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Goal: solve the one-particle Kohn-Sham
Schrodinger-like equation

Hy; (1) = Eg; (1)
Expansion of the eigenvectors in a basis of localized atomic orbitals

Y; (1) = Z G (T) Cui

where the coefficients c,; = (¢, | ;) , and ¢,, are the dual orbital of ¢, : (D | D)) = 6,

Introducing the expansion into the Kohn-Sham equation, we arrive to the secular equation

> (Hyy — EiSyy) € =0




Derivation of the secular equation at Gamma

Inserting the expansion of the eigenvector into the Kohn-Sham equation
Z i ¢y (7) = B, Z CuiP (7

Multiplying by gb,ﬁ at the left in both sides and integrating over all space

Zcm/dr o (7) Ho, (7) = E; Zcm/drqb

Transposing everything to the left hand side term

(/drqb 7 He, (7 E/drgb ()>Cwl:0




The one-particle Kohn-Sham hamiltonian

H=T+Y VP + VE () + V(7

Transforming the semilocal pseudopotential form into the fully nonlocal separable
Kleinman-Bylander form

VPS Vlocal( )_I_ VKB

KB, 1 NP
Zval

J/bocal () — — VEB — Y Y Y |len Uln lenl

L [=0 m=—[ n=1

The standard Kohn-Sham one-electron hamiltonian might be written as
T4 Y Ve (7 + Y VEB L VH (7) 4 Ve ()
(8% (8%

Kinetic energy operator Hartree potential Exchange-correlation potential

/ (Assume LDA approach)

H (> —/ (F)
0= [dr e v = vl @)




Electronic charge density =
sum of spherical atomic densities +

deformation charge density (bonding)

p (1) = p™™ () + ép (7)

atom ( ,':*)

Populate basis function with

. i atom ) - &
appropriate valence atomic charges Pr exactly vanishes beyond”"; = mlax 7




The local part is screened by the potential
generated by an atomic electron density

atom—*
*:/df’ /d*’p f +/d
| 7 — Y

Neutral atom potential

Vlocal ( 7—,»)

4 val

r

Vatom ( —>)

V (rydberg)

VNA( )—O

Potential outside the sphere
vanishes

(Gauss theorem =
generated by the total
charge inside the sphere
= 0 if neutral atom)

= Yoo (7) 4+ 5V (7)

Vanishes exactly ar r,




The hamiltonian computed in SIESTA,
combination of two and three center matrix elements

Two center integrals Three center integrals

A

H = T+VNL+VNA( 7)) + oV H (7 )+V‘”C(F)

(60 | V| du)

Basis orbitals

£\

<¢V ’len len |¢M

Basis orbitals
Non self-consistent

KB pseudopotential projector

Computed in reciprocal space and tabulated Three-dimensional real space grid



Order-N methods rely heavily on the sparsity
of the Hamiltonian and overlap matrices

L Noasis 1 with 1 and 2
.
2 with 1,2,3, and 5
' " 3 with 2,3,4, and 5
I
Nbasis %’ 4 WIth 3,4 and 5
5 with 2,3,4, and 5

Sparse = many entrances of the ) )
matrix are zero Non-overlap interactions

Basis orbitals

\

p,v IS not strictly sparse
but only a sparse subset
IS heeded

S,y and H,, are sparse \

KB pseudopotential projector




Two center integrals are calculated
in Fourier space

Two center integrals (i. e. the overlap) have a form like

Sia(R) = (W [d) = | dF o (7) valr+ R)

Y1, 12 might be atomic orbitals, KB projectors or other functions centered on atoms

- 1 +00
S15(R) can be seen as a convolution: in1D [ *g = —— g(y) f(z—y)dy

27 J—
Arfken, Mathematical Methods for Physicist, Ch 15.5

Take the Fourier transform of one of the functions

— 1 7 =
. — —’Lk“r' —
V(R) = —75 [ ¢ (M e dr
(2)
The Fourier transform of a convolution in real space is a product in reciprocal space

Sia(B) = [ dk wi(Ryn(Rye "




Two center integrals are calculated
in Fourier space

512(155) :/dk ¢1( )¢2(E) R

For each pair of functions they are calculated and stored in a fine radial grid (2500 Ry)
as a function of I7;, up to the maximum distance R, = 7] + 75

The value at arbitrary distances can be obtained by accurate cubic spline interpolation
(once obtained, the fine grid does not suppose a penalty in execution time, since
interpolation effort is independent of the number of grid points).




We use real spherical harmonics
for computational efficiency

(

sin (my) if m <0

Yim (6, 0) = Ciin ™ (cos0) -

cos (my) if m >0

Normalization factors Associated Legendre polynomials

=0

m=0

Pictures courtesy of Victor Luaha




The density matrix, a basic ingredient of SIESTA

Expansion of the eigenvectors in a basis of localized atomic orbitals
Y; (1) = Z Py () Cpi
v

where the coefficients c,; = (¢, | ;) ,and ¢, are the dual orbital of ¢, : (D | D)) = 6,

The electron density is given by

p(f)Z?WW

Occupation of state 1;

Inserting the expansion into the definition of the density
p(F) =D Py, () Sy (T)
nv
where, with ¢;, = ¢, , the density matriX is defined

Puv = Z CLiiCiv
;

Control convergence SCF

Restart calculations




Three dimensional grid to compute
Hartree, exchange correlation and neutral atom potentials

Dy, ()

Find all the atomic orbitals that do not vanish at a given grid point

(in practice, interpolate the radial part from numerical tables)
Once the density is known, we compute the potentials EVERYTHING O(N)
p () — V=(r)

—

5p (7) = p (F) — Patoms (7) 5p (F) = SVH (7)




The Poisson equation is solved in
the real space grid by FFTs
V2VHE (7)) = —4np (7)

Since the unit cell is periodic (naturally or atifically),
we can expand the density in a Fourier series

Zp ZGT?VH()—ZVH(G_’)GZ.@F
G
In reciprocal space, the dlfferentlal Poisson equation is nothing else than a division

Kk
Once the coefficients of the potential are known in reciprocal space, Fourier
transform back to real space

p (7)) 5 o(G) — VA(G) 5V (7)

FFT scales as N log()

However is cost is negligible and has no influence on the overall scaling properties.

Multigrid techniques (by Oswaldo Diéguez) coming soon



Generalized Gradient Approximation,
the derivative of the charge computed numerically

OE“SA p ('), | Vp ()]
op (T)

VS (7) =

Density gradient need not be provided, since they are
calculated numerically using the density at the grid points

Pi+1 — Pi—1 GGA
— j EZCC (
Lit1 — Li—1

P1, P2, - - )
A finer grid is required for GGA

L. C. Balbas et al., Phys. Rev. B 64, 165110 (2001)



Three dimensional grid to compute
Hartree, exchange correlation and neutral atom potentials

Finally, we add together all the grid contributions and perform the integral

V(7 = VN + 6V (7) + V= ()

)V (7) ¢ (7) A

T

Volume per grid point




Fineness of the grid controlled by a single parameter,
the “MeshCutoff”

E..; : maximum kinetic energy of the plane waves that can be
represented in the grid without aliasing
®e o o o

e o o - 7212
JA k.= — = E
® o o t= Ax 21,

Ax

In the grid, we represent the density = grid cutoff not directly comparable

with the plane wave cutoff to represent wave functions

(Strictly speaking, the density requires a value four times larger)



Convergence of the results with the grid cutoff
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The grid breaks traslation symmetry,
the “eggbox” effect

&+ Grid points

~ Orbital/atom

Affects more to forces than to energy
Solutions:

- Increase cutoff (computational effort in time and memory)
- “Grid-cell sampling”

- Filter the atomic orbitals [E. Anglada et al. Phys. Rev. B 73, 115122 (2006)]




Once the hamiltonian and the overlap matrices are build,
we have to solve the Schrodinger equation

~ R

H

_/

Order-N Order-Ns3

Minimization of an energy functional Standard diagonalization techniques

Not valid for metals or “dirty” gap systems Both eigenvectors and eigenvalues available

~100 N (# atoms)



If diagonalization, the generalized eigenvalue problem is
solved using standard mathematical libraries

4 ) 4 )

S

Serial: Parallel:

BLAS BLACS
LAPACK SCALAPACK

Freely available in

Most machine vendors have their own implementations
available for their own platforms (acml, mki,...).




The one-particle eigenstates are filled following the
“Aufbau” principle: from lower to higher energies

| n? (7) = Y f7 197 (7))
-

8 Occupation numbers

The ground state has one (or two if spin independent)
in each of the orbitals with the lowest eigenvalues

A smearing of the electronic occupation might be done: |

Fermi-Dirac (OccupationFunction =)
ElectronicTemperature

Methfessel Paxton (OccupationFunction MP)




The Kohn-Sham equations must be solved self-consistently
The potential (input) depends on the density (output)

Initial guess

n' (), n* ()

Calculate effective potential

e?ff (F) — ‘/emt (’F) + VHartree [n] + Vg;ac [nTa nl]

Solve the KS equation
1 o = o (= o_ /0 (=
5 V2 Vi (7| w5 (7) = e (7

Compute electron density
[ / Output quantities
n? (7) =Y f7 47 (7)|? S
i

elf-consistent? Energy, forces,
stresses ...

out

max (pw — pjﬁ,) < DM.Tolerance




The Kohn-Sham total energy can be written as a sum of the
band structure (BS) energy + ‘double-count’ corrections

— mef | H| ;) = > Hpy, =Tr(Hp)

After SCF

Eigenvectors of the Hamiltonian

A

BXY =5 Houun - /VHF P dit [ [ (F) = Vo ()] p (7) dF + 30 2=
IJ RIJ

—

—~—
Functionals of the electron density and atomic positions




Kohn-Sham energy in SIESTA

=2 T Ekin
137

[}
=
0]

Enl

W

: Program’s energy decomposition (eV):
: Eions 380.802124
: Ena 114.848182
: Ekin 81.633888
: Enl 29.327240
: DEna 4.,386897
: DUscf = 0.250143
: DUext 0.000000
: Exc = -65.086299
: eta*xDQ 0.000000
: Emadel 0.000000
: Ekinion .000000
: Eharris 5.442072
: Etot 5.442072

: FreeEng 5.442072
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+ Sum extra terms if a net charge (Emadel), an external electric field (DUext),
Order-N solver (eta*DQ) are used, or if the nuclei are moving (Ekinion)




Atomic forces and stresses obtained by direct diferentiation
of the energy expression

OEKS
OR;
OEKS

008 = €ap = strain tensor

6ea5

7 —

“One piece of energy — one piece of force and stress”

Calculated as the analytical derivatives of the energy

Pulay corrections, related with the dependency of the basis set on
atomic positions, automatically included

Calculated only in the last self-consistent step




Recap: schematic flowchart of SIESTA

Read and digest input

Solve Schrodinger equation for the isolated atom
(generate the basis set)

Self consistent cycles

Compute efficiently [1,,,,, .S,
always done in Order-N

Two and three center integrals

7

Solve the secular equation

Order-N (insulators)

Z (Hop — LiSup) ¢ii =0 orgerns

Compute forces, stresses...




Suplementary information




Fourier transform of the atomic orbitals

The Fourier transform of a convolution in real space is a product in reciprocal space

—

Sl = [ w3 R

The goal now is to compute the Fourier coefficients of the atomic functions

8= o far v

Introducing the plane wave expansion in spherical harmonics and operating

AN

. 00 [
R =3 3" amily (kr) Vi, (k) Yim ()

=0 m=—1

lmax

W (k) =D > tim (k) Yim(k)

[=0 m=—

(—i) /O 125, (k) g (k) dr




