First-principles modeling of titanate/ruthenate superlattices Highly confined spin-polarized two-dimensional electron gas in SrTiO₃/SrRuO₃ superlattices

Javier Junquera

The interface is still the device

Some surprises at the interfaces between two oxides

The pristine interface between two good insulators (for instance, LaAIO₃ and SrTiO₃) is metallic

A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004)

Polar catastrophe and Zener breakdown

A. Ohtomo and H. Y. Hwang, Nature, 427, 423 (2004) H. Y. Hwang, Science, 313, 1895 (2006) M. L. Reinle-Schmidt *et al.*, Nature Communications 3, 932 (2012)

Some surprises at the interfaces between two oxides

The pristine interface between two good insulators (for instance, LaAIO₃ and SrTiO₃) is metallic

A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004)

A. Ohtomo and H. Y. Hwang, Nature, 427, 423 (2004) H. Y. Hwang, Science, 313, 1895 (2006)

Existence of a critical number of layers of LaAlO₃ for the formation of the 2-DEG

S. Thiel et al., Science, 313, 1942 (2006)

Two-dimensional electron gases at the interface between oxides opens the door to oxide electronics

REVIEW

Oxide Interfaces—An Opportunity for Electronics

J. Mannhart¹* and D. G. Schlom²*

Science 327, 1607 (2010)

Oxide Nanoelectronics on Demand

Cheng Cen,¹ Stefan Thiel,² Jochen Mannhart,² Jeremy Levy¹*

Science 323, 1026 (2009)

- Controversial origin (intrinsic polar catastrophe versus extrinsic origin)
- Localization and extension in the SrTiO₃ layer (electron gas localized on Ti)
- Dependence of the properties on the growth conditions
- Coupling with other functional properties (magnetism, superconductivity)

Two questions addressed in this talk

Question: Are there alternative mechanisms to generate two dimensional electron gases with new intrinsic functional properties?

If so, what are they useful for?

New alternative: take a metal embedded in an insulating matrix and reduce its thickness

1. Take a metallic oxide (SrRuO₃)

- In bulk, a correlated metal ferromagnet, T_c = 160 K
- It can be easily epitaxially grown on SrTiO₃
- It is frequently used as electrode in capacitors
- 2. Embeed it in an insulating matrix
- 3. Reduce the thickness of the metallic layer as much as possible

Not trivial question: there might be a critical thickness for metalic and magnetic properties

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 79, 140407(R) (2009)

Ś

Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO₃

Jing Xia,^{1,2} W. Siemons,^{1,3} G. Koster,^{1,3} M. R. Beasley,^{1,4} and A. Kapitulnik^{1,2,4}

Below 4 uc, SrRuO₃ thin films on SrTiO₃: Insulating Antiferromagnetic layer with the moments in the plane of the film

Not trivial question: there might be a critical thickness for magnetic and/or metallic properties

PRL 103, 057201 (2009)

PHYSICAL REVIEW LETTERS

week ending 31 JULY 2009

Fundamental Thickness Limit of Itinerant Ferromagnetic SrRuO₃ Thin Films

Young Jun Chang,¹ Choong H. Kim,² S.-H. Phark,¹ Y. S. Kim,¹ J. Yu,² and T. W. Noh^{1,*}

 T_c decreases drastically below 4 uc and vanishes for 2 uc

But the metallic state persists down to 2 uc

First-principles simulations on (SrTiO₃)₅/(SrRuO₃)₁ periodic superlattices

The superlattice can be viewed as a complete doping of the B site (Ti) of a single layer with Ru atoms

Are there other mechanisms to generate 2DEG at oxide interfaces?

Doping the A-site of a SrTiO₃ matrix

Complete replacement of the Sr atom of a single SrO layer with a rare-earth element

H. W. Jang et al., Science 331, 886 (2011)

Partial replacement of the Sr atom of a single SrO layer with La P. V. Ong *et al.*, Physical Review B 83, 193106 (2011)

The conduction electrons are transferred to the SrTiO₃ matrix but stay near the *R*O layer due to Coulomb attractions

First-principles simulations of (SrTiO₃)₅/(SrRuO₃)₁ superlattices

Local Spin Density Approximation + Hubbard U (LSDA+U)

 $U_{\rm eff}$ = 4.0 eV, applied only to Ru-*d* orbitals

 $\sqrt{2}$ imes $\sqrt{2}$ in-plane symmetry to allow rotation of oxygen octahedra and different magnetic orders

First-principles simulations of (SrTiO₃)₅/(SrRuO₃)₁ superlattices

 $U_{\rm eff}$ = 4.0 eV, applied only to Ru-*d* orbitals

 $\sqrt{2}$ \times $\sqrt{2}$ in-plane symmetry to allow rotation of oxygen octahedra and different magnetic orders

Full relaxation of atomic coordinates (atomic forces smaller than 0.01 eV/Å)

In-plane lattice constant constrained to the theoretical one of $SrTiO_3$ (3.874 Å)

RuO₆ oxygen octahedra rotates 11.6° bulk tetragonal SrRuO₃ under the same strain conditions rotates 11.3°

Theoretical LDA value

 $\theta_{\rm bulk}^{\rm SrTiO_3} = 4.2^{\circ}$

RuO₆ oxygen octahedra rotates 11.6° bulk tetragonal SrRuO₃ under the same strain conditions rotates 11.3°

Interactions between RuO₂ planes well screened already with 5 layers of SrTiO₃

Units in Å

Small atomic rumplings and changes in the interplanar distances

NO POLAR CATASTROPHE

NO O VACANCIES

Two dimensional electron gas, strictly confined in the SrRuO₃ layer

Electronic states around the Fermi level are fully spin polarized, with only the minority spin electrons involved in the charge transport

2DEG exhibit magnetism with magnetic moment $\mu = 2.0 \mu_{\rm B}$ per SrRuO₃ unit cell

3

M. Verissimo-Alves *et al.*, Physical Review Letters 108, 107003 (2012)

 $\mu_{\rm Ru} = 1.4 \ \mu_{\rm B}$

Which orbital are responsible for the PDOS in the RuO₂ layer?

Which orbital are responsible for the **PDOS in the RuO₂ layer?**

Which orbital are responsible for the PDOS in the RuO₂ layer?

The most important feature can be explained within a simple tight-binding model

Only t_{2q} states retained in the basis set

Assuming cubic symmetry, the PDOS of a full three dimensional solid

Reducing dimensionality (slab)

Good agreement between tight-binding and first-principles

Two different effects to explain the shifts

Different in bonding of the orbitals in-plane and out-of-plane neighbors

Strong correlation: the Hubbard U correction

Explaining the shift: Different in bonding of the orbitals with in-plane and out-of-plane

 d_{xy} orbitals only interact strongly with in-plane neighbors. All of them are orbitals centered around Ru⁴⁺ atoms

Explaining the shift: Different in bonding of the orbitals with in-plane and out-of-plane

 d_{xy} orbitals only interact strongly with in-plane neighbors. All of them are orbitals centered around Ru⁴⁺ atoms

 $d_{vz,xz}$ orbitals interact:

In-plane with centers around Ru⁴⁺ ions. Out-of-plane with functions centered on Ti⁴⁺ ions, mediated by O

Explaining the shift: Different in bonding of the orbitals with in-plane and out-of-plane

 d_{xy} orbitals only interact strongly with in-plane neighbors. All of them are orbitals centered around Ru⁴⁺ atoms

$d_{vz,xz}$ orbitals interact:

In-plane with centers around Ru⁴⁺ ions. Out-of-plane with functions centered on Ti⁴⁺ ions, mediated by O

Explaining the shift: strong correlation, the Hubbard U correction

LDA+U theory predicts that orbital energies are shifted by

$$U_{\rm eff}\left(\frac{1}{2}-\lambda\right)$$

where λ is the occupation of the orbital

Assuming that:

the majority spin t_{2g} levels are full

the minority spin d_{xz} , d_{yz} and d_{xy} contain respectively 0.5, 0.5 and 0.0 e

Good agreement between tight-binding and first-principles results

Conclusions

Highly confined (one monolayer thick) 2DEG at the SrTiO₃/SrRuO₃ interfaces in (SrTiO₃)₅/(SrRuO₃)₁ periodic superlattices

New origin for the 2DEG: due to electronegativity of Ru, and not to polar catastrophe

2DEG localized on *d*-orbitals of Ru and not on Ti

2DEG intrinsically magnetic (not dependent on O vacancies or defects, as in LaAlO₃/SrTiO₃)

Two questions addressed in this talk

Question: Are there alternative mechanisms to generate two dimensional electron gases with new intrinsic functional properties?

If so, what are they useful for?

1. Coupling between magnetism and ferroelectricity

Ferroelectric PbTiO₃/SrRuO₃ superlattices with broken inversion symmetry

n-unit cells of PbTiO₃ / 1unit cell of SrRuO₃

- The electrons are confined to the SrRuO₃ layer $(\sigma_{xx}$ does not change dramatically with the spacing between layers)
- The out-of-plane conductivity decreases exponentially
- Inversion symmetry is artificially broken in a bicolor superlattice
- Hysteresis loops are measured

S. J. Callori et al., Phys. Rev. Lett. 109, 067601 (2012)

Ferroelectric PbTiO₃/SrRuO₃ superlattices with broken inversion symmetry

n-unit cells of PbTiO₃ / 1unit cell of SrRuO₃

In simulations of superlattices with more than one unit cells thick of SrRuO₃, the magnetization is different for the two polarization directions

S. J. Callori et al., Phys. Rev. Lett. 109, 067601 (2012)

Two questions addressed in this talk

Question: Are there alternative mechanisms to generate two dimensional electron gases with new intrinsic functional properties?

If so, what are they useful for?

1. Coupling between magnetism and ferroelectricity

2. Use in thermoelectric devices

Analysis of the thermoelectric figure of merit for SrTiO₃/SrRuO₃/SrTiO₃ superlattices

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and viceversa.

A good thermoelectric system could be used to convert waste heat into electricity without producing greenhouse gas emissions.

Thermoelectric materials might play a role on the solution of today's energy problem

K. Koumoto, I. Terasaki and R. Funahashi, MRS Bulletin 31 206 (2006)

Performance of a thermoelectric material evaluated through the dimensionless figure of merit

$$ZT = \frac{S^2 \sigma T}{\kappa}$$

- Z Figure of merit
- T Absolute temperature
- S Seebeck coefficient
- σ Electrical conductivity
- \mathcal{K} Thermal conductivity

For a material to be useful for electronic devices, ZT > I at room temperature

With conventional solids, a limit is rapidly obtained, where a modification to any one of these parameters adversely affects the other transport coefficients so the resulting Z does not vary significantly.

It might be possible to increase Z of certain materials preparing them in quantum-well superlattices

Electrons confined to move in two dimensions.

Change in the band structure and the electronic density of states

Two-dimensional density of states in the free-electron model

An increase in the carrier density per unit volume can be obtained without changing the Fermi energy, i.e. without a change in the Seebeck coefficient S

L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

It might be possible to increase *Z* of certain materials preparing them in quantum-well superlattices

The best thermoelectric

G. D. Mahan*[†] and J. O. Sofo[‡]

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 7436–7439, July 1996 Applied Physical Sciences

The transport distribution that maximizes the figure of merit is the Dirac delta function. An ideal delta function is not achievable in real materials. However, electronic *f*-levels are tightly bound in atoms, and bind little in solids (10-11). They give a contribution to the density of states in solids, which is a Lorentzian of very narrow width. This is nature's closest approximation to a delta function.

It might be possible to increase Z of certain materials preparing them in quantum-well superlattices

Electrons confined to move in two dimensions. Layering may reduce the phonon themal conductivity

Degrees of freedom to play with in superlattices:

- Layer thickness (the thinnest the better)
- Orientation in which make the layers
- Optimum current direction
- Anisotropy effective-mass tensor

L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

A new class of thermoelectric materials: 2DEG confined within the thickness of a unit cell in SrTiO₃

SrTiO₃ (9 unit cells) / SrTi_{0.8}Nb_{0.2}O₃ / SrTiO₃ (9 unit cells)

Dramatic increase in the Seebeck coefficient

Thermoelectric figure of merit

H. Ohta *et al.*, Nature Materials 6, 129 (2007)
H. Ohta, Materials Today, 10, 44 (2007)

Simulations of the thermoelectric figure of merit: transition from first to second-principles methods

First-principles	Second-principles
WIEN-2K	
	BOLTZTRAP
SIESTA	G. H. Madsen and D. J. Singh, Computer Physics Communications
CRYSTAL	
	Solves the semiclassical Bloch- Boltzman transport equations within the constant relaxation
Input required:	time approximation
Atomic structure	
ymmetry space group	
ectronic hand structure	

Transport tensors in SrTiO₃/SrRuO₃/SrTiO₃: minority spin

Behavior around Fermi energy at zero doping is different for each spin component

System is metallic

Conductivity presents a local maximum close to $\mu = 0$

 σ decreases as the chemical potential gets closer to the $d_{xz,yz}$ band edge

Seebeck coefficient is very small at $\mu=0$

When the system is doped, the absolute value increase lineary with the chemical potential

Transport tensors in SrTiO₃/SrRuO₃/SrTiO₃: majority spin

Behavior around Fermi energy at zero doping is different for each spin component

System is semiconducting

Small contribution to $\, \sigma \,$

Seebeck coefficient displays large values

$1500 \mu V/K$

For comparison one monolayer of Nb-doped SrTiO₃ embedded into a SrTiO₃ matrix

 $500 \ \mu V/K$

W. S. Choi *et al.*, Phys. Rev. B 82, 024301 (2010)

Transport tensors in SrTiO₃/SrRuO₃/SrTiO₃:

The power factor shows strong compensation of the Seebeck coefficient and conductivity in both channels

 $PF = S^2 \sigma$

Wherever the Seebeck coefficient is large the electrical conductivity is very small (or even zero)

Only for very strong hole doping (1 hole per Ru atom) an appreciable enhancement is observed

Conclusions

Highly confined (one monolayer thick) 2DEG at the SrTiO₃/SrRuO₃ interfaces in (SrTiO₃)₅/(SrRuO₃)₁ periodic superlattices

New origin for the 2DEG: due to electronegativity of Ru, and not to polar catastrophe

2DEG localized on d-orbitals of Ru and not on Ti

2DEG intrinsically magnetic (not dependent on O vacancies or defects, as in LaAlO₃/SrTiO₃)

Large enhancement of the Seebeck coefficient, but without the concomitant increase of the figure of merit

Many thanks to

Pablo García-Fernández

Philippe Ghosez

Finantial support

Marcos Verissimo-Alves

RED ESPAÑOLA DE SUPERCOMPUTACIÓN

Daniel I. Bilc

Supplemental information

Javier Junquera

Bulk SrRuO₃: a well known ferromagnetic metal

Highly correlated, narrow *d*-band metal

Ferromagnetic, with a transition temperature around 160 K

In bulk, crystallizes in the GdFeO₃ structure (Pbnm crystal structure; $a^{-}a^{-}c^{+}$ rot.)

Magnetic properties in bulk difficult to characterize:

Difficulty of making single domain crystal samples Large magnetocrystalline anysotropy

Magnetization does not saturate even for 30 T

G. Cao et al., Phys. Rev. B 56, 321 (1997)

Bulk SrRuO₃: a well known ferromagnetic metal

Highly correlated, narrow *d*-band metal

Ferromagnetic, with a transition temperature around 160 K

In bulk, crystallizes in the GdFeO₃ structure (Pbnm crystal structure; $a^{-}a^{-}c^{+}$ rot.)

Magnetic properties in bulk difficult to characterize:

Difficulty of making single domain crystal samples Large spin-orbit coupling of the magnetic 4*d* Ru atom (900 cm⁻¹) Large magnetocrystalline anysotropy

Dramatic anysotropy of the magnetization in plane vs out-of-plane G. Cao et al., Phys. Rev. B 56, 321 (1997)

When the field is applied along the direction of these minima, the applied field H cannot overcome the magnetic anisotropy and the magnetization does not follow the direction of H. Thus, the hard in-plane axis of the magnetization coincides with the direction at which the minima appear.¹¹ Note that this means that even at 9 T the magnetic anisotropy is not overcome.

G. Herranz e*t al*., J. Appl. Phys. 97, 10M321 (2005)

Electronic structure of SrRuO₃ thin films and superlattices are very different

Superlattice:

Local structure is cubic-like The chemical environment of the Ru ions is preserved up to second nearest neighbours (nearly the same as in bulk)

Thin-films:

Loose of ligands \implies Tetragonal structure Influence of reconstruction is much larger

Electronic structure of SrRuO₃ thin films and superlattices are very different

Superlattice: Local structure is cubic-like The chemical environment of the Ru ions is preserved up to second nearest neighbours (nearly the same as in bulk)

Thin-films:

Loose of ligands \implies Tetragonal structure Influence of reconstruction is much larger

Some spectral weight is transferred from the sharp peak at E_F to a broad structure at -1.5 eV.

More remarkable for the thin film than for the superlattice

H. Kumigashira et al. Appl. Phys. Lett. 92, 122105 (2008)

Thin films of SrRuO₃ on SrTiO₃

40 nm thick SrRuO₃

5 nm thick SrRuO₃

M. Ziese et al., Phys. Rev. B 81, 184418 (2010)

LSDA+U results

Units in Å

Small atomic rumplings and changes in the interplanar distances

Bare LDA

Theoretical LDA value

 $\theta_{\rm bulk}^{\rm SrTiO_3} = 4.2^{\circ}$

RuO₆ oxygen octahedra rotates 11.02° bulk tetragonal SrRuO₃ under the same strain conditions rotates 11.3°

Interactions between RuO₂ planes well screened already with 5 layers of SrTiO₃

Bare LDA

 $\mu_{\rm Ru} = 0.7 \mu_{\rm B}$

M. Verissimo-Alves *et al.*, Physical Review Letters 108, 107003 (2012) 2DEG exhibit magnetism with magnetic moment $\mu=1.0\mu_{\rm B}$ per SrRuO_3 unit cell

Effect of the U_{eff}

PDOS on the atomic orbitals of Ru atom

out at the frozen

LSDA relaxed

geometry

 $U_{eff} = 0.0 eV$

 $U_{eff} = 1.0 eV$

U_{eff} = 2.5 eV

 U_{eff} = 4.0 eV

B1-WC functional

Effect of the spin-orbit interaction

Hybrid functional B1-WC results WIEN-2K

Is the electron gas a 2DEG or 1DEG?

The minority spin DOS resembles that of a 1D tight-binding model

The xz bands have only a large TB constant along x

The 2DEG is formed of degenerate orthogonal 1DEGs (xz, yz)

The in-plane xy band has two large TB constants

Electrons would form a 2DEG

BOLTZTRAP approach to compute the transport tensors

G. H. Madsen and D. J. Singh, Computer Physics Communications 175, 67 (2006)

BOLTZTRAP

From the electronic band structure, we can compute the group velocities

$$v_{\alpha}(i,\vec{k}) = \frac{1}{\hbar} \frac{\partial \varepsilon_{i,\vec{k}}}{\partial k_{\alpha}}$$

and then the conductivity tensors

$$\sigma_{\alpha\beta}(i,\vec{k}) = e^2 \tau_{i,\vec{k}} v_{\alpha}(i,\vec{k}) v_{\beta}(i,\vec{k})$$

Simplest approximation for the relaxation time: keep it constant

The transport tensors can then be calculated from the conductivity distributions

$$\sigma_{\alpha\beta}(T;\mu) = \frac{1}{\Omega} \int \sigma_{\alpha\beta}(\varepsilon) \left[-\frac{\partial f_{\mu}(T;\varepsilon)}{\partial \varepsilon} \right] d\varepsilon \qquad \qquad \nu_{\alpha\beta}(T;\mu) = \frac{1}{eT\Omega} \int \sigma_{\alpha\beta}(\varepsilon)(\varepsilon-\mu) \left[-\frac{\partial f_{\mu}(T;\varepsilon)}{\partial \varepsilon} \right] d\varepsilon$$

Finally, the Seebeck coefficient can be easily calculated

$$S_{ij} = \frac{\mathcal{E}_i}{\nabla_j T} = \sum_{\alpha} \frac{\nu_{\alpha j}}{\sigma_{\alpha i}}$$

One band free-electron model

 $\varepsilon(\vec{k}) = \frac{\hbar^2}{2m^*} \sum_i k_i^2$

DOS corresponds with the textbooks examples of the corresponding models

... while the free-electron ones are not

Tight-binding model

1D

2D

3D

$$\varepsilon(\vec{k}) = 2\gamma \sum_{i} \cos(k_i a)$$

At the band bottom, both models are quite similar

The tight-binding bands are symmetrical around the center of the band...

More appropriate to describe the narrow 4*d* band

One band free-electron model

$$\varepsilon(\vec{k}) = \frac{\hbar^2}{2m^*} \sum_i k_i^2$$

Conductivities are equivalent at the band bottom

Tight-binding model

$$\varepsilon(\vec{k}) = 2\gamma \sum_{i} \cos(k_i a)$$

Conductivity decays in a quicker way as we approach the band bottom

Presents a maximum of the conductivity at the center of the gap (maximum of the group velocity)

One band free-electron model

$$\varepsilon(\vec{k}) = \frac{\hbar^2}{2m^*} \sum_i k_i^2$$

Seebeck coefficient closely matches each other at the band bottom

Tight-binding model

$$\varepsilon(\vec{k}) = 2\gamma \sum_{i} \cos(k_i a)$$

Seebeck coefficient increases with reduced dimensionality

The Seebeck coefficient changes from electrons to hole dominated behaviour

S = 0 right at the center of the band (half-filling),
explaining the poor results in first-principles sim.

One band free-electron model

$$\varepsilon(\vec{k}) = \frac{\hbar^2}{2m^*} \sum_i k_i^2$$

Tight-binding model

$$\varepsilon(\vec{k}) = 2\gamma \sum_{i} \cos(k_i a)$$

Enhancement of the power factor at optimal doping, locating the chemical potential close to the band bottom

The power factor is significantly enhanced when the dimensionality is reduced (as in the Hicks and Dresselhaus)

No large enough to use STO/SRO/STO as thermoelectric

Quantum confinement does not enhance the thermoelectric power of 2DEG at SrTiO₃/LaAIO₃

Experiment and theory coherently report Seebeck coefficients larger in bulk SrTiO₃ than in SrTiO₃/LaAlO₃

A. Filippetti *et al.* Phys. Rev. B 86, 195301 (2012)
I. Pallecchi *et al.* Phys. Rev. B 81, 085414 (2010)

Quantum confinement does not enhance the thermoelectric power of 2DEG at SrTiO₃/LaAIO₃

Two dimensions: the different effective masses change occupancy, reduce chemical potential and increase the Seebeck coefficient

On-site splitting: d_{xy} orbitals occupied, increase of the chemical potential and reduction of the Seebeck

Inter-site splitting: only the d_{xy} of the interfacial layer contribute orbitals occupied, increase of the chemical potential and reduction of the Seebeck

A. Filippetti *et al.* Phys. Rev. B 86, 195301 (2012)
I. Pallecchi *et al.* Phys. Rev. B 81, 085414 (2010)