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Momento lineal y colisiones 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)

m1(v1i
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2) " m2(v2f
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m1v1i # m2v2i " m1v1f # m2v2f

vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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! PITFALL PREVENTION
9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.
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Active Figure 9.9 Schematic rep-
resentation of an elastic head-on
collision between two particles:
(a) before collision and (b) after
collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocities.
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Active Figure 9.8 Schematic rep-
resentation of a perfectly inelastic
head-on collision between two
particles: (a) before collision and
(b) after collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocity.
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Definición de momento lineal o cantidad de movimiento 
(caso no relativista) 

Se define como momento lineal o cantidad de movimiento de un 
objeto de masa m que se mueve con velocidad       como el 

producto de su masa por su velocidad. 

Desglosando en términos de sus componentes 

El momento lineal es una magnitud vectorial (misma dirección y sentido que la velocidad) 

Dimensiones: [p] = MLT-1 

Unidades en el SI: kg • m/s 



Relación entre cantidad de movimiento y  fuerza 

La tasa de variación de la cantidad de movimiento con respecto al 
tiempo es igual a la fuerza neta que actúa sobre la partícula 

Si la masa de la partícula no cambia, la expresión anterior se reduce a la segunda ley de Newton 



Principio de conservación de la cantidad de movimiento 
(caso de una partícula aislada)  

La tasa de variación de la cantidad de movimiento con respecto al 
tiempo es igual a la fuerza neta que actúa sobre la partícula 

Si la fuerza neta que actúa sobre un objeto es igual a cero, la derivada de la 
cantidad de movimiento del objeto con respecto al tiempo es cero  

⇒ La cantidad de movimiento del objeto debe ser constante                       
(primera ley de Newton) 

Este es el caso de una partícula aislada (que no interacciona con el entorno) 



Relación entre cantidad de movimiento y  fuerza 

La tasa de variación de la cantidad de movimiento con respecto al 
tiempo es igual a la fuerza neta que actúa sobre la partícula 

Esta es la forma original de la segunda ley de Newton, tal cuál fue presentada por él. 

Es más general, ya que también es válida en sistemas en los que la masa varía: 

  - un cohete que expulsa combustible a medida que se mueve, 

  - sistemas relativistas (la masa depende de la velocidad) 

Es una expresión verdaderamente útil cuando se aplica a sistemas de dos o más partículas 



Principio de conservación de la cantidad de movimiento 
(sistemas aislados)  

Consideremos un sistema compuesto por dos partículas que: 

- pueden interaccionar entre sí (ejercen fuerzas entre sí) 

- pero están aisladas del entorno que las rodea (no se ejerce ninguna fuerza externa sobre el sistema) 

En un determinado instante: 

Cantidad movimiento de la partícula 1 

Cantidad movimiento de la partícula 2 

Cantidad movimiento total 

one particle is that from the other particle and we can categorize this as a situation in
which Newton’s laws will be useful. If a force from particle 1 (for example, a gravitational
force) acts on particle 2, then there must be a second force—equal in magnitude but op-
posite in direction—that particle 2 exerts on particle 1. That is, they form a Newton’s
third law action–reaction pair, so that F12 ! " F21. We can express this condition as

Let us further analyze this situation by incorporating Newton’s second law. Over
some time interval, the interacting particles in the system will accelerate. Thus, replac-
ing each force with ma gives

Now we replace the acceleration with its definition from Equation 4.5:

If the masses m1 and m2 are constant, we can bring them into the derivatives, which
gives

(9.1)

To finalize this discussion, note that the derivative of the sum m1v1 # m2v2 with respect
to time is zero. Consequently, this sum must be constant. We learn from this discussion
that the quantity m v for a particle is important, in that the sum of these quantities for
an isolated system is conserved. We call this quantity linear momentum:

d
dt

 (m1v1 # m 2v2) ! 0

d(m1v1)
dt

#
d(m2v2)

dt
! 0

m1 
d v1

dt
# m2 

d v2

dt
! 0

 m1a1 # m2a2 ! 0

F21 # F12 ! 0
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Figure 9.1 Two particles interact
with each other. According to
Newton’s third law, we must have
F12 ! " F21.

The linear momentum of a particle or an object that can be modeled as a particle of
mass m moving with a velocity v is defined to be the product of the mass and velocity:

(9.2)p ! m v

Linear momentum is a vector quantity because it equals the product of a scalar quan-
tity m and a vector quantity v. Its direction is along v, it has dimensions ML/T, and its
SI unit is kg · m/s.

If a particle is moving in an arbitrary direction, p must have three components, and
Equation 9.2 is equivalent to the component equations

As you can see from its definition, the concept of momentum1 provides a quantitative
distinction between heavy and light particles moving at the same velocity. For example,
the momentum of a bowling ball moving at 10 m/s is much greater than that of a ten-
nis ball moving at the same speed. Newton called the product m v quantity of motion;
this is perhaps a more graphic description than our present-day word momentum , which
comes from the Latin word for movement.

Using Newton’s second law of motion, we can relate the linear momentum of a par-
ticle to the resultant force acting on the particle. We start with Newton’s second law
and substitute the definition of acceleration:

"F ! ma ! m 
d v
dt

px ! mvx  py ! mvy  pz ! mvz

1 In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter 11,
we shall use the term angular momentum when dealing with rotational motion.

Definition of linear 
momentum of a particle



Principio de conservación de la cantidad de movimiento 
(sistemas aislados)  En un determinado instante: 

Cantidad movimiento de la partícula 1 

Cantidad movimiento de la partícula 2 

Cantidad movimiento total 

¿Cómo cambia la cantidad de movimiento con el tiempo? 

Cambio de la cantidad de movimiento de la partícula 1 

Cambio de la cantidad de movimiento de la partícula 2 

2° ley de Newton 



Principio de conservación de la cantidad de movimiento 
(sistemas aislados)  

¿Cómo cambia la cantidad de movimiento con el tiempo? 

Cambio de la cantidad de movimiento de la partícula 1 

Cambio de la cantidad de movimiento de la partícula 2 

2° ley de Newton 

Por la 3° ley de Newton 

Combinándolo con las ecuaciones anteriores 



Principio de conservación de la cantidad de movimiento 
(sistemas aislados)  

Si la derivada temporal de la cantidad de movimiento total es cero, quiere decir que 

O de forma equivalente 



Principio de conservación de la cantidad de movimiento 
(sistemas aislados)  

La generalización para un sistema con cualquier número de partículas es trivial 

La cantidad de movimiento total de un sistema aislado permanece constante, 
independientemente de la naturaleza de las fuerzas internas 



Impulso y cantidad de movimiento 

Supongamos que sobre un partícula actúa una fuerza neta y que esta fuerza 
puede variar con el tiempo 

Podemos integrar esta ecuación para hallar la variación de la cantidad de 
movimiento de la partícula durante el intervalo de tiempo  

La integral de una fuerza a lo largo del intervalo de tiempo durante el que actúa 
se denomina impulso de la fuerza 

El impulso de una fuerza es un vector definido por 



Teorema de la cantidad de movimiento y el impulso 

El impulso total de la fuerza neta sobre una partícula es igual a la variación de 
la cantidad de movimiento de la partícula 

También se aplica a un sistema de partículas, en el que consideramos la 
fuerza neta externa al sistema produce una variación en la cantidad de 

movimiento total del sistema  

Cuando se proporciona impulso a un sistema, estamos implicando que se transfiere 
una cierta cantidad de movimiento desde un agente externo al sistema 



Impulso como magnitud vectorial 

El impulso total de la fuerza neta sobre una partícula es igual a la variación de 
la cantidad de movimiento de la partícula 

El impulso es una magnitud vectorial, cuyo módulo es igual al área 
comprendida bajo la curva del módulo de la fuerza neta en función del tiempo 

En la figura se supone que la fuerza neta varía con el tiempo y que es distinta 
de cero en el intervalo  

El vector impulso tiene la misma dirección que la 
variación de la cantidad de movimiento 

Sus unidades son iguales que las de la cantidad de movimiento MLT-1 

(9.8)

To evaluate the integral, we need to know how the force varies with time. The quantity
on the right side of this equation is called the impulse of the force F acting on a parti-
cle over the time interval !t " tf # ti . Impulse is a vector defined by

(9.9)

Equation 9.8 is an important statement known as the impulse–momentum
theorem:3

I ! "tf

ti
 F dt

!p " pf # pi " "tf

ti
 Fdt
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The impulse of the force F acting on a particle equals the change in the momen-
tum of the particle.

This statement is equivalent to Newton’s second law. From this definition, we see that im-
pulse is a vector quantity having a magnitude equal to the area under the force–time
curve, as described in Figure 9.4a. In this figure, it is assumed that the force varies in time
in the general manner shown and is nonzero in the time interval !t " tf # ti . The direc-
tion of the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not a prop-
erty of a particle; rather, it is a measure of the degree to which an external force changes
the momentum of the particle. Therefore, when we say that an impulse is given to a parti-
cle, we mean that momentum is transferred from an external agent to that particle.

Because the force imparting an impulse can generally vary in time, it is convenient
to define a time-averaged force

(9.10)

where !t " tf # ti. (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)I ! F !t

F ! 
1
!t

 "tf

ti
 F dt

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on a
particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force-versus-time curve. (b) In the
time interval !t, the time-averaged
force (horizontal dashed line) gives
the same impulse to a particle as
does the time-varying force de-
scribed in part (a).

Airbags in automobiles have
saved countless lives in acci-
dents. The airbag increases the
time interval during which the
passenger is brought to rest,
thereby decreasing the force on
(and resultant injury to) the
passenger. Co
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3 Although we assumed that only a single force acts on the particle, the impulse–momentum theo-
rem is valid when several forces act; in this case, we replace F in Equation 9.8 with #F.

Impulse of a force

Impulse–momentum theorem



Impulso y fuerza neta 

El impulso total de la fuerza neta sobre una partícula es igual a la variación de 
la cantidad de movimiento de la partícula 

Dado que generalmente la fuerza puede cambiar con el tiempo, es 
recomendable definir una fuerza neta promediada en el tiempo 

(9.8)

To evaluate the integral, we need to know how the force varies with time. The quantity
on the right side of this equation is called the impulse of the force F acting on a parti-
cle over the time interval !t " tf # ti . Impulse is a vector defined by

(9.9)

Equation 9.8 is an important statement known as the impulse–momentum
theorem:3

I ! "tf

ti
 F dt

!p " pf # pi " "tf

ti
 Fdt
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3 Although we assumed that only a single force acts on the particle, the impulse–momentum theo-
rem is valid when several forces act; in this case, we replace F in Equation 9.8 with #F.

Impulse of a force

Impulse–momentum theorem

El módulo de esta fuerza neta puede interpretarse como el módulo de una 
fuerza constante neta que proporcionaría el mismo impulso a la partícula en el 
intervalo de tiempo         que la fuerza variable en el mismo intervalo de tiempo 



Impulso y fuerza neta 

El impulso total de la fuerza neta sobre una partícula es igual a la variación de 
la cantidad de movimiento de la partícula 

(9.8)

To evaluate the integral, we need to know how the force varies with time. The quantity
on the right side of this equation is called the impulse of the force F acting on a parti-
cle over the time interval !t " tf # ti . Impulse is a vector defined by

(9.9)

Equation 9.8 is an important statement known as the impulse–momentum
theorem:3

I ! "tf
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 F dt
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 Fdt
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3 Although we assumed that only a single force acts on the particle, the impulse–momentum theo-
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Impulse of a force

Impulse–momentum theorem

(9.8)

To evaluate the integral, we need to know how the force varies with time. The quantity
on the right side of this equation is called the impulse of the force F acting on a parti-
cle over the time interval !t " tf # ti . Impulse is a vector defined by
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Equation 9.8 is an important statement known as the impulse–momentum
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3 Although we assumed that only a single force acts on the particle, the impulse–momentum theo-
rem is valid when several forces act; in this case, we replace F in Equation 9.8 with #F.

Impulse of a force

Impulse–momentum theorem

La variación en la cantidad de movimiento 
que se experimenta en una colisión es la 

misma si el coche dispone de airbags que si 
no dispone de ellos 

El airbag permite que se experimente esa 
variación en la cantidad de movimiento en 

un intervalo de tiempo mayor  

La fuerza máxima que se ejerce sobre los 
pasajeros se reduce y se incrementan las 

posibilidades de no resultar herido 



Aproximación basada en el impulso 

El impulso total de la fuerza neta sobre una partícula es igual a la variación de 
la cantidad de movimiento de la partícula 

En muchas situaciones haremos uso de la aproximación basada en el impulso: 
 - una de las fuerzas ejercidas sobre la partícula actúa durante un breve 

instante… 
 - …pero esa fuerza es mucho mayor que cualquier otra fuerza presente 

(9.8)

To evaluate the integral, we need to know how the force varies with time. The quantity
on the right side of this equation is called the impulse of the force F acting on a parti-
cle over the time interval !t " tf # ti . Impulse is a vector defined by

(9.9)

Equation 9.8 is an important statement known as the impulse–momentum
theorem:3

I ! "tf

ti
 F dt

!p " pf # pi " "tf

ti
 Fdt
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Impulse of a force

Impulse–momentum theorem

Esta aproximación permite ignorar los efectos de otras fuerzas: dichos 
efectos son insignificantes durante el breve instante en el que actúa la 

fuerza más grande 

     y        son las cantidades de movimiento inmediatamente anterior y 
posterior a la colisión. En la aproximación basada en el impulso, apenas 

se produce movimiento de la partícula durante la colisión 



Colisiones: definición 

Usamos el término colisión para describir un proceso durante el cuál 
dos partículas interaccionan por medio de fuerzas  

Se supone que la fuerzas debidas a la colisión son mucho mayores 
que cualquier otra fuerza externa presente  

Podemos utilizar la aproximación del impulso 

El intervalo de tiempo durante el cuál las velocidades de las partículas 
cambian de sus valores iniciales a los finales se supone que es pequeño 

Una colisión puede ser el resultado del contacto físico 
entre dos objetos. Esta situación resulta habitual cuando 
se trata de dos objetos macroscópicos (bolas de billar…) 

Pero debe generalizarse a situaciones en las que las 
partículas que han colisionado (interaccionando por medio 

de fuerzas) no han llegado nunca a estar “en contacto”  

9.3 Collisions in One Dimension

In this section we use the law of conservation of linear momentum to describe what
happens when two particles collide. We use the term collision to represent an event
during which two particles come close to each other and interact by means of forces.
The time interval during which the velocities of the particles change from initial to fi-
nal values is assumed to be short. The interaction forces are assumed to be much
greater than any external forces present, so we can use the impulse approximation.

A collision may involve physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be generalized
because “physical contact” on a submicroscopic scale is ill-defined and hence meaning-
less. To understand this, consider a collision on an atomic scale (Fig. 9.7b), such as the
collision of a proton with an alpha particle (the nucleus of a helium atom). Because the
particles are both positively charged, they repel each other due to the strong electrosta-
tic force between them at close separations and never come into “physical contact.”

When two particles of masses m1 and m2 collide as shown in Figure 9.7, the impul-
sive forces may vary in time in complicated ways, such as that shown in Figure 9.4. Re-
gardless of the complexity of the time behavior of the force of interaction, however,
this force is internal to the system of two particles. Thus, the two particles form an iso-
lated system, and the momentum of the system must be conserved. Therefore, the total
momentum of an isolated system just before a collision equals the total momentum of
the system just after the collision.

In contrast, the total kinetic energy of the system of particles may or may not be
conserved, depending on the type of collision. In fact, whether or not kinetic energy is
conserved is used to classify collisions as either elastic or inelastic.

An elastic collision between two objects is one in which the total kinetic energy
(as well as total momentum) of the system is the same before and after the colli-
sion. Collisions between certain objects in the macroscopic world, such as billiard balls,
are only approximately elastic because some deformation and loss of kinetic energy take
place. For example, you can hear a billiard ball collision, so you know that some of the
energy is being transferred away from the system by sound. An elastic collision must be
perfectly silent! Truly elastic collisions occur between atomic and subatomic particles.

An inelastic collision is one in which the total kinetic energy of the system is
not the same before and after the collision (even though the momentum of the
system is conserved). Inelastic collisions are of two types. When the colliding objects
stick together after the collision, as happens when a meteorite collides with the Earth,
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Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

The average force exerted by the wall on the car is

In this problem, note that the signs of the velocities indicate
the reversal of directions. What would the mathematics be
describing if both the initial and final velocities had the
same sign?

What If? What if the car did not rebound from the wall?
Suppose the final velocity of the car is zero and the time in-
terval of the collision remains at 0.150 s. Would this represent
a larger or a smaller force by the wall on the car?

 1.76 ! 105 î NF "
#p
#t

"
2.64 ! 104 î kg$m/s

0.150 s
"

2.64 ! 104 î kg$ m/sI "

% (%  2.25 ! 104 î  kg$m/s)

I " #p " pf % pi " 0.39 ! 104 î  kg$  m/s Answer In the original situation in which the car re-
bounds, the force by the wall on the car does two things in
the time interval—it (1) stops the car and (2) causes it to
move away from the wall at 2.60 m/s after the collision. If
the car does not rebound, the force is only doing the first of
these, stopping the car. This will require a smaller force.

Mathematically, in the case of the car that does not re-
bound, the impulse is

The average force exerted by the wall on the car is

which is indeed smaller than the previously calculated value,
as we argued conceptually.

F "
#p
#t

"
2.25 ! 104 î kg$m/s

0.150 s
" 1.50 ! 105 î N

" 2.25 ! 104 î  kg$m/s

I " #p " pf % pi " 0 %(%2.25 ! 104 î  kg$m/s)

Elastic collision

Inelastic collision



Colisiones: conservación de la cantidad de movimiento 

Cuando dos partículas colisionan, las fuerzas de colisión pueden variar de una forma 
muy compleja: 

Realizar un análisis de la situación utilizando la segunda ley de Newton es complicado 

Sin embargo, sin importar la complejidad de la dependencia de las fuerzas con el tiempo, 
estas fuerzas son siempre internas al sistema formado por las dos partículas 

Podemos considerar que las dos partículas forman un sistema aislado, y 
por lo tanto su momento linear se conserva 



Colisiones inelásticas: definición 

Se define una colisión inelástica como aquella en la que la energía cinética no se 
conserva, aunque el momento total del sistema se conserve. 

Cuando dos objetos colisionan y quedan unidos después de la colisión, se produce una 
transformación del máximo porcentaje posible de la energía cinética inicial, y decimos que la 

colisión es perfectamente inelástica 
 

 - dos coches que colisionan y quedan unidos, se mueven con una cierta velocidad 
común después del choque, 

 - meteorito que colisiona con la Tierra y queda perfectamente sepultado en el suelo 

Cuando dos objetos colisionan y no quedan unidos después de la colisión, pero se pierde 
parte de la energía cinética inicial, se dice que la colisión es inelástica sin más adjetivos 

 
 - una pelota de goma que choca contra una superficie dura (parte de la energía 

cinética se transforma en energía interna cuando la bola se deforma mientras está en 
contacto con la superficie). 



Colisiones elásticas: definición 

Se define una colisión elástica como aquella en la que la energía cinética se conserva, 
así como la cantidad de movimiento 

Las colisiones reales en el mundo macroscópico, por ejemplo, las colisiones entre dos bolas 
de billar, son solo aproximadamente elásticas 

 
Parte de la energía cinética se transforma y una cierta energía abandona el sistema en forma 

de ondas mecánicas (el sonido del choque)  
 

Entre partículas subatómicas si que se pueden producir choques perfectamente elásticos. 

Las colisiones elásticas y perfectamente inelásticas son casos límite:  
hay un gran número de colisiones posibles que caen dentro del rango 

comprendido entre estos dos límites 



Colisiones elásticas e inelásticas: resumen 

El momento del sistema se conserva en todas las colisiones 

La energía cinética se conserva únicamente en las colisiones elásticas 



Colisiones en una dimensión 

¿Qué ocurre si la colisión tiene lugar a lo largo de una línea recta? 

Necesitamos más ecuaciones para resolver el problema 

Datos 

Ecuaciones 
Conservación de la 

cantidad de movimiento 
(ecuación 1) 

Si el choque es 
perfectamente inelástico 

Si el choque es elástico 
Conservación ener. cinética 

Casos intermedios 
Coeficiente de restitución 

Incógnitas 



Coeficiente de restitución 

e = 0:  Choque perfectamente inelástico 

e = 1:  Choque elástico 



Colisiones perfectamente inelásticas en una dimensión 
Consideremos dos partículas de masas      y                                                             

que se mueven a lo largo de la misma línea recta con velocidades iniciales       y 
Suponemos que el movimiento es unidimensional (prescindimos de vectores) 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)

m1(v1i
2 ! v1f

2) " m2(v2f
2 ! v2i

2)

1
2

1
2m1v1i

2 # 1
2m2v2i

2 " 1
2m1v1f

2 # 1
2m2v2f

2

m1v1i # m2v2i " m1v1f # m2v2f

vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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! PITFALL PREVENTION
9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)

Active Figure 9.9 Schematic rep-
resentation of an elastic head-on
collision between two particles:
(a) before collision and (b) after
collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocities.

Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

Active Figure 9.8 Schematic rep-
resentation of a perfectly inelastic
head-on collision between two
particles: (a) before collision and
(b) after collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocity.

Las dos partículas colisionan de frente, se quedan 
unidas y a partir de ese momento se mueven con una 

velocidad común       después de la colisión 

Como la cantidad de movimiento de un sistema aislado se 
conserva en cualquier colisión 

Generalmente las colisiones inelásticas son difíciles de analizar, a no ser que se 
proporcione información adicional. Desde un punto de vista matemático este hecho 

se refleja en que suele haber más incógnitas que ecuaciones 

En este caso, el hecho de que la 
colisión sea perfectamente inelástica 

proporciona la segunda ecuación 
que necesitamos 



Colisiones perfectamente elásticas en una dimensión 
Consideremos dos partículas de masas      y                                                             

que se mueven a lo largo de la misma línea recta con velocidades iniciales       y 

Las dos partículas colisionan de frente, y abandonan el 
punto de colisión con velocidades diferentes 

Como la cantidad de movimiento de un sistema aislado se 
conserva en cualquier colisión 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)

m1(v1i
2 ! v1f

2) " m2(v2f
2 ! v2i

2)

1
2

1
2m1v1i

2 # 1
2m2v2i

2 " 1
2m1v1f

2 # 1
2m2v2f

2

m1v1i # m2v2i " m1v1f # m2v2f

vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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! PITFALL PREVENTION
9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.
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Before collision
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v1f v2f

After collision
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Active Figure 9.9 Schematic rep-
resentation of an elastic head-on
collision between two particles:
(a) before collision and (b) after
collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocities.

Before collision

(a)

m1 m2
v1i v2i

After collision
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vf
m1 + m2

Active Figure 9.8 Schematic rep-
resentation of a perfectly inelastic
head-on collision between two
particles: (a) before collision and
(b) after collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocity.

Si la colisión es elástica también se conserva la energía cinética 

Como estamos tratando un sistema unidimensional, podemos prescindir de los vectores y describir las 
velocidades de las partículas a partir de sus celeridades, con el signo algebraico correspondiente 

Dos ecuaciones con dos 
incógnitas:       y   



Colisiones perfectamente elásticas en una dimensión 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)

m1(v1i
2 ! v1f

2) " m2(v2f
2 ! v2i

2)

1
2

1
2m1v1i

2 # 1
2m2v2i

2 " 1
2m1v1f

2 # 1
2m2v2f

2

m1v1i # m2v2i " m1v1f # m2v2f

vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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! PITFALL PREVENTION
9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.
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Active Figure 9.9 Schematic rep-
resentation of an elastic head-on
collision between two particles:
(a) before collision and (b) after
collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocities.
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Active Figure 9.8 Schematic rep-
resentation of a perfectly inelastic
head-on collision between two
particles: (a) before collision and
(b) after collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocity.

Método alternativo que implica ciertas manipulaciones 
matemáticas pero que simplifica la solución 

Simplificamos el factor ½ y trasponiendo 

Descomponemos en factores ambos lados de la ecuación 

Separamos los términos que contienen       y       en la ecuación de conservación del momento 



Colisiones perfectamente elásticas en una dimensión 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)

m1(v1i
2 ! v1f

2) " m2(v2f
2 ! v2i

2)

1
2

1
2m1v1i

2 # 1
2m2v2i

2 " 1
2m1v1f

2 # 1
2m2v2f

2

m1v1i # m2v2i " m1v1f # m2v2f

vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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! PITFALL PREVENTION
9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.
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Active Figure 9.9 Schematic rep-
resentation of an elastic head-on
collision between two particles:
(a) before collision and (b) after
collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocities.
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Active Figure 9.8 Schematic rep-
resentation of a perfectly inelastic
head-on collision between two
particles: (a) before collision and
(b) after collision.

At the Active Figures link 
at http://www.pse6.com, you
can adjust the masses and
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Método alternativo que implica ciertas manipulaciones 
matemáticas pero que simplifica la solución 

Dividiendo las dos ecuaciones 

O agrupando en cada lado de la ecuación los valores 
iniciales y finales 

Esta ecuación, junto con la condición de conservación de la cantidad de movimiento, se 
pueden utilizar para resolver problemas de choques elásticos en una dimensión 

La velocidad relativa de los dos objetos antes de la 
colisión es igual a la velocidad relativa de los dos 

objetos después de la colisión, pero con signo negativo 



Colisiones perfectamente elásticas en una dimensión 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)

m1(v1i
2 ! v1f

2) " m2(v2f
2 ! v2i

2)

1
2

1
2m1v1i

2 # 1
2m2v2i

2 " 1
2m1v1f

2 # 1
2m2v2f

2

m1v1i # m2v2i " m1v1f # m2v2f

vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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! PITFALL PREVENTION
9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.
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can adjust the masses and
velocities of the colliding ob-
jects to see the effect on the
final velocity.

Si suponemos que las masas y las componentes iniciales de la 
velocidad de los dos objetos son conocidas, podemos conocer las 

velocidades finales (sistema de dos ecuaciones con dos incógnitas) 

En estas ecuaciones deben incluirse los signos apropiados para 
componente de la velocidad 



Colisiones perfectamente elásticas en una dimensión 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)
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vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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9.2 Inelastic Collisions
Generally, inelastic collisions are
hard to analyze unless additional
information is provided. This ap-
pears in the mathematical repre-
sentation as having more un-
knowns than equations.
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Casos particulares 

Las masas de los dos objetos son iguales 

Los dos objetos intercambian 
sus velocidades 



Colisiones perfectamente elásticas en una dimensión 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)

 m1(v1i ! v1f)(v1i # v1f) " m 2(v2f ! v2i)(v2f # v2i)
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vf "
m1v1i # m2v2i

m1 # m2

m1v1i # m 2v2i " (m1 # m2)vf
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pears in the mathematical repre-
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Casos particulares 

se encuentra inicialmente en reposo 

Si además,                     entonces 

El objeto pesado continua 
su movimiento sin alterarse 

después de la colisión 

El objeto más ligero sale 
despedido con una velocidad igual 
a, aproximadamente, dos veces la 
velocidad inicial del objeto pesado 



Colisiones perfectamente elásticas en una dimensión 

the collision is called perfectly inelastic. When the colliding objects do not stick to-
gether, but some kinetic energy is lost, as in the case of a rubber ball colliding with a
hard surface, the collision is called inelastic (with no modifying adverb). When the
rubber ball collides with the hard surface, some of the kinetic energy of the ball is lost
when the ball is deformed while it is in contact with the surface.

In most collisions, the kinetic energy of the system is not conserved because some of
the energy is converted to internal energy and some of it is transferred away by means
of sound. Elastic and perfectly inelastic collisions are limiting cases; most collisions fall
somewhere between them.

In the remainder of this section, we treat collisions in one dimension and consider
the two extreme cases—perfectly inelastic and elastic collisions. The important distinc-
tion between these two types of collisions is that momentum of the system is con-
served in all collisions, but kinetic energy of the system is conserved only in
elastic collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.8. The two particles collide head-on,
stick together, and then move with some common velocity vf after the collision. Be-
cause the momentum of an isolated system is conserved in any collision, we can say
that the total momentum before the collision equals the total momentum of the com-
posite system after the collision:

(9.13)

Solving for the final velocity gives

(9.14)

Elastic Collisions

Consider two particles of masses m1 and m 2 moving with initial velocities v1i and v2i
along the same straight line, as shown in Figure 9.9. The two particles collide head-on
and then leave the collision site with different velocities, v1f and v2f . If the collision is
elastic, both the momentum and kinetic energy of the system are conserved. Therefore,
considering velocities along the horizontal direction in Figure 9.9, we have

(9.15)

(9.16)

Because all velocities in Figure 9.9 are either to the left or the right, they can be repre-
sented by the corresponding speeds along with algebraic signs indicating direction.
We shall indicate v as positive if a particle moves to the right and negative if it moves to
the left.

In a typical problem involving elastic collisions, there are two unknown quantities,
and Equations 9.15 and 9.16 can be solved simultaneously to find these. An alternative
approach, however—one that involves a little mathematical manipulation of Equation
9.16—often simplifies this process. To see how, let us cancel the factor in Equation
9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to obtain

(9.18)m1(v1i ! v1f ) " m2(v2f ! v2i)
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m1v1i # m 2v2i " (m1 # m2)vf
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Casos particulares 

se encuentra inicialmente en reposo 

Si además,                     entonces 

La velocidad del objeto 
ligero se invierte 

El objeto pesado permanece 
prácticamente en reposo 



Colisiones en tres dimensiones 

En una colisión general entre dos objetos en un espacio tridimensional, 
el principio de conservación de la cantidad de movimiento implica que la 

cantidad de movimiento total en cada dimensión se conserva 

La cantidad de movimiento total en un sistema aislado se conserva.  
Este principio aplica a todos los casos de los choques que consideramos en este tema 



Colisiones en dos dimensiones 

¿Qué ocurre si la colisión tiene lugar en un plano? 

Datos Incógnitas 

Ecuaciones 

Conservación de la 
cantidad de movimiento 

(ecuaciones 1 y 2) 

4. Coeficiente de restitución 
o alguna de las 

componentes finales 

Necesitamos más ecuaciones para resolver el problema 

3. Si el choque es 
elástico, conservación 
de la energía cinética 



Colisiones en dos dimensiones 

¿Qué ocurre si la colisión tiene lugar en un plano? 
Ejemplo 
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9.4 Two-Dimensional Collisions

In Section 9.1, we showed that the momentum of a system of two particles is conserved
when the system is isolated. For any collision of two particles, this result implies that
the momentum in each of the directions x, y, and z is conserved. An important subset
of collisions takes place in a plane. The game of billiards is a familiar example involv-
ing multiple collisions of objects moving on a two-dimensional surface. For such two-
dimensional collisions, we obtain two component equations for conservation of 
momentum:

where we use three subscripts in these equations to represent, respectively, (1)
the identification of the object, (2) initial and final values, and (3) the velocity
component.

Let us consider a two-dimensional problem in which particle 1 of mass m1 collides
with particle 2 of mass m2 , where particle 2 is initially at rest, as in Figure 9.13. After
the collision, particle 1 moves at an angle ! with respect to the horizontal and parti-
cle 2 moves at an angle " with respect to the horizontal. This is called a glancing colli-
sion. Applying the law of conservation of momentum in component form and noting
that the initial y component of the momentum of the two-particle system is zero, we
obtain

(9.24)

(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision, par-
ticle 2 has a y component of velocity that is downward. We now have two independent
equations. As long as no more than two of the seven quantities in Equations 9.24 and
9.25 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic en-
ergy) with v2i # 0 to give

(9.26)1
2m1v 2

1i # 1
2m1v 2

1f $ 1
2m2v 2

2f

0 # m1v1f  sin ! % m2v2f  sin "

m1v1i # m1v1f  cos ! $ m2v2f  cos "

m1v1iy $ m2v2iy # m1v1f y $ m2v2f y

m1v1ix $ m2v2ix # m1v1f x $ m2v2f x

neutron’s kinetic energy is transferred to the deuterium nu-
cleus. In practice, the moderator efficiency is reduced be-
cause head-on collisions are very unlikely.

How do the results differ when graphite (12C, as found
in pencil lead) is used as the moderator?

Because the total kinetic energy of the system is conserved,
Equation (2) can also be obtained from Equation (1) with
the condition that fn $ fm # 1, so that fm # 1 % fn.

Suppose that heavy water is used for the moderator. For
collisions of the neutrons with deuterium nuclei in D2O
(mm # 2mn), fn # 1/9 and fm # 8/9. That is, 89% of the

(a) Before the collision

v1i

(b) After the collision

θ
φ

v2f cos

v1f cos

v1f sin
v1f

v2f
–v2f sin

φ

φ

θ

θ

Active Figure 9.13 An elastic glancing collision between two particles. 

At the Active Figures link
at http://www.pse6.com, you
can adjust the speed and
position of the blue particle
and the masses of both
particles to see the effects.

! PITFALL PREVENTION
9.5 Don’t Use 

Equation 9.19
Equation 9.19, relating the initial
and final relative velocities of two
colliding objects, is only valid for
one-dimensional elastic colli-
sions. Do not use this equation
when analyzing two-dimensional
collisions.

EL objeto 1 choca, sin apenas rozarlo, con el objeto 2 
La partícula 2 se encuentra inicialmente en reposo 

Suponemos que el choque es elástico 

Conservación de la energía cinética 

Conservación de la cantidad de movimiento 

3 ecuaciones y 4 incógnitas                        necesitaríamos como dato una de las cuatro magnitudes 


