VCD bounds for some GP genotypes

José Luis Montaña
Departament of Mathematics, Statistics and Computer Sciences
University of Cantabria (Spain)
In computational learning theory, the VC dimension (for Vapnik - Chervonenkis dimension) is a measure of the capacity of a statistical classification algorithm, defined as the cardinality of the largest set of points that the algorithm can shatter. It is a core concept in Vapnik-Chervonenkis theory, and was originally defined by Vladimir Vapnik and Alexey Chervonenkis.

Shattering

- A classification model $f(x,\alpha)$ with some parameter vector α is said to shatter a set of data points (x_1,\ldots,x_m) if, for all assignments of labels to those points, there exists an α such that the model f makes no errors when evaluating that set of data points.

- **VC dimension** of a model f is h where h is the maximum h such that some data point set of cardinality h can be shattered by f.
Shattering (cont.)

- 3 points shattered
- 4 points impossible
Interpretation

- The VC dimension has utility in learning theory, because it can predict a **probabilistic upper bound** on the test error of a classification model.

- The bound on the test error of a classification model (on data that is drawn **i.i.d.** from the same distribution as the training set) is given by

\[
\varepsilon(\alpha) \leq \varepsilon_m(\alpha) + \sqrt{\frac{h(\log(2m/h) + 1) - \log(\eta/4)}{m}},
\]

- with probability 1 – \(\eta\), where \(h\) is the VC dimension of the classification model, and \(m\) is the size of the training set (restriction: this formula is valid when the \(m\) dimension is large enough, \(h < m\)).
VC dimension vs. Syntactical representation

<table>
<thead>
<tr>
<th>Syntactical representation</th>
<th>Invariants</th>
<th>VC Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomials</td>
<td>Degree d, number of variables n</td>
<td>$O(n^d)$</td>
</tr>
<tr>
<td>First order formulas over the reals</td>
<td>Formula size s, degree of the polynomials d, number of constants k</td>
<td>$2k \log (4eds)$ [Goldberg&Jerrum, 95]</td>
</tr>
<tr>
<td>Neuronal networks</td>
<td>Number of programable parameters k</td>
<td>$O(k^2)$ [Karpinski&Macintyre 97]</td>
</tr>
<tr>
<td>GP trees (representing computer programs, more generally symbolic expressions)</td>
<td>Computational complexity of the program, number of variables, …</td>
<td>Length, space complexity, size, etc.</td>
</tr>
</tbody>
</table>
Symbolic expressions

Symbolic expressions can be defined from:
- Terminal set T
- Function set F (with the arities of function symbols)

Adopting the following general recursive definition:
- Every $t \in T$ is a correct expression
- $f(e_1, \ldots, e_n)$ is a correct expression if $f \in F$
- $\text{arity}(f) = n$ and e_1, \ldots, e_n are correct expressions

There are no other forms of correct expressions
GP-trees: Tree based representation of symbolic expressions

- **Rational functions:**
 - Terminals: variables and the real constants.
 - Functionals: arithmetic operations \{+,-,\times,\div\}.

\[
2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)
\]
Tree based representation of symbolic expressions (cont.)

- **Straight line programs.**
 - Terminals: variables and real constants.
 - Functionals: arithmetic operations, root extraction, …, sign tests, if (-) then {} else{} instructions,
Tree representation of straight line programs: Tree $T(l)$.
Tree representation of straight line programs (cont.)

<table>
<thead>
<tr>
<th>Tree size</th>
<th>Tree height</th>
<th>VC dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential Complexity</td>
<td>Parallel complexity</td>
<td>$O(\log D + \log S)$ D=degree</td>
</tr>
<tr>
<td>Tree $T(l)$ $\theta(2^l)$</td>
<td>Tree $T(l)$ $\theta(l)$</td>
<td>S=formula size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(2^l)$ Best bound</td>
</tr>
</tbody>
</table>
C(l) concept class defined by T(l).

Formula describing C(l):

$$\Phi(l) = (g_3 = 0, g_6 = 0, \ldots, g_{3,2^l} = 0, g_4 \cdot g_{5} \cdot \ldots \cdot g_{3,2^l-2} \geq 0) \lor \ldots \lor (g_3 \neq 0, g_6 \neq 0, \ldots, g_{3,2^l} \neq 0, g_5 \cdot \ldots \cdot g_{3,2^l-1} \geq 0)$$

Best upper bound for VCD of C(l) is $O(2^l)$.
Lemma (Based on [Grigoriev 88], [Fitchas et al. 87]).

F: family of n variate polynomials with real coefficients.

Then, the number of consistent sign assignments (f>0, f=0, f<0) to polynomials of the family F is at most:

\[(1 + D)^n \]
Corollary. \(\text{VCD of } C(l) \text{ is } O(l). \)

Proof. Use previous lemma and the fact:

\[
\Phi(l) = \lor_i (\Phi_{i,1}(l) \land \Phi_{i,2}(l))
\]

\[
\Phi_{i,1}(l) : \quad \text{sign assig } g_{3,\ldots, g_{3,2^l}}
\]

\[
\Phi_{i,2}(l) : \quad \Pi_j g_{k(j)} \geq 0
\]
Formula size of GP-trees representing straight line programs

- **Lemma (main).**
- $C_{k,n}$: family of concept classes whose membership test can be represented by a family of trees
- $T_{k,n}$ with k constants and n variables $C_{k,n}$.
- $h = h(k,n)$ height of $T_{k,n}$.

Then

- $C_{k,n}$ has formula size $2^{(k+n)h^2}$

- Degree of polynomials 2^h

- **Interpretation.** Formula size does not depend on sequential time but on parallel time (i.e., height of the GP-tree).
Theorem (main).

- $C_{k,n}$: family of concept classes.
- $T_{k,n}$: family of trees. (membership test to $C_{k,n}$)
- $h = h(k,n)$ depth of $N_{k,n}$.

Then

- $C_{k,n}$ has VC dimension $O(k(k + n)h^2)$
- Interpretation. VC dimension depends polynomially on parallel time.
VCD regularization for model selection in GP

- Symbolic regression under the general setting of predictive learning (Vapnik 95, Cherkassy & Mulier 98,…).
- Estimate unknown real-valued function

\[y = g(x) \]

- \(x \) is a multidimensional input and \(y \) is an scalar output.
VCD regularization for model selection in GP (cont.)

- The estimation is made based on a finite number of samples (training data) \((x_i, y_i)\) \((i=1,\ldots,m)\) i.i.d generated according to some unknown joint probability distribution:
 \[
p(x,y) = p(x)p(y|x)
\]

- According to SLT the unknown function (regression function) is

- Mean value of the output conditional probability:
 \[
g(x) = \int y \ p(y|x) \ dy
\]
VCD regularization for model selection in GP (cont.)

- A learning method selects the best model (concept) \(f(x,\alpha_0) \) from a set of possible models (concept class)
 \[
 \{f(x,\alpha): \alpha \in \Theta\}
 \]
- The quality of a model \(f(x,\alpha) \) is measured by the mean square error.
 \[
 \mathcal{E}(\alpha) = \int (y-f(x,\alpha)^2 \ p(x,y) \ dx \ dy \ [RF]
 \]
- Learning is the problem of finding the model \(f(x,\alpha) \) that minimizes the risk functional [RF].
Empirical Risk Minimization

For a given parametric model with finite VC dimension the model parameters are estimated by minimizing the empirical risk:

$$\mathcal{E}_m (\alpha) = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i, \alpha))^2$$

ERM is founded in the formula:

$$\varepsilon(\alpha) \leq \varepsilon_m(\alpha) + \sqrt{\frac{h \log \left(\frac{2m}{h} \right) + 1}{m} \log \frac{1}{\eta}}$$

Examples: select a degree d polynomial, select a linear regressor with fixed number of parameters, select a computer program of bounded complexity, etc.
Structural Risk Minimization

- The problem of model selection appears when VCD of the set of possible models is infinite.
- Examples: select a polynomial, a formula, a linear regressor with unbounded number of parameters, a computer program, a GP tree,…All these genotypes have infinite VCD.
Structural Risk Minimization with VC dimension

- Under SRM a set of possible models V forms a nested structure
- $V_1 \subseteq V_2 \subseteq V_3 \subseteq \ldots \subseteq V_h \subseteq \ldots$
- Each element V_h represents the set of models of complexity bounded by h.
- VC dimension is an increasing function on h.
- Select the model minimizing:

$$\varepsilon_m(\alpha) \left(1 - \sqrt{p(\alpha) - p(\alpha) \ln p(\alpha) + \frac{\ln m}{2m}}\right)^{-1}$$

where $p(\alpha) = 1/h(\alpha)$ and $h(\alpha) = \min \{h: f(x, \alpha) \in V_h\}$
Structural Risk Minimization with VC dimension for GP

- $V = \text{set of all straight line programs with fixed number of terminals (n variables, k constants)}.$
- $V_h = \text{set of all straight line programs that can be represented by GP-trees of heights bounded by h}.$
- Fitness function for a tree T:

\[
\text{fitness}(T) = \text{empirical risk}(T) \cdot \left(1 - \sqrt{p(T) - p(T) \ln p(T) + \frac{\ln m}{2m}}\right)^{-1}
\]