First-principles modeling of screening in ferroelectric ultrathin capacitors

Javier Junquera

Pablo Aguado-Puente

Many thanks to the collaboration with

Massimiliano Stengel Nicola Spaldin

University of California, Santa Barbara

Technological applications of ferroelectric thin films: ABO₃ perovskites oxides as multifunctional materials

Many effects might alter the delicate balance between long and short range forces

Many effects might alter the delicate balance between long and short range forces

Many oxides have similar lattice constants allowing for a good match at the interfaces

D. G. Schlom *et al.*, Annu. Rev. Mater. Res. 37, 589 (2007)

What would happen if we could mix materials with different properties?

Potential for novel behaviour

Recent reviews on strain effects in epitaxial ferroelectric oxides

Available online at www.sciencedirect.com

Current Opinion in Solid State and Materials Science 9 (2005) 122-127

Current Opinion in Solid State & Materials Science

Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices

Karin M. Rabe *

Strain Tuning of Ferroelectric Thin Films*

Darrell G. Schlom,^{1,†} Long-Qing Chen,² Chang-Beom Eom,³ Karin M. Rabe,⁴ Stephen K. Streiffer,⁵ and Jean-Marc Triscone⁶

Annu. Rev. Mater. Res. 2007. 37:589-626

Many effects might alter the delicate balance between long and short range forces

Interface electrostatics within Landau-Ginzburg theories. The "dead layer"

The "dead layer"

A layer of a standard dielectric in between an ideal electrode and the ferroelectric film

Responsible of a depolarizing field, that tends to suppress the polarization

Continuous theory of ferroelectric states in ultrathin films with real electrodes

A.M. Bratkovsky¹ and A.P. Levanyuk^{1,2}

J. Comp. Theor. Nanosci. 6, 465 (2009)

The "dead layer" model is totally equivalent to consider an electrode with a finite screening length

Idea electrode

Dead layer

Ferroelectric

Dead layer

Idea electrode

Real electrode with finite λ

Ferroelectric

Real electrode with finite λ

Continuous theory of ferroelectric states in ultrathin films with real electrodes

totally equivalent to

A.M. Bratkovsky¹ and A.P. Levanyuk^{1,2}

separating the electrodes and the film. In the FE capacitors with metallic electrodes, the role of the "dead layers" is played by the metallic electrode interfacial regions over the Thomas-Fermi screening length. Within the continuous medium theory the mathematical analogy between the two cases is practically exact (see below).

J. Comp. Theor. Nanosci. 6, 465 (2009)

Difficulties of the applicability of continuum theories to model electrode/ferroelectric interfaces at the nanoscale

Some assumptions might not be justified in some cases

Applicability of continuum theories to systems where variations of the relevant physical quantities occur over length scales comparable to the interatomic distances

Assumptions in the choice of the parameters:

the capacitance (or the effective screening length) is a constant as a function of the ferroelectric displacement

For a quantitative model of the electrode/ferroelectric interface there is a clear need for a theory that provides a microscopic reliable description of the local chemistry and electrostatics.

DFT has many virtues...

Wealth of information at the atomic level (atomic resolution)

Free of adjustable parameters

... but also limitations.

If overlooked might lead to erroneous physical conclusions

Be careful with the choice of the DFT-functional: description in the atomic structure

PbTiO ₃ bulk	Cubic phase		Tetragonal phase						
	а	$E_{\rm gap}$	а	c/a	$u_z(\mathrm{Ti})$	$u_z(\mathrm{O}_1)$	$u_z(O_3)$	E_{gap}	ΔE
LDA, MBPP	3.880	1.55	3.853	1.050	0.5312	0.0923	0.6012	1.62	-0.053
LDA, PAW	3.894	1.48	3.867	1.043	0.5334	0.0883	0.6018		-0.056
LDA^{a}	3.894		3.858	1.051					
PW91, MBPP	3.957	1.69	3.827	1.247	0.5571	0.1938	0.6670	2.04	-0.196
PW91, PAW	3.969	1.61	3.841	1.233	0.5559	0.1859	0.6660		-0.192
PBE, MBPP	3.962	1.69	3.836	1.244	0.5579	0.1949	0.6675	2.05	-0.208
PBE^{a}	3.971		3.857	1.230					
Expt. (298 K) ^b	3.969		3.905	1.064	0.539	0.114	0.617	3.5	

Some of the widely flavours of the GGA functional strongly overstimates ferroelectric character at the bulk level, even yielding to erroneous supertetragonal structures

DFT has many virtues...

Wealth of information at the atomic level (atomic resolution)

Free of adjustable parameters

... but also limitations.

If overlooked might lead to erroneous physical conclusions

Be careful with the choice of the DFT-functional: description in the atomic structure

Be careful with the electronic structure at the interface: the "band alignment issue"

DFT band alignment problem in an unpolarized capacitor

 $\begin{array}{c} \textbf{Dielectric} \\ \textbf{Metal} \\ \textbf{\textit{P}} = \textbf{0} \end{array}$

DFT band alignment problem in an unpolarized capacitor

Metal

Dielectric

P = 0

Metal

REAL WORLD

Conduction Band

Fermi Level -

Valence Band

DFT

- Pathological case
- Transfer of charge in the non-polarized case

Calculating the Schottky barriers using the PDOS

Transfer of charge in KNbO₃/SrRuO₃ nanocapacitors Work by M. Stengel & N. Spaldin

[KNbO₃] $_{m=6.5}$ / [SrRuO₃] $_{n=7.5}$ nanocapacitor

DOS proyected over the central KNbO₃ layer

CB of KNbO₃ crosses the Fermi level

Transfer of charge in KNbO₃/SrRuO₃ nanocapacitors Work by M. Stengel & N. Spaldin

$$\rho_{COND}(\vec{r}) = \int_{E_F - \delta}^{E_F + \delta} \rho(\vec{r}, E) dE = \sum_{n} \sum_{\vec{k}} |\psi_{n, \vec{k}}(\vec{r})|^2 \quad / \quad \varepsilon_{n, \vec{k}} \in (E_F - \delta, E_F + \delta)$$

In a well behaved heterostructure, we would expect no charge in layers of the dielectric far enough from the interface, since there are no states within the energy window with significant weight there.

Transfer of charge in KNbO₃/SrRuO₃ nanocapacitors Work by M. Stengel & N. Spaldin

$$\rho_{COND}(\vec{r}) = \int_{E_F - \delta}^{E_F + \delta} \rho(\vec{r}, E) dE = \sum_n \sum_{\vec{k}} |\psi_{n, \vec{k}}(\vec{r})|^2 \quad / \quad \varepsilon_{n, \vec{k}} \in (E_F - \delta, E_F + \delta)$$

[KNbO $_3$] $_{m=6.5}$ / [SrRuO $_3$] $_{n=7.5}$ nanocapacitor

Spurious transfer of charge to the KNO layer

The system is not locally charge neutral

 $\downarrow \downarrow$

Non uniform electric fields arise in the insulating film that act on the ionic lattice

The highly polarizable ferroelectric material will then displace in an attempt to screen the perturbation

Local polarization profile

A gradient of polarization generates polarization charges

$$\frac{dP}{dx} = -\rho_B$$

If, uncompensated, has a high electrostatic energy cost

Work by M. Stengel & N. Spaldin

The excess of charge in the conduction band and the bound charge almost perfectly cancel each other

The polarization profile is a consequence of KNbO₃ responding to the spurious population of the conduction band.

Work by M. Stengel & N. Spaldin

DFT band alignment problem

DFT (LDA)

- Pathologicasecase
- Transfer of charge at P ≠ 0

Many applications depend on the stability of films with a switchable polarization along the film normal

Vacuum no screening

$$\mathcal{E}_{d} = -4 \pi P$$

Screening of polarization charge is essential

Screening by

Surface relaxations and/or surface carrier layer

electrons

Inward dipole due to surface relaxations can compensate surface charge and associated depolarizing fields

Low-energy electron diffraction intensitity versus voltage (LEED I-V)

Quantitative theory-experiment comparison

Reliability Pendry factor

0 1

Perfect correlation

Uncorrelated

4 and 10 unit cells

Monodomain upward polarization

J. Shin et al., Phys. Rev. B 77, 245437 (2008)

Inward dipole due to surface relaxations can compensate surface charge and associated depolarizing fields

Best-fit surface structure

Monodomain upward polarization

No polarization charges

 \bigcap

Lack of polarization at the top BaO layer

Atomic displacements associated with upward polarization

surface relaxation+ FE soft mode

Meyer *et al*., Phys. Rev. B 63, 205426 (2001)

Polarization surface charges might be screened by a surface carrier layer

First-principles calculations on an isolated free-standing slab

Band structure of the unpolarized slab

Bottom of the conduction band

Ti 3d, uncharged

Top of the valence band
O 2p, uncharged

TiO₂ termination

Convergence criterion 0.06 eV/Å

M. Krcmar and C. L. Fu, Phys. Rev. B 68, 115404 (2003)

Polarization surface charges might be screened by a surface carrier layer

First-principles calculations on an isolated free-standing slab

Band structure of the polarized slab

Electrons at the top \mathcal{E}_{d} ++++++ Holes at the bottom

TiO₂ termination

Convergence criterion 0.06 eV/Å

M. Krcmar and C. L. Fu, Phys. Rev. B 68, 115404 (2003)

First-principles LDA simulations: surface relaxations as in non-polar free-standing slabs

≈ 600 bohrs of vacuum

BaO termination

4.5 unit cells of BaTiO₃

SrO/TiO₂ interface

9.5 unit cells of SrRuO₃

layer dipole moments

 \bigcirc 0

Rumpling as in unpolarized free-standing slab:

 $\eta < 0.005$

O above Ba in the topmost layer
Oscillatory pattern
Rapid decay in the interior

First-principles simulations: no band crossing at the surface

≈ 600 bohrs of vacuum

BaO termination

4.5 unit cells of BaTiO₃

SrO/TiO₂ interface

9.5 unit cells of SrRuO₃

No surface carrier layer

Bottom of conduction band (Ti 3d states)
does not cross the Fermi level

Many applications depend on the stability of films with a switchable polarization along the film normal

Vacuum no screening

$$\mathcal{E}_{d} = -4 \pi P$$

Screening by

Surface relaxations and/or surface carrier layer

Screening by

adsorbates

electrons

OH, O, HCOO,...

electrode

Adsorbed ions can stabilize the polar monodomain state in ultrathin films

DFT simulations + Gibbs free energy estimations

Oxidizing atmosphere OH, O, HCOO

PbTiO₃
BaTiO₃
SrRuO₃
SrTiO₃

Full coverage of OH

4 unit cells (1.6 nm)
BaTiO₃

Atomic or molecular adsorption screens a significant amount of polarization charge on the surface

- D. D. Fong et al., Phys. Rev. Lett. 96, 127601 (2006)
- J. E. Spanier *et al.*, Nano Lett. 6, 735 (2006)

X-ray scattering + PFM: Direct transition to a monodomain state, polarized "up"

Adsorbed ions can stabilize the polar monodomain state in ultrathin films

DFT simulations + Gibbs free energy estimations Chemical switching of a ferroelectric

Atomic or molecular adsorption screens a significant amount of polarization charge on the surface

Thin film can be reversibly and reproducibly switched by varying the partial O pressure above its surface

D. D. Fong et al., Phys. Rev. Lett. 96, 127601 (2006)

J. E. Spanier *et al.*, Nano Lett. 6, 735 (2006)

R. V. Wang et al., Phys. Rev. Lett. 102, 047601 (2009)

Many applications depend on the stability of films with a switchable polarization along the film normal

Vacuum no screening

$$\mathcal{E}_{d} = -4 \pi P$$

Screening by

Surface relaxations and/or surface carrier layer

electrons

Screening by

adsorbates

OH, O, HCOO

electrode

Screening by

metallic electrodes

Standard case: depolarizing field due to imperfect screening of polarization charges reduces the spontaneous polarization

J. Junquera and Ph. Ghosez, Nature 422, 506 (2003)

SrRuO₃/BaTiO₃/SrRuO₃

SrRuO₃/PbTiO₃/SrRuO₃

Bulk strained polarization

All atomic positions and c-lattice vector relaxed

Particular combinations of AO-term. perovskites and simple metals: enhancement of ferroelectricity

ARTICLES

PUBLISHED ONLINE: 19 APRIL 2009 | DOI: 10.1038/NMAT2429

nature materials

Enhancement of ferroelectricity at metaloxide interfaces

Massimiliano Stengel¹, David Vanderbilt² and Nicola A. Spaldin¹*

The mechanism leading to such a an enhancement is related to an interfacial chemical bonding effect

Huge enhancement of the rumpling parameter at the AO layer directly in contact with the Pt surface

Many applications depend on the stability of films with a switchable polarization along the film normal

Vacuum no screening

$$\mathcal{E}_{d} = -4 \pi P$$

Screening by
Surface relaxations
and surface carrier
layer

electrons

Screening by adsorbates

OH, O, HCOO

electrode

Screening by metallic electrodes

Screening by formation of domains

Polydomain phases stable, even below t_c in monodomain. Adopt the "domain of closure", common in ferromagnets

P. Aguado-Puente and J. Junquera Phys. Rev. Lett. 100, 177601 (2008)

 $N_x = 4$

SrRuO₃/BaTiO₃/SrRuO₃

BaO domain walls

2 unit cell thick
Below critical
thickness for
monodomain
polarization

Domains of closure in PbTiO₃/SrRuO₃ capacitor

m = 4, $N_x = 6$ PbO domain walls

E_{domains} – E_{para} = - 50 meV

Domains close inside the FE

Vortices in ferroelectric nanostructures: theoretical and experimental results

Model hamiltonian

PbTiO₃

I. Naumov et al., Nature 432, 737 (2004)

Time Resolved Atomic Force Microscopy

 $Pb(Zr_{0.2}Ti_{0.8})O_3$

A. Gruverman *et al.*, J. Phys.: Condens. Matter 20, 342201 (2008)

Conclusions

Getting simultaneously an accurate determination of the structural and electronic properties of interfaces and superlattices from first-principles

A challenging problem

Be careful also with the band alignment at the interface (both in the unpolarized and polarized cases)

Screening by free charges, adsorbates and formation of domains seems to be efficient to minimize electrostatic energy.

Surface dipoles, and surface metallization seems not be so efficient.

Calculations done on

Arquitetura y Tecnología de Ordenadores de la Universidad de Cantabria

Due to the DFT band gap problem critical breakdown field in DFT is smaller than real breakdown field

J. Junquera and Ph. Ghosez,

Journal of Computational and Theoretical Nanoscience 5, 2071-2088 (2008)