# International Economics 

## Unit 6

Monetary Approaches to Exchange Rate Determination

We are going to study three models:

- Flexible prices
- Sticky prices (Dornbusch model)
- Frankel model

Preliminary questions:

- The price of an asset depends on its expected return
- UIP condition
- Expectation formation mechanisms


## The price of an asset depends on its expected return

Two assets (bonds), A y $\mathrm{B} ; \mathrm{Pa}=100, \mathrm{E}(\mathrm{Pa})=120 . \mathrm{Pb}=200$, $\mathrm{E}(\mathrm{Pb})=240$. So both assets have an expected return of $20 \%$ :

Let's consider know that $\mathrm{E}(\mathrm{Pa})=132$, so its expected return is $32 \%$ :

Consequently, people are going to invest in asset A , so there will be an increase in its demand and, therefore, an increase in its current price. Conclusion: there is a direct relationship between the price of an asset and its expected return (expected price)

## The UIP condition

$$
\begin{aligned}
& (1+\mathbf{r})=\frac{\left(1+\mathbf{r}^{*}\right) \cdot \mathbf{S}^{e}}{\mathbf{S}} \rightarrow \text { Indifference }(1+\mathbf{r})>\frac{\left(1+\mathbf{r}^{*}\right) \cdot \mathbf{S}^{e}}{\mathbf{S}} \rightarrow \mathrm{National}_{\text {asset }}^{\text {Nat }} \quad(1+\mathbf{r})<\frac{\left(1+\mathbf{r}^{*}\right) \mathbf{S}^{e}}{\mathbf{S}} \rightarrow \begin{array}{l}
\text { Foreign } \\
\text { asset }
\end{array} \\
& \frac{\mathbf{s}^{\mathrm{e}}}{\mathbf{s}}=\frac{(1+\mathbf{r})}{\left(1+\mathrm{r}^{*}\right)} \quad \frac{\mathbf{s}^{\mathrm{e}}-\mathbf{s}}{\mathbf{s}}=\mathrm{E} \dot{\mathbf{s}} \quad \frac{\mathbf{s}^{\mathrm{e}}}{\mathbf{s}}=1+\mathrm{Es}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{r} \simeq \mathbf{r}^{*}+\mathrm{Es} \\
& \mathbf{E} \dot{\mathbf{s}}=\mathbf{r}-\mathbf{r}^{*}
\end{aligned}
$$

When the UIP condition holds, domestic and foreign bonds are perfect substitutes

## Expectation formation mechanisms

a) Static expectations

$$
E s_{t+1, t}=s_{t}
$$

b) Adaptive expectations

$$
E s_{t+1, t}=\alpha s_{t}+(1-\alpha) \cdot E s_{t, t-1} \quad 0 \leq \alpha \leq 1
$$

c) Extrapolative expectations

$$
E s_{t+1, t}=s_{t}+m\left(s_{t}-s_{t-1}\right)
$$

d) Regressive expectations

$$
E s_{t+1, t}=\alpha s_{t}+(1-\alpha) \cdot \bar{s} \quad 0 \leq \alpha \leq 1
$$

e) Rational expectations

$$
E s_{t+1, t}=s_{t+1}+u_{t+1}
$$

f) Expectations of perfect foresight

$$
\mathrm{Es}_{\mathrm{t}+1, \mathrm{t}}=\mathrm{s}_{\mathrm{t}+1}
$$

## The flexible-price monetary model

Aim: Explain the determination of the exchange rate. Assumptions:

- PPP holds continuously
- UIP holds continuously
- All prices are completely flexible

Demand for money: $\frac{M^{D}}{P}=Y^{\eta} \exp (-\sigma r)=Y^{\eta} e^{-\sigma r} \quad$ and taking logs:

$$
\begin{array}{cc}
m-p=\eta y-\sigma r & m^{*}-p^{*}=\eta y^{*}-\sigma r^{*} \\
\text { PPP in logs: } & S=p-p^{\star} \\
\text { UIP } & E \dot{s}=r-r^{*} \\
p=m-\eta y+\sigma r & p^{\star}=m^{\star}-\eta y^{*}+\sigma r^{*} \\
s=\left(m-m^{\star}\right)-\eta\left(y-y^{*}\right)+\sigma\left(r-r^{*}\right)
\end{array}
$$

Alternative expression (Fisher equation)

$$
s=\left(m-m^{*}\right)-\eta\left(y-y^{*}\right)+\sigma\left(E \dot{p}-E \dot{p}^{*}\right)
$$

## The sticky price monetary model (Dornbusch overshooting model)

Aim: Explain the determination of the exchange rate. In particular explain the large and prolonged departures of S from PPP.

## Assumptions:

- PPP holds only in the long-run
- UIP holds continuously
- Goods prices and wages tend to change slowly over time (they are sticky). However, the exchange rate is completely flexible


## The dynamics of Dornbusch's overshooting model

a) Money supply

c) Prices

b) Exchange rate

d) Interest rate


Eq. in the money market $m-p=\eta y-\sigma r$

UIP condition $E \dot{S}=r-r^{*}$

PPP in the long term

$$
\bar{s}=\bar{p}-\bar{p}^{*}
$$

Regressive expectations

$$
E \dot{s}=\Theta(\bar{s}-s) \text { where } \Theta>0
$$

## Goods market

$$
\dot{p}=\pi(d-y)
$$ demand

$$
\begin{aligned}
& \text { Aggregate } \\
& \text { demand }
\end{aligned} \quad d=\beta+\alpha\left(s-p+p^{*}\right)+\varphi y-\lambda r
$$

$$
\dot{p}=\pi\left[\beta+\alpha\left(s-p+p^{*}\right)+(\varphi-1) y-\lambda r\right]
$$

Solving for $r$ in the money market equilibrium and substituting

$$
\dot{p}=\pi\left[\beta+\alpha\left(s-p+p^{*}\right)+(\varphi-1) y-\lambda / \sigma(p-m+\eta y)\right]
$$

$$
\left.\frac{d p}{d s}\right|_{\dot{p}=0}=\frac{\alpha}{\alpha+\lambda / \sigma}
$$

## The goods-market equilibrium schedule



From the money market equilibrium we have:

$$
r=\frac{p-m+\eta y}{\sigma}
$$

From the previous equations we have:

$$
s=\bar{s}-\frac{1}{\sigma \Theta}\left[p-m+\eta y-\sigma r^{*}\right]
$$

And this equation is representing equilibrium situations in the money market

$$
\frac{d p}{d s}=-\sigma \Theta
$$

## The money-market equilibrium schedule



## Long-term equilibrium in the Dornbusch model



If you are not in equilibrium.....


## Exchange rate overshooting



## The real interest rate differential (Frankel) model

Equilibrium in the

$$
m-p=\eta y-\sigma r
$$ money market

$$
m^{*}-p^{*}=\eta y^{*}-\sigma r^{*}
$$

$$
\left(m-m^{*}\right)=\left(p-p^{*}\right)+\eta\left(y-y^{*}\right)-\sigma\left(r-r^{*}\right)
$$

$$
\text { UIP } \quad E \dot{s}=r-r^{*}
$$

Expectations mechanism $\quad \dot{\mathbf{s}}=-\theta \cdot(\mathrm{s}-\overline{\mathrm{s}})+\left(\mathrm{E} \dot{\mathrm{p}}-\mathrm{E} \dot{p}^{*}\right)$

## So

$$
\begin{array}{ll}
\text { Short-term } & \mathrm{E} \dot{\mathbf{s}}=-\theta \cdot(\mathrm{s}-\overline{\mathrm{s}}) \\
\text { Long-term } & \mathrm{E} \dot{\mathbf{s}}=\mathrm{E} \dot{\mathrm{p}}-\mathrm{E} \dot{\mathrm{p}}^{*}
\end{array}
$$

Substituting we obtain

$$
\begin{aligned}
& \mathrm{s}-\overline{\mathrm{s}}=-\frac{1}{\theta} \cdot[\underbrace{(\mathrm{r}-\mathrm{E} \dot{\mathrm{p}})}_{\mathrm{i}}-\underbrace{\left(\mathrm{r}^{*}-\mathrm{E} \dot{p}^{*}\right)}_{\mathrm{i}^{*}}] \\
& \text { Long-term PPP } \quad \bar{S}=\bar{p}-\bar{p}^{\star}
\end{aligned}
$$

As in the long-term $i=i^{*}$, we have

$$
\mathrm{r}-\mathrm{r}^{*}=\mathrm{E} \dot{\mathrm{p}}-\mathrm{E} \dot{\mathrm{p}}^{*}
$$

Doing some calculus we can get the equation for the long-term:

$$
\bar{s}=\left(m-m^{*}\right)-\eta\left(y-y^{*}\right)+\sigma\left(E \dot{p}-E \dot{p}^{*}\right)
$$

In the short-term we know

$$
\mathrm{s}=\overline{\mathrm{s}}-\frac{1}{\theta}\left[(\mathrm{r}-\mathrm{E} \dot{\mathrm{p}})-\left(\mathrm{r}^{*}-\mathrm{E} \dot{\mathrm{p}}^{*}\right)\right]
$$

So we get

$$
s=\left(m-m^{*}\right)-\eta\left(y-y^{*}\right)+\sigma\left(E \dot{p}-E \dot{p}^{*}\right)-\frac{1}{\theta}\left[(r-E \dot{p})-\left(r^{*}-E \dot{p}^{*}\right)\right]
$$

Conclusion: everything depends on $\theta$

$$
\text { If } \theta \rightarrow \infty, \frac{1}{\theta}=0 \quad \square \text { flexible-price model }
$$

If $\theta \neq \infty, \frac{1}{\theta} \neq 0 \longrightarrow$ Dornbush model

