 0 satisfies

dZ(t, 1/‖ · ‖aff)

dt

∣∣∣∣
t=0

=
1

Γ
(
(n+ 1) + t

2

)2 [C1(t)− C2(t)]
∣∣∣
t=0

,

where
C1(t) := Γ(n+ 1)Γ′(1 + t

2 )( 1
2 )Γ
(
(n+ 1) + t

2

)
,

C2(t) := Γ(n+ 1)Γ(1 + t
2 )Γ′

(
(n+ 1) + t

2

)
( 1

2 ).

Thus,

−dZ(t, 1/‖ · ‖aff)

dt

∣∣∣∣
t=0

=
1

2

[
Γ(1) · Γ′(n+ 1)

Γ(n+ 1)
− Γ′(1)

Γ(1)
· Γ(n+ 1)

Γ(n+ 1)

]
=

1

2
[ψ(n+ 1)− ψ(1)],

where ψ is the digamma function that satisfies ψ(n) = Hn−1−γ, and γ is Euler-Mascheroni constant.
The Corollary obviously follows from Equality (5.3). �

5.2. An excursus on zeta Mahler measure functions and condition numbers. This is just to
explain how zeta Mahler measure functions may be viewed as potential instruments in the knowledge
of condition numbers. As it is not the goal of these pages, we just keep it as a short excursus into the
subject.
For a n × (n + 1) complex matrix A ∈ Mn×(n+1)(C) = H(1), Demmel’s condition number can be
defined by

µ(A) := ‖A‖F ‖A†‖2,
where ‖ ·‖F denotes Frobenius norm and ‖A†‖2 is the norm as operator of the Moore-Penrose pseudo-
inverse A† of A. One may define the zeta Mahler measure function of the inverse of this condition
number by the following identity:

Z(t, 1/µ) := ZS(Mn×(n+1)(C))(t, 1/µ) :=
1

νS[S(Mn×(n+1)(C))]

∫
S(Mn×(n+1)(C))

µ−t(A)dνS(A),

where S(Mn×(n+1)(C)) is the sphere of radius one centered at the origin inMn×(n+1)(C) with respect
to the Frobenius norm.

Corollary 5.5. With these notations, let G := {t ∈ C : <(t) > −4}. Then, the zeta Mahler measure
function Z(t, 1/µ) is well-defined and homolorphic in G. Moreover, for every t ∈ G the following
equality holds:

(5.4) Z(t, 1/µ) =
Γ(n2 + n)

Γ(n2 + n+ t
2 )

n−1∑
k=0

(
n+1
k

)
Γ(n− k + 1 + t

2 )

nn−k+1+ t
2 Γ(n− k)

.

In particular, Z(t, 1/µ) admits analytic continuation to the complex domain C \ {z ∈ Z : z ≤ −4}.

Proof. As Mn×(n+1)(C) = H(1), from the main outcome of [56], we know that there is a constant
C(n) such that

1

νS[S(Mn×(n+1)(C))]
νS[A ∈ S(Mn×(n+1)(C)) : µ(A) > 1/ε] ≤ C(n)ε4.

Then, as it is well-known νS[{A ∈ Mn×n+1(C) : 1/µ(A) = 0}] = 0 we apply Lemma 2.1 above and
we immediately conclude that Z(t, 1/µ) is a well-defined holomorphic function over G. Next, as both
functions on the two sides of the Equality (5.4) are holomorphic, the Identity Principle for univariate
holomorphic functions implies that if these two functions agree on a subset A ⊆ G having accumulation
points, then they are equal as functions defined on the connected set G. But, from Theorem 19 of
[7], we know that these two functions agree for real values of t in the open real interval t ∈ (−4, 0).
Then, they agree in G and the main claim of this Corollary follows. Additionally, the holomorphic
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function on the right hand side of Equation (5.4) admits analytic continuation to the complex domain
C \ {z ∈ Z : z ≤ −4} and the last claim also follows. �

We do the same kind of study of the non-linear condition number µnorm introduced in [55]. For a
degree list (d) and for every list of polynomials f ∈ H(d) and for every point ζ ∈ VP(f), we define the
normalized condition number µnorm(f, ζ) by the following identity:

µnorm(f, ζ) := ‖f‖∆‖Diag(d
−1/2
i )Df(z)†‖,

where z ∈ S2n+1 ⊆ Cn+1 is any representant of ζ in the unit sphere S2n+1, || · ||∆ is Bombieri-Weyl’s

norm and Diag(d
−1/2
i ) is the diagonal matrix whose diagonal entries are d

−1/2
1 , . . . , d

−1/2
n . We then

define the zeta Mahler measure function associated to the inverse of the normalized condition number
1/µnorm as follows:

Z(t, 1/µnorm) := ZS(H(d))(t,
1/µnorm) :=

1

νS[S(H(d))]

∫
f∈S(H(d))

 1

D(d)

∑
ζ∈VP(f)

µnorm(f, ζ)−t

 dνS(f).

We prove Proposition 1.3 as stated at the Introduction.

5.2.1. Proof of Proposition 1.3.

Proof. It’s well-known that µ[{f ∈ H(d) : 1/µnorm(f) = 0}] = 0 so Lemma 2.1 above combined with
the main outcome of [56] imply that Z(t, 1/µnorm) is well-defined and holomorphic in G. As for the
equality, Theorem 23 of [7] claims that these two holomorphic functions agree on the real interval
(−4, 0) ⊆ G. Hence, applying again the Identity Principle for univariate holomorphic functions, we
obtain the equality for all t ∈ G. The last claim of the Corollary is, again, a consequence of the
impossibility of the existence of analytic continuations of Γ(2 + t/2) (i.e. k = n − 1 in Equation
(1.6)). �

5.3. Zeta Mahler function of the determinant of a complex Wishart matrix. This manu-
script owes much of its inspiration to a seminal idea developed in a series of three manuscripts of 1963,
written by N.R. Goodman (mostly to [31], [32]). In these manuscripts Goodman computes, among
other things, the characteristic function of the logarithm of a complex Wishart Matrix. Since then,
revisions and analysis of the results in [32] have been spread along the literature and its academic
trace may be followed through many authors, references and applications as [54], [44], [33], [2], [45]
and many others. It is not our purpose here to make a survey of the many applications of those ideas
from N.R. Goodman. His results obviously inspired our notions of zeta Mahler measure functions.
Here, we just want to rewrite his main outcomes in the same language as the one we used in the
previous subsection.
First of all, let us denote by (1) the list of degrees (1) := (1, . . . , 1) ∈ Nn and let us denote by
H(1) := H(1)(X0, . . . , Xn). This is the space of n× (n+ 1) complex matrices. Namely,

H(1) =Mn×(n+1)(C).

In this case Bombieri-Weyl Hermitian product agrees with the usual Frobenius Hermitian product.
Namely, for A,B ∈ H(1), Frobenius Hermitian product is given by:

〈A,B〉F := Tr (AB∗) ,

where Tr denotes trace and ∗ denotes conjugate transpose. Accordingly, Frobenius norm is denoted

by ‖A‖F := (Tr (AA∗))
1/2

. Next, let us consider the product of complex spheres
∏n
i=1 S

2n+1 ⊆ H(1)

as the matrices X ∈ H(1) whose rows are vectors in the sphere S2n+1 := {z ∈ Cn+1 : ‖z‖ = 1}, i.e.

X :=

θ1

...
θn

 , θi ∈ S2n+1.
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We then consider the following zeta Mahler measure function:

(5.5) Z(t,DET) := Z∏n
i=1 S

2n+1(t,DET) :=
1

νS [
∏n
i=1 S

2n+1]

∫
X∈

∏n
i=1 S

2n+1

|det(XX∗)|tdX,

where t ∈ C is a complex number.
Let us denote by Ωn ⊆ Mn(C) the set of all Hermitian semi-definite positive complex matrices, en-
dowed with the Borel-Lebesgue measure. Let W : H(1) −→ Ωn be the Wishart matrix transformation:

W (M) := MM∗ ∈ Ωn,∀M ∈ H(1).

Assume that H(1) is endowed with the Gaussian distribution N(0, In(n+1)) that we denote by γ. Let
W∗γ be the pushforward probability distribution on Ωn induced by W and the Gaussian distribution
in H(1). Then, [31] (cf. also [33] and other references) proves the following statement:

Theorem 5.6 ([31]). With these notations, the probability distribution W∗γ on Ωn has a probability
density function fW given by the following equality:

fW (P ) :=
1

π
1
2n(n−1)

∏n+1
j=2 Γ(j)

det(P )e−Tr(P ),

where det(·) is the determinant and Tr(·) is the trace of the matrix.

In terms of integral identities, denoting by µ the usual Lebesgue measure of any space Cn, the following
is an equivalent form of presenting the previous Theorem:

1

πn(n+1)

∫
H(1)

f(W (M))e−||M ||
2
F dµ =

∫
Ωn

f(P )

π
1
2n(n−1)

∏n+1
j=2 Γ(j)

det(P )e−Tr(P )dµ,

where f : Ωn −→ R is any integrable function. The following is an immediate consequence of the
main outcomes of N. R. Goodman and it has been observed in [33], Identity (1.2):

Theorem 5.7 (cf. [32], [33], [54]). Let t ∈ R be a real number and assume that t > −2. Then, the
following equality holds:∫

H(1)

|det(XX∗)|te−||X||2F
πn(n+1)

dµ(X) =

∫
Ωn

det(P )t+1e−Tr(P )

π
1
2n(n−1)

∏n+1
j=2 Γ(j)

dµ =

n+1∏
j=2

Γ(j + t)

Γ(j)
.

where µ is the Lebesgue measure in H(1).

From this equality we easily conclude the following one, just using integration in spherical coordinates:

Corollary 5.8. With the same notations as above, let G be the complex domain given by G := {t ∈
C : <(t) > −2}. Then, the Z(t,DET) is a well-defined and holomorphic function for t ∈ G.
Moreover, the following equality holds for every t ∈ G:

(5.6) Z(t,DET) =

(
Γ(n+ 1)

Γ(t+ n+ 1)

)nn+1∏
j=2

Γ(j + t)

Γ(j)

 ,

In particular, Z(t,DET) admits analytic continuation to the complex domain C \ {z ∈ Z : z ≤ −2}.
Additionally, the derivatives satisfy:

dkZ(t,DET)

dtk
=

1

νS [
∏n
i=1 S

2n+1]

∫
X∈

∏n
i=1 S

2n+1

|det(XX∗)|t logk (det(XX∗)) dνS(X).

Proof. Although it is an almost obvious consequence of the works by N.R. Goodman, we include a
proof for completeness. We first prove that the Equality (5.6) holds for every real number t ∈ R, with
t > −2. Then, applying Lemma 2.2 we know that the hypothesis of Lemma 2.1 holds and, then, the
first claim of the Corollary holds. Then, Z(t,DET) is holomorphic in G. Since G is connected, if
Equality (5.6) holds for every real number t ∈ G, then the Identity Principle of holomorphic functions
imply that this equality also holds for every complex point t ∈ G and the remaining claims also hold.
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According to Theorem 5.7, we have for t ∈ R, t > −2:

M(t) :=

∫
H(1)

|det(XX∗)|te−||X||
2
F dµ(X) = πn(n+1)

n+1∏
j=2

Γ(j + t)

Γ(j)
.

We proceed by combining Tonelli-Fubini’s Theorem with integration in spherical coordinates (cf. [9],
Ex. 8, p. 206, for instance) to conclude:

M(t) =

∫ ∞
0

· · ·
∫ ∞

0

∫
Θ∈

∏n
i=1 S

2n+1

|det (rΘ · rΘ∗) |te−
∑n
i=1 r

2
i

n∏
i=1

r2n+1
i dΘdr,

where

r := (r1, . . . , rn) ∈ [0,∞)n, Θ :=

θ1

...
θn

 ∈ n∏
i=1

S2n+1,

dr := dr1 · · · drn, dΘ := dθ1 · · · dθn,

rΘ :=

r1θ1

...
rnθn

 .

As

(5.7) det (rΘrΘ∗) =

(
n∏
i=1

r2
i

)
det(ΘΘ∗),

we conclude:

M(t) =

n∏
i=1

(∫ ∞
0

r2t+2n+1
i e−r

2
i dri

)(∫
X∈

∏n
i=1 S

2n+1

|det(XX∗)|tdX

)
.

We thus conclude: ∫
X∈

∏n
i=1 S

2n+1

|det(XX∗)|tdX =
2nM(t)

Γ(t+ n+ 1)n
,

and, hence, ∫
X∈

∏n
i=1 S

2n+1

|det(XX∗)|tdX = 2nπn(n+1)
n+1∏
j=2

Γ(j + t)

Γ(j)Γ(t+ n+ 1)
.

Then, as νS [S2n+1] = 2πn+1

Γ(n+1) , dividing by
∏n
i=1 νS [S2n+1] the equality follows. �

6. The zeta Mahler measure function of the Jacobian determinant: Proof of
Theorem 1.4

In this Section we prove Theorem 1.4 of the Introduction. As in the proof of Corollary 5.8, we first
prove that Identity (1.7) of Theorem 1.4 holds for every real number t ∈ R, t > −4. Then, Lemmata
2.2 and 2.1 imply that Z(t, JAC) is a well-defined and holomorphic function in G. Finally, the Identity
Principle for holomorphic functions would imply that Identity (1.7) holds for every complex number
t ∈ G. The dependence on the gamma function will imply that Z(t, JAC) admits analytic continuation
to the complex domain C \ {z ∈ Z : z ≤ −4} and the proof of the Theorem would be finished. We
follow the same strategy as the one used in Corollary 18 of [7] to prove Identity (1.7) for real numbers
t ∈ R, such that t > −4. As in the Introduction, we consider the Jacobian determinant

JAC(f, ζ) := det(Tζf),

for every f ∈ S(d) and ζ ∈ VS(f). Under the same hypothesis the following equality holds:

|JAC(f, ζ)| = |det(Tζf)| = |det(Df(ζ)Df(ζ)∗)| 12 = |WJAC(f, ζ)| 12 ,
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where WJAC(f, ζ) := |det(Df(ζ)Df(ζ)∗)| is the Wishart matrix of the Jacobian for every f ∈ H(d)

and for every ζ ∈ VS(f). Let us introduce an auxiliary function Z(t,WJAC) as follows:

Z(t,WJAC) :=
1

νS[S(d)]

∫
f∈S(d)

(
1

D(d)

∫
ζ∈VP(f)

|WJAC(f, ζ)|t dVP(f)(ζ)

)
dνS(f).

Next, observe that for every real number t > −4, we have

(6.1) Z(t, JAC) = Z(t/2,WJAC).

We thus proceed by computing the value of Z(t,WJAC) for every real number t ∈ R, t > −2. Using
Corollary 5.3, we have that IV(d)

[|NJπ1|] = D(d)νS[S(d)] and, hence, we conclude that

(6.2)

Z(t,WJAC) =
1

IV(d)
[|NJπ1|]

∫
(f,ζ)∈V(d)

|WJAC(f, ζ)|tNJπ1(f, ζ)dV(d)(f, ζ) = ZV(d)
(t,WJAC, NJπ1),

and both Z(t, JAC) and Z(t,WJAC) fall into the scope of Lemma 2.1.
Note that for every f := (f1, . . . , fn) ∈ H(d) such that fi 6= 0, for all i, 1 ≤ i ≤ n, and for every
ζ ∈ VS(f) the following equality holds :

(6.3) |WJAC(f, ζ)| := |det (Df(ζ)Df(ζ)∗) | =

(
n∏
i=1

‖fi‖2di

)
|det(Df̃(ζ)Df̃(ζ)∗)|,

where

f̃ :=

(
f1

‖f1‖d1

, . . . ,
fn
‖fn‖dn

)
∈ S(d).

Next, let us observe that

Z(t,WJAC) =
1

2π

1

D(d)νS[S(d)]

∫
f∈S(d)

∫
ζ∈VS(f)

|WJAC(f, ζ)|t dVS(f)(ζ)dνS(f).

Now, let B(H(d)) be the product of unit balls given by the following identity:

B(H(d)) :=

n∏
i=1

BHdi (0, 1),

where BHdi (0, 1) is the closed ball of radius one centered at the origin in Hdi .
Let us introduce the integral:

WJ(t) :=

∫
f∈B(H(d))

∫
ζ∈VS(f)

|WJAC(f, ζ)|t dVS(f)(ζ)dH(d)(f).

Combining Fubini’s Theorem and integration in spherical coordinates, we obtain:

WJ(t) =

∫
f∈S(d)

∫
ζ∈VS(f)

∫ 1

0

· · ·
∫ 1

0

|WJAC(fr, ζ)|t
(

n∏
i=1

r2Mi−1
i

)
dVS(f)(ζ)dνS(f)dr,

where Mi is the complex dimension of Hdi and r := (r1, . . . , rn) ∈ [0, 1]n, dr := dr1 · · · drn and
fr := (r1f1, . . . , rnfn), fi ∈ S(Hdi), 1 ≤ i ≤ n.
Using the equality of Equation (6.3) above, we conclude:

WJ(t) =

∫
f∈S(d)

∫
ζ∈VS(f)

∫ 1

0

· · ·
∫ 1

0

|WJAC(f, ζ)|t
(

n∏
i=1

r2Mi−1+2t
i

)
dVS(f)(ζ)dνS(f)dr.

Namely, we have

WJ(t) =

(
n∏
i=1

(∫ 1

0

r
2(Mi+t)−1
i dri

))(∫
f∈S(d)

∫
ζ∈VS(f)

|WJAC(f, ζ)|t dVS(f)(ζ)dνS(f)

)
.
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As
∫ 1

0
rkdr = 1

k+1 , we obviously conclude:

WJ(t) =

(
1∏n

i=1 2(Mi + t)

)(∫
f∈S(d)

∫
ζ∈VS(f)

|WJAC(f, ζ)|t dVS(f)(ζ)dνS(f)

)
.

We then have

(6.4) Z(t,WJAC) =
2n−1

∏n
i=1(Mi + t)

πD(d)νS[S(d)]
WJ(t).

Now, we proceed by computing WJ(t). Now, observe that, in the definition of WJ(t) above we have
included the index function χB(H(d)) of the product of balls B(H(d)), although it has not been explicitly
given in the formula, but in the integration space. Thus, we may have written:

WJ(t) :=

∫
f∈H(d)

∫
ζ∈VS(f)

χB(H(d))(f)|WJAC(f, ζ)|t dVS(f)(ζ)dH(d)(f).

Then, we may decompose the index function χB(H(d)) as a product of two index functions χBF (H(1))

and χBRζ (M,ζ) defined as follows.

First of all, let BF (H(1)) be the product of the closed unit balls Cn+1 with respect to the canonical
Hermitian norm. Namely,

BF (H(1)) := {M :=

m1

...
mn

 : mi ∈ Cn+1, ‖mi‖22 ≤ 1} =

n∏
i=1

BCn+1(0, 1).

For every M ∈ BF (H(1)) and ζ ∈ S2n+1 such that ζ ∈ ker(M), we may also define a product of balls
in Rζ given by the following identity:

BRζ (M, ζ) := {h := (h1, . . . , hn) ∈ Rζ : ‖hi‖2di ≤ 1− ‖ϕi(M, ζ)‖2di},

where ϕi(M, ζ) are the rows of ϕ(M, ζ)(z) :=

ϕ1(M, ζ)(z))
...

ϕn(M, ζ)(z)

.

According with the same properties of Equation (4.2) (cf. also [7]), we have

‖ϕi(M, ζ)‖2di = ‖mi‖22,

where mi ∈ Cn+1 is the i−th row of M viewed as vector in Cn+1 and ‖mi‖2 is the norm of mi with
respect to the canonical Hermitian product in Cn+1. Thus, the product of balls BRζ (M, ζ) can also
be given by:

(6.5) BRζ (M, ζ) := {h := (h1, . . . , hn) ∈ Rζ : ‖hi‖2di ≤ 1− ‖mi‖22, M :=

m1

...
mn

 ,mi ∈ Cn+1}.

In particular, for every M ∈ H(1) of maximal rank with kernel generated by ζ ∈ S2n+1 and for every
h ∈ Rζ , and given h + ϕ(M, ζ) ∈ Lζ ⊥ Rζ , the coordinates hi and ϕi(M, ζ) are orthogonal in every
Hdi(X), with respect to the Bombieri-Weyl norm. Hence, the following equivalence holds:

h+ ϕ(M, ζ) ∈ B(H(d)) ⇐⇒ M ∈ BF (H(1)) ∧ h ∈ BRζ (M, ζ),

which corresponds to the equality of index functions

χB(H(d)) (h+ ϕ(M, ζ)) = χBF (H(1)) (M) · χBRζ (M,ζ) (h) .

Having this in mind and applying Corollary 17 of [7] (cf. also Theorem 4.4 above), the following
equality also holds:
(6.6)

WJ(t)

D(d)
=

∫
M∈BF (H(1))

∫
ζ∈VS(M)

∫
h∈BRζ (M,ζ)

|WJAC(h+ ϕ(M, ζ), ζ)|t dRζ(h)dVS(M)(ζ)dH(1)(M).
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Noting that for h ∈ Rζ , D(h)(ζ) = 0, and recalling Equation (4.3) above (cf. also [7]) we have:

D(h+ ϕ(M, ζ))(ζ) = D(ϕ(M, ζ)(ζ) = Diag(d
1/2
i )M,

where Diag(d
1/2
i ) is the diagonal matrix whose i−diagonal term is d

1/2
i . Hence,

|WJAC(h+ ϕ(M, ζ), ζ)| := |det (D(h+ ϕ(M, ζ))(ζ)D(h+ ϕ(M, ζ))(ζ)∗) | = |
n∏
i=1

di det(MM∗)|.

Thus, Equation (6.6) becomes:

(6.7)
WJ(t)

D(d)
=

∫
M∈BF (H(1))

∫
ζ∈VS(M)

∫
h∈BRζ (M,ζ)

|
n∏
i=1

di det(MM∗)|t dRζ(h)dVS(M)(ζ)dH(1)(M).

Next, extracting the Bézout numbers, Equation (6.7) becomes:

(6.8)
WJ(t)

D(d)
t+1 =

∫
M∈BF (H(1))

|det(MM∗)|t
(∫

ζ∈VS(M)

∫
h∈BRζ (M,ζ)

1 dRζ(h)dVS(M)(ζ)

)
dH(1)(M).

Generically on H(1), the kernel of a matrix M ∈ H(1) is a vector subspace of Cn+1 of dimension 1 and

VS(M) = S1ζ is the orbit, under the action of the unit sphere S1 ⊆ C, on any fixed ζ ∈ VS(M). In
particular, the volume

vol[BRζ (M, ζ)] :=

∫
h∈BRζ (M,ζ)

1 dRζ(h),

does not depend on the chosen orbit generator ζ ∈ VS(M). Namely, let us assume M,M ′ ∈ H(1) be
any two matrices with kernel of dimension one and assume

M :=

m1

...
mn

 , M ′ :=

m
′
1

...
m′n

 ,

where mi,m
′
i ∈ Cn+1 and ||mi‖22 = ‖m′i‖22, for every i, 1 ≤ i ≤ n. Then, we have:

vol[BRζ (M, ζ)] := vol[BRζ′ (M
′, ζ ′)],

where ζ ∈ VS(M) and ζ ′ ∈ VS(M ′). Namely, we may assume ζ = e0 := (1, 0, . . . , 0) ∈ Cn+1 and that
M ∈ H(1) is any matrix that vanishes on e0. Then, BRe0 (M, e0) is a product of closed balls:

BRe0 (M, e0) =

n∏
i=1

BRi,e0 (0,
√

1− ‖mi‖22),

where

BRi,e0 (0,
√

1− ‖mi‖22) := {f ∈ Ri,e0 : ‖f‖di ≤
√

1− ‖mi‖22},

and

Ri,e0 := {f ∈ Hdi : f(e0) = 0, ∇e0f = 0}.
Next, observe that Ri,e0 is a vector subspace of Hdi of co-dimension n+ 1. Namely,

dimC(Ri,e0) = Mi − (n+ 1) =

(
di + n

n

)
− (n+ 1).

As the volume of the unit ball in the complex space Ck satisfies vol[BCk(0, 1)] = πk

Γ(k+1) , we then

conclude:

vol[BRζ (M, ζ)] =

n∏
i=1

((
1− ‖mi‖22

) 2(Mi−(n+1))

2 vol[BRi,e0 (0, 1)]

)
=

n∏
i=1

(
π
(
1− ‖mi‖22

))Mi−(n+1)

Γ(Mi − n)
.
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Then, Equation (6.8) becomes:

(6.9)
WJ(t)

2πD(d)
t+1 =

(
n∏
i=1

πMi−(n+1)

Γ(Mi − n)

)
K(t).

where

(6.10) K(t) :=

∫
M∈BF (H(1))

|det(MM∗)|t
n∏
i=1

(
1− ‖mi‖22

)Mi−(n+1)
dH(1)(M).

We now focus our interest on the determination of K(t). We integrate in spherical coordinates, noting
BF (H(1)) =

∏n
i=1BCn+1(0, 1) is a product of closed unit balls. We proceed as in the proof of Corollary

5.8.

BF (H(1)) := {M :=

m1

...
mn

 : mi ∈ Cn+1, ‖mi‖22 ≤ 1} =

n∏
i=1

BCn+1(0, 1).

Using Equation (5.7), and integrating in spherical coordinates, we obtain:

K(t) =

∫
M∈

∏n
i=1 S

2n+1

∫ 1

0

· · ·
∫ 1

0

(
n∏
i=1

(
1− r2

i

)Mi−(n+1)
r2t
i r

2n+1
i

)
|det(MM∗)|t dMdr.

Then,

K(t) =

(
n∏
i=1

∫ 1

0

r
2(n+t)+1
i (1− r2

i )
Mi−(n+1)dri

)(∫
M∈

∏n
i=1 S

2n+1

|det(MM∗)|t dM

)
.

Namely,

K(t) =

(
n∏
i=1

B(n+ t+ 1,Mi − n)

2

)(∫
M∈

∏n
i=1 S

2n+1

|det(MM∗)|t dM

)
.

We finally use Corollary 5.8 to conclude:

(6.11) K(t) =

(
n∏
i=1

B(n+ t+ 1,Mi − n)

2

)2nπn(n+1)
n+1∏
j=2

Γ(j + t)

Γ(j)Γ(t+ n+ 1)

 .

Then, we go back to Equation (6.9) to conclude:

(6.12)

WJ(t)

2πD(d)
t+1 =

(
n∏
i=1

πMi−(n+1)

Γ(Mi − n)

)(
n∏
i=1

B(n+ t+ 1,Mi − n)

2

)2nπn(n+1)
n+1∏
j=2

Γ(j + t)

Γ(j)Γ(t+ n+ 1)

 .

Replacing the Beta function by its value, we get

(6.13)
WJ(t)

2πD(d)
t+1 = πM(d)

n∏
i=1

1

Γ(Mi + t+ 1)

n+1∏
j=2

Γ(j + t)

Γ(j)
,

where M(d) is the dimension of H(d), M(d) =
∑n
i=1Mi.

Now, as the volume of the product of spheres satisfies:

νS[S(d)] =

n∏
i=1

2πMi

Γ(Mi)
= 2nπM(d)

n∏
i=1

1

Γ(Mi)
,

combining this last equality with Equation (6.4) and Equation (6.13), we conclude

(6.14) Z(t,WJAC) =
2n−1

∏n
i=1(Mi + t)

πD(d)νS[S(d)]
WJ(t) = D(d)

t
n∏
i=1

Γ(i+ t+ 1)Γ(Mi)(Mi + t)

Γ(i+ 1)Γ(Mi + t+ 1)
.
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Namely, as Γ(z + 1) = zΓ(z) we conclude

(6.15) Z(t,WJAC) = D(d)
t
n∏
i=1

Γ(i+ t+ 1)Γ(Mi)

Γ(i+ 1)Γ(Mi + t)
.

Now, the main result follows from Equality (6.1) and hence the following holds for every real number
t ∈ R, t > −4:

Z(t, JAC) = (D(d))
t
2

n∏
i=1

(
Γ(i+ t

2 + 1)

Γ(i+ 1)
· Γ(Mi)

Γ(Mi + t
2 )

)
.

And this finishes the computation of the value of Z(t, JAC). Observe that the holomorphic function
on the right hand side of Equality (1.7) contains the term Γ(2 + t

2 ). Thus, Z(t, JAC) admits analytic
continuation to the complex domain C \ {z ∈ Z : z ≤ −4}.
Now, we finish the proof of this Theorem by computing m(JAC) as defined in the Introduction.
According to Lemma 2.1, we observe that m(JAC) is related to the derivative of Z(t, JAC) at t = 0,
i.e.:

m(JAC) = D(d)
dZ(t, JAC)

dt

∣∣∣
t=0

.

Then, after some elementary calculations from the previous expression, we obtain:

dZ(t, JAC)

dt

∣∣∣
t=0

=
1

2

(
logD(d) +

n∑
i=1

ψ(i+ 1)− ψ(Mi)
)
,

where ψ is the digamma function, i.e. ψ(z) = Γ′(z)
Γ(z) .

Hence, we conclude

m(JAC) =
D(d)

2

(
logD(d) +

n∑
i=1

ψ(i+ 1)− ψ(Mi)
)
,

and the last statement of the Theorem follows.

7. Height of the Discriminant polynomial: Proof of Theorem 1.5

Elimination Theory is a term originated in the nineteenth century whose nowadays translation are
several fields called Computational Algebraic Geometry or Effective Methods in Algebraic Geometry,
among others. The main task in Elimination Theory is the design of efficients algorithms to “elimi-
nate” quantifiers. The central problem in Elimination Theory is, then, the elimination of a block of
existencial quantifiers in a formula involving polynomial equations. The basic elimination polynomial
is the multivariate resultant Res(d) which determines a quantifier free formula equivalent to another
one containing a block of existential quantifiers (i.e. a Nullstellensatz) in the projective case.
Together with the resultant polynomial Res

(d)
, there is another central Diophantine polynomial in

Elimination Theory: the discriminant polynomial Disc(d) which has been discussed in Subsection 3.4
above. Since both of them are Diophantine, both of them must be subject of study in terms of
arithmetic height in the sense of [27], [16], [12], [50], [21], [52] and references therein. In the path to
prove the Arithmetic Bézout Inequality (cf. [12], [47, 48, 49, 50], [41] and continuators) Philippon’s
school computed the exact value of the arithmetic height fof the resultant polynomial Res(d) (cf. [51],
[52] and references therein). The strong techniques developed by these authors do not seem to produce
the exact value of the arithmetic height of the discriminant polynomial Disc(d). Only upper bounds
are available from the techniques related to the Arithmetic Bézout inequality.
A measure of the Diophantine properties of Disc(d) is its Mahler measure (cf. [47, 48, 49, 50], [41] and
sequels). On the other hand, Mahler measure becomes entropy in Dynamical Systems of Algebraic
Origin ([53], [25], [26], [42] and references therein). As Disc(d) is multi-homogeneous, its natural
Mahler measure will be the one given by the product of spheres S(d). Our exact knowledge of the
zeta Mahler measure functions Z(t, 1/‖ · ‖aff) and Z(t, JAC) and its derivatives will provide the exact
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value of the arithmetic height of the discriminant polynomial Disc(d), this shows the strength of zeta
Mahler measure functions and the information they provide.
We follow [50], to define the arithmetic height of a multi-homogeneous polynomial using its Mahler
measure and its partial degrees.

Definition 7.1 (Unitarily invariant height of Σ(d) and of Disc(d)). With these notations, the invariant
logarithmic height of the discriminant variety Σ(d) is given by the following identity:

ht(Σ(d)) = ht(Disc(d)) = mS(d)
(Disc(d)) +

n∑
i=1

degfi Disc(d)

2
HMi−1,

where:

• mS(d)
(Disc(d)) is the logarithmic Mahler measure of the discriminant Disc(d) in the product

of spheres S(d):

mS(d)
(Disc(d)) :=

1

νS[S(d)]

∫
S(d)

log |Disc(d)(f1, . . . , fn)|dνS(f1, . . . , fn).

• degfi Disc(d) is the partial degree of Disc(d) with respect to the variables representing the
coefficients of fi,

• Mi := M(di, n) is the dimension of Hdi(X),

First of all, observe that we have chosen the product of spheres S(d) instead of the sphere S(H(d))
because Disc(d) is multi-homogeneous. Equations (1.3) and (1.4) of the introduction show that one
may easily deduce the logarithmic Mahler measure of Disc(d) with respect to S(H(d)) from our results
below.
According to [15] (cf. Theorem 3.3 above, where these properties are resumed) Disc(d) is multi-
homogeneous polynomial such that the degrees with respect to each group of variables (represented
by a polynomial fi ∈ Hdi(X) is given by:

degfi Disc(d) =
(∏
j 6=i

dj

)(
δ(d) + di − (n+ 1)

)
.

7.1. Proof of Theorem 1.5. Hence, the following Proposition immediately yields the Theorem 1.5
of the Introduction:

Proposition 7.1. With the previous notations, let (d) := (d1, . . . , dn) be a list of degrees and let
δ(d) :=

∑n
i=1 di be the sum of the degrees in the list (d). Assume that δ(d) − n =

∑n
i=1(di − 1) ≥ 1

holds. Then, the logarithmic Mahler measure of the discriminant polynomial in the case of dense
homogeneous polynomials defining a zero-dimensional variety is given by the following equality:

mS(d)
(Disc(d)) = A(d) −B(d),

where

A(d) :=
D(d)

2

[
(δ(d) − n)

(
n∑
i=1

Hi

)
+ logD(d)

]
,

and

B(d) :=

n∑
i=1

degfi Disc(d)

2
HMi−1 =

n∑
i=1

∏
j 6=i dj

2

(
δ(d) + di − (n+ 1)

)
HMi−1,

Proof. First of all, for every list of polynomials f ∈ H(d) that satisfies the hypothesis of Proposition
3.5, the following equality (Equation (3.6)) holds:

(7.1)
|Disc(d)(f)|

2](VA(f))−D(d)
= |Res(d)(f1,0, . . . , fn,0)|(

∑n
i=1(di−1))−1

∏
ζ∈VA(f)

|det (Df(1, ζ)Df(1, ζ)∗) |1/2

(1 + ‖ζ‖2)1/2
.

As in the Proof of Theorem 1.4, for every ζ ∈ Pn(C), let WJAC(f, ζ) the determinant det(Df(z)Df(z)∗),
where z ∈ VS(f) and pS(z) = ζ.
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Next, for every affine point (1, ζ) ∈ Cn+1 \ {0}, let ξ := π(1, ζ) ∈ Pn(C) be the associated projective
point, and the following equality holds:

|det (Df(1, ζ)Df(1, ζ)∗) | = (1+‖ζ‖)2)
∑n
i=1(di−1)|det

(
Df

(
(1, ζ)

(1 + ‖ζ‖2)1/2

)
Df

(
(1, ζ)

(1 + ‖ζ‖2)1/2

)∗)
|.

Namely,

|det (Df(1, ζ)Df(1, ζ)∗) | = (1 + ‖ζ‖)2)
∑n
i=1(di−1)|WJAC(f, ξ)|,

where the notations are those recently introduced. Hence, for every system f ∈ H(d) whose projective
zeros are not in the infinity hyper-plane H∞ := VP(X0), we conclude:

∏
ζ∈VA(f)

|det (Df(1, ζ)Df(1, ζ)∗) |1/2

(1 + ‖ζ‖2)1/2
=

∏
ζ∈VA(f)

(1 + ‖ζ‖2)
(
∑n
i=1 di)−(n+1)

2

∏
ξ∈VP(f)

|WJAC(f, ξ)|1/2,

The hypothesis of Proposition 3.5 are satisfied for generic choices of systems of polynomial equations
f := (f1, . . . , fn) ∈ H(d). Hence, up to a set of measure zero in H(d), the logarithm of the absolute
value of the discriminant satisfies:

log |Disc(d)(f)| = J1(f) + J2(f) + J3(f) + J4(f),

where

• J1(f) := (](VA(f))−D(d)) log 2 = 0, up to a set of measure zero of H(d).

• J2(f) := (
(
δ(d) − (n+ 1)

)
log |Res(d)(f1,0, . . . , fn,0)|.

• J3(f) := 1
2

∑
ζ∈VP(f) log |WJAC(f, ζ)| =

∑
ζ∈VP(f) log |JAC(f, ζ)|.

• J4(f) :=
(δ(d)−(n+1))

2

∑
ζ∈VA(f) log

∣∣1 + ‖ζ‖2|.
Hence, taking integrals, the logarithmic Mahler measure of the discriminant satisfies:

mS(d)
(Disc(d)) =

1

νS[S(d)]

∫
S(d)

log |Disc(d)(f)| = I2 + I3 + I4,

where, for 2 ≤ i ≤ 4,

Ii :=
1

νS[S(d)]

∫
S(d)

Ji(f)dνS(f).

The value I2 is given by the following identity,

I2 :=
(
δ(d) − (n+ 1)

) 1

νS[S(d)]

∫
S(d)

log |Res(d)(f1,0, . . . , fn,0)|dνS(f),

where the polynomials fi,0 ∈ C[X1, . . . , Xn] and, in particular, they belong to Hdi(X1, . . . , Xn). We
thus introduce the following two cartesian products, depending on the number of variables:

S(d)(X
(n+1)) :=

n∏
i=1

S
(
Hdi(X0, . . . , Xn)

)
,

S(d)(X
(n)) :=

n∏
i=1

S
(
Hdi(X1, . . . , Xn)

)
,

where S stands for the Bombiery-Weyl unit sphere. According to Lemma 3.11 in [29] the following
equality holds:

(7.2) I2 =
(
δ(d) − (n+ 1)

) (
mS(d)(X

(n))

(
Res(d)(f1,0, . . . , fn,0)

)
− J

(
(d), n

))
,

where:
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•

J
(
(d), n

)
:=

n∑
i=1

∏
j 6=i dj

2
(HMi−1 −HLi−1),

where Hk denotes de k-th harmonic number and

Mi :=

(
di + n

n

)
, Li :=

(
di + n− 1

n− 1

)
• mS(d)(X

(n))

(
Res(d)(f1,0, . . . , fn,0)

)
is the Mahler measure of the multi-variate resultant in n

variables.

The Mahler measure of Res(d) satisfies (cf. [51], [52] or [29], for instance):

mS(d)(X
(n))(Res(d)) =

D(d)

2

( n−1∑
j=1

Hj

)
−
( n∑
i=1

∏
j 6=i dj

2
HLi−1

)
.

Thus, Equation (7.2) becomes:

I2 =
(
δ(d) − (n+ 1)

)D(d)

2

[ n−1∑
j=1

Hj −
n∑
i=1

HMi−1

di

]
Now, observe that I3 is the quantity m(JAC) computed in Equation (1.8) stated as a consequence of
Theorem 1.4. Thus, we have

I3 := m(JAC) =
D(d)

2

(
log(D(d))+

n∑
i=1

(
ψ(i+1)−ψ(Mi)

))
=
D(d)

2

(
log(D(d))+

n∑
i=1

(
Hi−HMi−1

))
.

We finally compute I4,

I4 :=
1

νS[S(d)]

∫
S(d)

J4(f)dνS(f) =

(
δ(d) − (n+ 1)

)
2νS[S(d)]

∫
S(d)

∑
ζ∈VA(f)

log(1 + ‖ζ‖2) dνS(f).

Thus, according to Corollary 5.4, we conclude:

I4 := (δ(d) − (n+ 1))
D(d)

2
Hn.

We put all these quantities in a single identity to conclude the following value of the logarithmic
Mahler measure of the multi-variate discriminant.

mS(d)
(Disc(d)) = A(d) −B(d),

where:

A(d) :=
D(d)

2

[
(δ(d) − n)

(
n∑
i=1

Hi

)
+ logD(d)

]
,

B(d) :=

n∑
i=1

∏
j 6=i dj

2

(
δ(d) + di − (n+ 1)

)
HMi−1,

where D(d) :=
∏n
i=1 di, δ(d) :=

∑n
i=1 di and Hr :=

∑r
j=1

1
j are the quantities used along the text.

�

7.2. Some comments on Algorithmic Applications of Theorem 1.5. The main outcome of
Theorem 1.5 may be applied directly to the design of deterministic or Monte Carlo algorithms, based
on modular arithmetic that decide the following problem:

Problem 7.2. Given a list of homogeneous polynomial equations with Gaussian integer coefficients
f := (f1, . . . , fn) ∈ Z[i][X1, . . . , Xn]n, satisfying deg(fj) = dj, 1 ≤ j ≤ n, and whose coefficients have
a total bit length bounded by h. Decide whether the projective variety VP(f) ⊆ Pn(C) has a singular
zero.
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The technique to treat this Problem is based on the use of the discriminant, since the variety VP(f)
contains a singular zero if and only if Disc(d)(f1, . . . , fn) = 0. Since Disc(d)(f1, . . . , fn) ∈ Z, this
reduces to apply either Monte Carlo Zero Tests for Integers as in [35] or deterministic algorithms
based on the Chinese Remainder Theorem.
We do not discuss it in full detail, since it is not the main goal of these pages. However, we give some
indications on how to proceed. Roughly speaking, these methods are based on determining an upper
bound of |Disc(d)(f1, . . . , fn)|. In the deterministic case, for instance, it is enough to have a finite set
{p1, . . . , ps} of pairwise co-prime positive integers. Then, the Chinese Remainder Theorem implies
that the following are equivalent conditions:

• Disc(d)(f1, . . . , fn) = 0 mod pi, 1 ≤ i ≤ s,
• Disc(d)(f1, . . . , fn) = 0 mod T , where T :=

∏s
i=1 pi,

If the numbers p1, . . . , ps are prime numbers, the first condition means that the projective varieties
defined over the finite fields Fpi by the list of polynomials f1, . . . , fn contains a singular zero.
Then, the answer to a zero test for the discriminant based on modular arithmetics that satisfies any
of these two equivalent conditions would be: Either Disc(d)(f1, . . . , fn) = 0 or |Disc(d)(f1, . . . , fn)| >
1
2

∏s
i=1 pi − 1 = 1

2T − 1. The error in this answer is determined and controlled by the inequality

|Disc(d)(f1, . . . , fn)| > 1
2

∏s
i=1 pi − 1. In the case we prefer to use randomized Monte Carlo tests (as

the one in [35]) the lower bound 1
2T − 1 is replaced by a much bigger function of T .

As the Discriminant Disc(d) is multi-homogeneous, this inequality controlling the error is equivalent
to

(7.3) |Disc(d)(f1, . . . , fn)| > M(p, f) :=
1
2

∏s
i=1 pi − 1(∏n

i=1 ‖fi‖
degfi (Disc(d))

di

) ,
where fi := fi/‖fi‖di is the trace in the complex sphere S(Hdi(X)) of the polynomial fi. The dis-
tribution of the traces in

∏n
i=1 S(H(d)) of polynomials with Gaussian integer coefficients of bounded

bit length h are very close to the continuous distribution. The difference between both probability
distributions is bounded by discrepancy bounds as those introduced in [3] or [17] and references there
in. Up to these discrepancy bounds, the probability that |Disc(d)(f1, . . . , fn)| > M(p, f) for a system
f of height bounded by h, is bounded by the probability that a random point g := (g1, . . . , gn) ∈
S(d) :=

∏n
i=1 S(Hdi(X)) satisfies the same inequality, i.e.

P (Disc(d), (d), h) := ProbS(d)
[(g1, . . . , gn) ∈ S(d) : |Disc(d)(g1, . . . , gn)| >M(p, (d), h) ],

where M(p, (d), h) is a quantity which depends on
∏s
i=1 pi, the degree list (d) and h. Note that the

quantity P (Disc(d), (d), h) will be the probability that if Disc(d)(f1, . . . , fn) = 0 mod pi, 1 ≤ i ≤ s,
and we answer Disc(d)(f1, . . . , fn) = 0, our answer is wrong. Namely, P (Disc(d), (d), h) bounds the

error probability. In order to minimize the error probability we just have to increase either
∏s
i=1 pi or

h or maybe both. These calculations are omitted here.
The role of the height (or the Mahler measure) here is to control this continuous probability. Note
that this continuous probability can also be written in logarithmic terms as

P (Disc(d), (d), h) = ProbS(d)
[(g1, . . . , gn) ∈ S(d) : log

(
|Disc(d)(g1, . . . , gn)|

)
> log

(
M(p, (d), h)

)
].

Using either Chebyshef or Markov’s inequality, we may bound P (Disc(d), (d), h). For instance, using
Markov’s inequality we have:

P (Disc(d), (d), h) ≤
ES(d)

[log |Disc(d)|]
log
(
M(p, (d), h)

) .
But the expectation ES(d)

[log |Disc(d)|] is the logarithmic Mahler measure of Disc(d) as in Definition

7.1. Namely, we have shown that the error probability of answering Disc(d)(f1, . . . , fn) = 0 when this
is not the case is bounded by:

P (Disc(d), (d), h) ≤
mS(d)

(Disc(d))

log
(
M(p, (d), h)

) ,
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where mS(d)
(Disc(d)) is the logarithmic Mahler measure of the discriminant. Thus, using the loga-

rithmic Mahler measure of the discriminant (see Proposition 7.1) we already have the wanted estimate
of the error probability.
Some authors would perhaps prefer the use of the arithmetic height because of their use in Arithmetic
Intersection Theory (see the references cited at the beginning of Section 7). Because it satisfies an
Arithmetic Bézout Inequality, height may be more “canonical” as quantity determining the arithmetic
properties of a variety.
Thus, according with Definition 7.1, the logarithmic Mahler measure of the discriminant and the
height are related by:

ht(Disc(d))−
n∑
i=1

degfi Disc(d)

2
HMi−1 = mS(d)

(Disc(d)),

where the notations are those of Theorem 1.5 and Definition 7.1. Hence, the error probability of our
modular algorithm will be bounded (up to discrepancy bounds) in terms of arithmetic height by:

P (Disc(d), (d), h) ≤
ht(Disc(d))−

∑n
i=1

degfi Disc(d)

2 HMi−1

log
(
M(p, (d), h)

) .

And, hence, Theorem 1.5 or Proposition 7.1 (depending on the personal taste of the reader) applies to
yield upper bounds for the probability of error of modular algorithms for testing whether a system of
homogeneous polynomial equations have a singular zero. Details and precise calculations are omitted
since they are not the main stream of this manuscript.
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[8] I.N. Bernštěın, S.I. Gel’fand, Meormorphy of the function Pλ, Funktional. Anal. i Priložen 3 (1969), 84–85.
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Modern Birkhäuser Classics, Springer, 2008.
[31] N.R. Goodman, Statistical Analysis based on certain multi-variate complex Gaussian distribution (An Introduc-

tion). Annals of Math. Statistics 34 (1963), 152–177.

[32] N.R. Goodman, The Distribution of the Determinant of a Complex Wishart distributed matrix. Annals of Math.
Statistics 34 (1963), 178–180.

[33] P. Graczyk, G. Letac, H. Massam, The Complex Wishart Distribution and the Symmetric Group. The Annals

of Stat. 31 (2003), 287–309.
[34] R. Howard, Analysis on homogeneous spaces, Class notes spring 1994. Royal institute of technology, Stockholm.

[35] O.H. Ibarra, S. Moran, Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs. Journal of

the Assoclatton for Computing Machinery, 30 (1983), 217-228.
[36] J. P. Jouanolou, Formes d’inertie et résultant: un formulaire. Adv. in Math. 126 (1997), 119–250.

[37] S. Ji, J. Kollar, B. Shiffman, A Global  Lojasiewicz Inequality for Algebraic Varieties, Trans. of the Amer. Math.

Soc. 329 (1992), 813–818.
[38] T. Krick and L. M. Pardo, A computational method for Diophantine approximation, in Algorithms in Algebraic

Geometry and Applications (Santander, 1994), Progr. Math. 143, Birkhäuser, Basel, 1996, pp. 193-253.
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