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‘ Vapnik-Chervonenkis Dimension

= In computational learning theory, the VC dimension
(for Vapnik - Chervonenkis dimension) is a
measure of the capacity of a statistical classification
algorithm, defined as the cardinality of the largest
set of points that the algorithm can shatter. It is a
core concept in Vapnik-Chervonenkis theory, and
was originally defined by Viadimir Vapnik and
Alexey Chervonenkis.

= V. Vapnik and A. Chervonenkis. "On the uniform convergence of relative frequencies of events to
their probabilities." Theory of Probability and its Applications, 16(2):264--280, 1971.

= A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. "Learnability and the Vapnik-
Chervonenkis dimension." Journal of the ACM, 36(4):929--865, 1989.




Shattering

A classification model f(x,a) with some
parameter vector a iIs said to shatter a set of
data points (X,,...,X,) If, for all assignments of
labels to those points, there exists an a such
that the model f makes no errors when
evaluating that set of data points.

VC dimension of a model f Is h where h iIs
the maximum h such that some data point set
of cardinality h can be shattered by f.




‘ Shattering (cont.)

3 points shattered 4 points impossible




Interpretation

The VC dimension has utility in learning theory, because it can
predict a probabilistic upper bound on the test error of a
classification model.

The bound on the test error of a classification model (on data that
IS drawn L.i.d. from the same distribution as the training set) is
given by
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with probability 1 — n, where h is the VC dimension of the
classification model, and m is the size of the training set
(restriction: this formula is valid when the m dimension is large
enough, h < m).



VC dimension vs. Syntactical
representation

Polynomials

Degree d, number of
variables n

O(n9)

First order formulas over
the reals

Formula size s, degree
of the polynomials d,
number of constants k

2k log (4eds)
[Goldberg&Jerrum, 95]

Neuronal networks

Number of programable
parameters k

O(k?)
[Karpinski&Macintyre 97]

GP trees (representing

computer programs,
more generaly symbolic
expressions)

Computational
complexity of the
program, number of
variables, ...

Length, space
complexity, size, etc.




Symbolic expressions

Symbolic expressions can be defined from
o Terminal set T

o Function set F (with the arities of function
symbols)

Adopting the following general recursive
definition:
Every t L T Is a correct expression
f(e,, ..., ,) Is a correct expression if f LJF
arity(f)=n and e, ..., e, are correct expressions
There are no other forms of correct expressions



‘ GP-trees: Tree based representation
of symbolic expressions

= Rational functions:
o Terminals: variables and the real constants.
o Functionals : arithmetic operations {+,-,x,/}.
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Tree based representation of symbolic
expressions (cont.)

Straight line programs.

o Terminals: variables and real constants.

o Functionals: arithmetic operations, root extraction,..., sign tests,
if (-) then {-} else{-} instructions,
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Tree representation of straight line
programs: Tree T(l).
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Tree representation of straight line
programs (cont.)

Tree size Tree height VC dimension
Sequential Parallel O(log D+ log S)
Complexity complexity D=degree

S=formula size
Tree T(l) Tree T(l) Tree t(l)
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Best bound O(2)




Tree representation of straight line
programs (cont.)

= C(l) concept class defined by T(l).
= Formula describing C(l):

Best upper bound for VCD of C(l) Is
O(2".




Tree representation of straight line
programs (cont.)

Lemma (Based on [Grigoriev 88|, [Fitchas et al.
87]).

F: family of n variate polynomials with real
coefficients.

D = > deg( f)

fOF

Then, the number of consistent sign assigments
(f>0,f=0,{f<0) to polynomials of the family F is at

most: (1+ D)”




Tree representation of straight line
programs (cont.)

Corollary. VCD of C(1) is O()).

Proof. Use previous lemma and the fact:




Formula size of GP-trees representing
straight line programs

= Lemma (main).

= Cy, : family of concept classes whose memebership test
can be represented by a family of trees

= Ty, with k constants and n variables C, ,

= h=h(k,n) height of T, ..
Then

= Cy,has formula size

2(k+n)h2

= Degree of polymomials 2 "

= Interpretation. Formula size does not depends on
sequential time but on parallel time (i. e height of the
GP-tree).




VCD of GP-trees representing straight
line programs

Theorem (main).

C, . : family of concept classes.

Ty, : family of trees. (membership testto C, )
h=h(k,n) depth of N, ..

Then
C, . has VC dimension |O(k(% + n)h*)
Interpretation. VC dimension depends

polynomially on parallel time.



VCD regularization for model selection In
GP

Symbolic regression under the general

setting of predictive learning (Vapnik 95,
Cherkassy & Mulier 98,...).

Estimate unknown real-valued function

y=g(x)

X 1S a multidimensional input and y Is an
scalar output.



VCD regularization for model selection In
GP (cont.)

The estimation is made based on a finite number of
samples (training data) (x,y) (=1,....,m) 1Ii.d
generated according to someunknown joint
probability distribution:

pP(X,y)=p(X) p(y|x)
According to SLT the unknown function (regression
function) Is

Mean value of the output conditional probability:
g(x)=l'y p(y[x) dy



VCD regularization for model selection In
GP (cont.)

A learning method selects the best model (concept)
f(x,a,) from a set of possible models (concept class)

{f(x,a): a 1O}

The quality of a model f(x,a) is measured by the
mean sguare error.

€(0)= 1 (y-f(x,0)? p(x.y) dx dy [RF]

Learning is the problem of finding the model f(x,a)
that minimizes the risk functional [RF].



Empirical Risk Minimization

For a given parametric model with finite VC dimension the model
parameters are estimated by minimizing the empirical risk:

ERM is founded in the formula:
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Examples: select a degree d polynomial, select a linear regressor
with fixed number of parameters, select a computer program of
bounded complexity, etc.



Structural Risk Minimization

The problem of model selection appears
when VCD of the set of possible models is
Infinite.

Examples: select a polynomial, a formula, a
linear regressor with unbounded number of
parameters, a computer program, a GP
tree,...All these genotypes have infinite VCD.



Structural Risk Minimization with VC

dimension

Under SRM a set of possible models V forms a
nested structure

v,0V,0V,0.... OV,0O...

Each element V, represents the set of models of
complexity bounded by h.

VC dimension is an increasing function on h.
Select the model minimizing:

am<a>.(1 - me) - p(@)1n p(a) + 2™ J
2m

where p(a)=1/h(a) and h(a)=min {h: f(x,a)}V,}



Structural Risk Minimization with VC
dimension for GP

V= set of all straight line programs with fixed
number of terminals (n variables, k constants).

V,= set of all straight line programs that can be
represented by GP-trees of heights bounded by h.

Fitthess function for a tree T:

fitness(T) =empirical risk (T)Ll — \/ (1) -p(T)Inp(T) +1;1m]
m



