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Vapnik-Chervonenkis Dimension

� In computational learning theory, the VC dimension 
(for Vapnik - Chervonenkis dimension) is a 
measure of the capacity of a statistical classification
algorithm, defined as the cardinality of the largest 
set of points that the algorithm can shatter. It is a 
core concept in Vapnik-Chervonenkis theory, and 
was originally defined by Vladimir Vapnik and 
Alexey Chervonenkis.

------------------------------------------------------------------------------------------
� V. Vapnik and A. Chervonenkis. "On the uniform convergence of relative frequencies of events to

their probabilities." Theory of Probability and its Applications, 16(2):264--280, 1971. 
� A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. "Learnability and the Vapnik-

Chervonenkis dimension." Journal of the ACM, 36(4):929--865, 1989.  



Shattering

� A classification model f(x,α) with some
parameter vector a is said to shatter a set of
data points (x1,…,xm) if, for all assignments of
labels to those points, there exists an α such
that the model f makes no errors when
evaluating that set of data points.

� VC dimension of a model f is h where h is
the maximum h such that some data point set
of cardinality h can be shattered by f.



Shattering (cont.)



Interpretation

� The VC dimension has utility in learning theory, because it can 
predict a probabilistic upper bound on the test error of a 
classification model.

� The bound on the test error of a classification model (on data that 
is drawn i.i.d. from the same distribution as the training set) is 
given by

� with probability 1 − η, where h is the VC dimension of the 
classification model, and m is the size of the training set 
(restriction: this formula is valid when the m dimension is large 
enough, h < m).



VC dimension vs. Syntactical
representation

VC DimensionInvariantsSyntactical
representation

Length, space
complexity, size, etc.

Computational
complexity of the
program, number of
variables, …

GP trees (representing
computer programs, 
more generaly symbolic
expressions)

O(k2)
[Karpinski&Macintyre 97]

Number of programable 
parameters k

Neuronal networks

2k log (4eds)
[Goldberg&Jerrum, 95]

Formula size s, degree
of the polynomials d, 
number of constants k

First order formulas over
the reals

O(nd)Degree d, number of
variables n

Polynomials



Symbolic expressions

� Symbolic expressions can be defined from
� Terminal set T
� Function set F (with the arities of function 

symbols)

� Adopting the following general recursive 
definition:
� Every t ∈ T is a correct expression
� f(e1, …, en) is a correct expression if f ∈F
� arity(f)=n and e1, …, en are correct expressions 

There are no other forms of correct expressions



GP-trees: Tree based representation
of symbolic expressions
� Rational functions:

� Terminals: variables and the real constants.
� Functionals : arithmetic operations {+,-,x,/}.
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Tree based representation of symbolic
expressions (cont.)

� Straight line programs.
� Terminals: variables and real constants.
� Functionals: arithmetic operations, root extraction,…, sign tests,  

if (-) then {-} else{-} instructions, 



Tree representation of straight line
programs:  Tree T(l).



Tree representation of straight line
programs (cont.)

Tree t(l)
Best bound O(2l)

Tree T(l)
θ(l)

Tree T(l)
θ(2l)

O(log D+ log S)
D=degree
S=formula size

Parallel
complexity

Sequential
Complexity

VC dimensionTree heightTree size



Tree representation of straight line
programs (cont.)

� C(l) concept class defined by T(l).
� Formula describing C(l):

Best upper bound for VCD of C(l) is
O(2l).
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Tree representation of straight line
programs (cont.)

�� LemmaLemma (Based on [Grigoriev 88], [Fitchas et al. 
87]). 

� F: family of n variate polynomials with real 
coefficients.

� Then, the number of consistent sign assigments
(f>0,f=0,f<0) to polynomials of the family F is at
most:  
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Tree representation of straight line
programs (cont.)
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CorollaryCorollary. VCD of C(l) is O(l).

Proof. Use previous lemma and the fact:



Formula size of GP-trees representing
straight line programs
�� LemmaLemma ((mainmain)). 

� Ck,n : family of concept classes whose memebership test
can be represented by a family of trees

� Tk,n with k constants and n variables Ck,n.

� h=h(k,n) height of Tk,n. 
Then

� Ck,n has formula size .

� Degree of polymomials .
�� InterpretationInterpretation. Formula size does not depends on

sequential time but on parallel time (i. e height of the
GP-tree).

2( )2 k n h+

2 h



VCD  of GP-trees representing straight
line programs
�� TheoremTheorem ((mainmain)). 
� Ck,n : family of concept classes.
� Tk,n : family of trees. (membership test to Ck,n)
� h=h(k,n) depth of Nk,n. 

Then
� Ck,n has VC dimension

�� InterpretationInterpretation. VC dimension depends
polynomially on parallel time.

2( ( ) )O k k n h+



VCD regularization for model selection in 
GP

� Symbolic regression under the general 
setting of predictive learning (Vapnik 95, 
Cherkassy & Mulier 98,…).

� Estimate unknown real-valued function

y=g(x)

� x is a multidimensional input and y is an
scalar output.



VCD regularization for model selection in 
GP (cont.)

� The estimation is made based on a finite number of
samples (training data) (xi,yi) (i=1,…,m) i.i.d
generated according to someunknown joint
probability distribution:

p(x,y)=p(x) p(y|x)
� According to SLT the unknown function (regression

function) is
� Mean value of the output conditional probability:

g(x)=∫ y p(y|x) dy



VCD regularization for model selection in 
GP (cont.)

� A learning method selects the best model (concept) 
f(x,α0) from a set of possible models (concept class) 

{f(x,α): α∈Θ}
� The quality of a model f(x,α) is measured by the

mean square error.

ε(α)= ∫ (y-f(x,α)2 p(x,y) dx dy [RF]
� Learning is the problem of finding the model f(x,α) 

that minimizes the risk functional [RF].



Empirical Risk Minimization

� For a given parametric model with finite VC dimension the model
parameters are estimated by minimizing the empirical risk:

ε m (α)=1/m ∑i=1,…,m(yi-f(xi,α)2

� ERM is founded in the formula:

� Examples: select a degree d polynomial, select a linear regressor
with fixed number of parameters, select a computer program of
bounded complexity, etc.



Structural Risk Minimization

� The problem of model selection appears
when VCD of the set of possible models is
infinite.

� Examples: select a polynomial, a formula, a 
linear regressor with unbounded number of
parameters, a computer program, a GP 
tree,…All these genotypes have infinite VCD.



Structural Risk Minimization with VC 
dimension
� Under SRM a set of possible models V  forms a 

nested structure
� V1 ⊆ V2 ⊆ V3 ⊆ ….  ⊆Vh⊆…
� Each element Vh represents the set of models of

complexity bounded by h.
� VC dimension is an increasing function on h.
� Select the model minimizing:

where p(α)=1/h(α) and h(α)=min {h: f(x,α)∈Vh}
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Structural Risk Minimization with VC 
dimension for GP

� V= set of all straight line programs with fixed
number of terminals (n variables, k constants).

� Vh= set of all straight line programs that can be 
represented by GP-trees of heights bounded by h.

� Fittness function for a tree T:
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