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N × N N × N N × 1N × 1



Most important reference followed in this lecture



Goal: solve the one-particle Kohn-Sham 
Schrödinger-like equation

Introducing the expansion into the Kohn-Sham equation, we arrive to the secular equation

Expansion of the eigenvectors in a basis of localized atomic orbitals

where the coefficients                             , and        are the dual orbital of       : 



Derivation of the secular equation at Gamma

Inserting the expansion of the eigenvector into the Kohn-Sham equation

Multiplying by         at the left in both sides and integrating over all space

Transposing everything to the left hand side term



The one-particle Kohn-Sham hamiltonian

The standard Kohn-Sham one-electron hamiltonian might be written as

Kinetic energy operator Exchange-correlation potential

(Assume LDA approach)

Hartree potential

Transforming the semilocal pseudopotential form into the fully nonlocal separable 
Kleinman-Bylander form



Electronic charge density = 

sum of spherical atomic densities +

deformation charge density (bonding)

Populate basis function with 
appropriate valence atomic charges exactly vanishes beyond



The local part is screened by the potential 
generated by an atomic electron density

Neutral atom potential Vanishes exactly ar rc

CORE

VALENCE

Potential outside the sphere 
vanishes 

(Gauss theorem ⇒⇒⇒⇒
generated by the total  

charge inside the sphere      
= 0 if neutral atom)



The hamiltonian computed in SIESTA,     
combination of two and three center matrix elements

KB pseudopotential projector

Two center integrals

Computed in reciprocal space and tabulated

Basis orbitals

Basis orbitals

Non self-consistent

Three center integrals

Three-dimensional real space grid

Self-consistent



KB pseudopotential projector

Basis orbitals

Non-overlap interactions

1 2
3

4

5

1 with 1 and 2

2 with 1,2,3, and 5

3 with 2,3,4, and 5

4 with 3,4 and 5

5 with 2,3,4, and 5

Sµνµνµνµν and Hµνµνµνµν are sparse

ρρρρµνµνµνµν is not strictly sparse
but only a sparse subset 
is needed

Order-N methods rely heavily on the sparsity
of the Hamiltonian and overlap matrices

Sparse ≡ ≡ ≡ ≡ many entrances of the
matrix are zero

1 Nbasis

Nbasis

1



Two center integrals are calculated 
in Fourier space

can be seen as a convolution: in 1D

Arfken, Mathematical Methods for Physicist, Ch 15.5

Take the Fourier transform of one of the functions

The Fourier transform of a convolution in real space is a product in reciprocal space

Two center integrals (i. e. the overlap) have a form like

might be atomic orbitals, KB projectors or other functions centered on atoms



Two center integrals are calculated 
in Fourier space

For each pair of functions they are calculated and stored in a fine radial grid  (2500 Ry) 
as a function of     , up to the maximum distance  

The value at arbitrary distances can be obtained by accurate cubic spline interpolation 
(once obtained, the fine grid does not suppose a penalty in execution time, since 
interpolation effort is independent of the number of grid points). 



We use real spherical harmonics 
for computational efficiency

Associated Legendre polynomialsNormalization factors

l = 0

m = 0

l = 1

m = -1 m = 0 m = +1

Pictures courtesy of Victor Luaña



The density matrix, a basic ingredient of SIESTA  

The electron density is given by

Occupation of state 

Control convergence SCF

Restart calculations

Inserting the expansion into the definition of the density

where, with                  , the density matrix is defined 

Expansion of the eigenvectors in a basis of localized atomic orbitals

where the coefficients                             , and        are the dual orbital of       : 



Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials  

Find all the atomic orbitals that do not vanish at a given grid point 

(in practice, interpolate the radial part from numerical tables)

Once the density is known, we compute the potentials EVERYTHING O(N)



The Poisson equation is solved in 
the real space grid by FFTs

FFT scales as N log(N)

However is cost is negligible and has no influence on the overall scaling properties.

Multigrid techniques (by Oswaldo Diéguez) coming soon

Since the unit cell is periodic (naturally or atifically), 
we can expand the density in a Fourier series

In reciprocal space, the differential Poisson equation is nothing else than a division

Once the coefficients of the potential are known in reciprocal space, Fourier 
transform back to real space



Generalized Gradient Approximation,                  
the derivative of the charge computed numerically

Density gradient need not be provided, since they are 
calculated numerically using the density at the grid points

A finer grid is required for GGA

L. C. Balbás et al., Phys. Rev. B 64, 165110 (2001)



Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials  

Volume per grid point

Finally, we add together all the grid contributions and perform the integral



Fineness of the grid controlled by a single parameter, 
the “MeshCutoff”

Ecut : maximum kinetic energy of the plane waves that can be 
represented in the grid without aliasing

∆∆∆∆x

In the grid, we represent the density ⇒⇒⇒⇒ grid cutoff not directly comparable

with the plane wave cutoff to represent wave functions

(Strictly speaking, the density requires a value four times larger) 



Convergence of the results with the grid cutoff



The grid breaks traslation symmetry, 
the “eggbox” effect

E

x

Grid points

Orbital/atom

Affects more to forces than to energy

Solutions:

- Increase cutoff (computational effort in time and memory)

- “Grid-cell sampling”

- Filter the atomic orbitals [E. Anglada et al. Phys. Rev. B 73, 115122 (2006)]



Once the hamiltonian and the overlap matrices are build, 
we have to solve the Schrodinger equation

=

Order-N Order-N3

Minimization of an energy functional

Not valid for metals or “dirty” gap systems

Standard diagonalization techniques

Both eigenvectors and eigenvalues available

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3



If diagonalization, the generalized eigenvalue problem is 
solved using standard mathematical libraries

Serial:

BLAS

LAPACK

Parallel:

BLACS

SCALAPACK

Freely available in http://www.netlib.org

Most machine vendors have their own implementations 
available for their own platforms (acml, mkl,…). 

=

N × N N × N N × 1N × 1



The one-particle eigenstates are filled following the 
“Aufbau” principle: from lower to higher energies

Occupation numbers

The ground state has one (or two if spin independent) 
in each of the orbitals with the lowest eigenvalues

A smearing of the electronic occupation might be done:

Fermi-Dirac (OccupationFunction FD)

ElectronicTemperature

Methfessel Paxton (OccupationFunction MP)



The Kohn-Sham equations must be solved self-consistently 
The potential (input) depends on the density (output)

Initial guess

Calculate effective potential

Solve the KS equation

Compute electron density

No

Output quantities

Energy, forces, 
stresses …

Yes
Self-consistent?



The Kohn-Sham total energy can be written as a sum of the 
band structure (BS) energy + ‘double-count’ corrections

Functionals of the electron density and atomic positions

After SCF

Eigenvectors of the Hamiltonian



Kohn-Sham energy in SIESTA

+ Sum extra terms if a net charge (Emadel), an external electric field (DUext), 
Order-N solver (eta*DQ) are used, or if the nuclei are moving (Ekinion)

Ekin

Enl

Eions

DEna

DUscf

Exc

Ena



Atomic forces and stresses obtained by direct diferentiation
of the energy expression

“One piece of energy ⇒⇒⇒⇒ one piece of force and stress”

Calculated only in the last self-consistent step

Pulay corrections, related with the dependency of the basis set on 
atomic positions, automatically included

Calculated as the analytical derivatives of the energy



Recap: schematic flowchart of SIESTA

Read and digest input

Solve Schrödinger equation for the isolated atom 
(generate the basis set)

Compute forces, stresses…

Self consistent cycles

Compute efficiently                      

always done in Order-N

Two and three center integrals

Solve the secular equation
Order-N (insulators)

Order-N3



Suplementary information



Fourier transform of the atomic orbitals

The Fourier transform of a convolution in real space is a product in reciprocal space

The goal now is to compute the Fourier coefficients of the atomic functions

Introducing the plane wave expansion in spherical harmonics and operating


