COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS:

ILLUMINATION MODELS

> Andrés Iglesias
> e-mail: iglesias@unican.es

Web pages: http://personales.unican.es/iglesias http://etsiso2.macc.unican.es/~cagd

Illumination Models

Light energy falling on a surface can be:

The amount of energy absorbed, transmitted or deflected depends on the wavelength (w.1.) of the light.

If

 then, the objectall the incident light energy is absorbed
.is invisible
nearly all the incident light energy is absorbed.................................... appears black only a small fraction is absorbed .appears white the incident light energy is nearly equally reduced for all w.l. .appears gray the incident light energy is selectively reduced for all w.l. .appears colored

Illumination Models

Rogers, D.F. Procedural Elements for Computer Graphics, McGraw-Hill, 2nd. Edition, 1998

The character of the light reflected or transmitted...
depends on:

- Composition of the light source
- Direction of the light source
- The surface orientation
- Geometry of the light source
and can be:
Diffuse: light that has penetrated below the surface of the object, been absorbed and then reemitted

Observer's position is unimportant

Especular: light does not penetrate below the surface

Character of light reamins unchanged

Light is independent of surface's color

Illumination Models

Each point may have several sources of illumination:
direct illumination
light arrives straight from the light sources
indirect illumination
light arrives after interacting with the rest of the scene

According to how they handle these sources, algorithms can be grouped into:
global illumination algorithms Both kinds of sources are considered
local illumination algorithms Only direct lights are taken into account

Illumination Models

Some useful definitions:

- \mathbf{N} is the surface normal
- L is the direction to light source
- Vectors \mathbf{N} and \mathbf{L} are unit vectors
- θ is the angle of incidence

Illumination model 1: Ambient light

Ambient light

- Uniform from all directions
- K α measures reflectivity of surface for diffuse light (values in the range: $0-1$)
Ambient reflection coefficient

Problem: an object is illuminated uniformly
$\boldsymbol{K}_{\alpha}=0.7$

$\boldsymbol{K}_{\alpha}=0.6$

Illumination Models

Illumination model 2: Ambient + diffuse light

Lambert's Cosine Law
incident intensity from a point light source

Therefore, the Lambertian illumination model becomes:

$$
\boldsymbol{I}(\lambda)=\underbrace{\boldsymbol{I}_{l}(\lambda) \boldsymbol{K}_{d}(\lambda) \cos (\theta)}_{\text {diffuse light }}+\underbrace{\boldsymbol{K} \alpha(\lambda) \boldsymbol{I} \alpha(\lambda)}_{\text {ambient light }}
$$

Illumination Models

Illumination model 2: Ambient + diffuse light

In practice, dependence on the wavelength λ is usually omitted:

$$
\boldsymbol{I}=\underbrace{\boldsymbol{I}_{l} \boldsymbol{K}_{d} \boldsymbol{\operatorname { c o s } (\theta)}+\underbrace{\boldsymbol{K}_{\alpha} \boldsymbol{I}_{\alpha}}_{\text {ambient light }}}_{\text {diffuse light }} \begin{array}{ll}
& 0 \leq \theta \leq \frac{\boldsymbol{\pi}}{2} \\
\hline
\end{array}
$$

Since N and L are unit vectors, it holds that: $\cos (\theta)=N_{.} L$
dot product

$$
\boldsymbol{I}=\underbrace{\boldsymbol{I}_{l} \boldsymbol{K}_{d}(\boldsymbol{N} \cdot \boldsymbol{L})+\underbrace{\boldsymbol{K}_{\alpha} \boldsymbol{I}_{\alpha}}_{\text {ambient light }}}_{\text {diffuse light }} \begin{array}{ll}
& 0 \leq \theta \leq \frac{\boldsymbol{\pi}}{2} \\
\boldsymbol{K}_{\alpha}+\boldsymbol{K}_{d}<\boldsymbol{1}
\end{array}
$$

Illumination Models

Illumination model 2: Ambient + diffuse light

Surfaces with a simple Lambertian diffuse reflection appear to have a dull matte surface:

Illumination Models

Illumination model 3: Ambient + diffuse + specular light

Highlights are due to specular reflection \rightarrow Specular reflection is directional
Highlights occur over a narrow range of angles

Highlights color same as the illuminating light rather than

Highlights move with the observer the color of the surface

- For a perfect reflecting surface (a mirror) the angle of reflection is equal to the angle of incidence
- For smooth surfaces, the spatial distribution of specular light is narrow.
- For rough surfaces, it is spread out.

Illumination Models

Illumination model 3: Ambient + diffuse + specular light

L- light source direction
N - Normal vector
θ - angle of incidence
V - line of sight
R - direction of ideal specular reflection
α - angle between R and V

If $\alpha=0$, we have a perfect reflecting surface (a mirror). An observer located here sees any specularly reflected light. Otherwise, we have a spatial distribution like:

Illumination Models

Illumination model 3: Ambient + diffuse + specular light

Phong Model

Because of the complex physical characteristics of the specular light, an empirical model based on taking the function:

$$
f(\alpha)=\cos ^{n}(\alpha)
$$

where n depends on surface properties. For:

- a perfect reflector, $n=\infty$
- very poor reflector $n=1$
- in practice use $1 \leq n \leq 200$

In general, we use:
Larger values of n for metals and other shiny surfaces
Small values of n for nonmetallic
surfaces (e.g., paper)

Illumination Models

Illumination model 3: Ambient + diffuse + specular light

Phong's empirical model controls the size of the specular highlight
incident intensity from a point light source

intensity of reflected specular light
$w(i, \lambda)$: ratio of the specularly reflected light to the incident light, as a function of the incidence angle, i, and the wavelength λ

Combining this term with model 2 :

Total $I(\lambda)=K_{\alpha}(\lambda) I_{\alpha}(\lambda)+\quad$ Ambient light +
 Intensity light $\boldsymbol{I}_{l}(\lambda) \boldsymbol{K}_{d}(\lambda) \cos (\theta)+$ Diffuse light + $I_{l}(\lambda) w(i, \lambda) \cos ^{n}(\alpha)$ Specular light

Illumination Models

Illumination model 3: Ambient + diffuse + specular light
In practice, dependence on the wavelength λ is usually omitted. In addition, $w(i, \lambda)$ is a very complex function, so it is replaced by an aesthetically or experimentally determined constant k_{s}

Illumination Models

Illumination model 3: Ambient + diffuse + specular light
$\boldsymbol{I}=\boldsymbol{K} \alpha \mathbf{I} \alpha+\boldsymbol{I}_{l} \boldsymbol{K}_{d} \cos (\theta)+\boldsymbol{I} l \boldsymbol{K}_{s} \cos ^{n}(\alpha)$

K α Ambient reflection
Kd Diffuse reflection
Ks Specular reflection
$\boldsymbol{K}_{\alpha}=0.7$
$K_{d}=0.2$
$K_{s}=0.8$

Illumination Models

Illumination model 3: Ambient + diffuse + specular light Noting that: the model becomes:

$$
\begin{aligned}
& \cos (\theta)=N . L \\
& \cos (\alpha)=R . V
\end{aligned} \quad I=K_{\alpha} I_{\alpha}+I_{l} K_{d}(N . L)+I_{l} K_{s}(\boldsymbol{R} . V)^{n}
$$

However, two objects at different distances but with the same orientation to the light source exhibit the same intensity.

The intensity of light decreases inversely as the square of the distance.
Objects farther away appear dimmer !!!!! $\quad \mathrm{I}=\frac{\mathrm{I}_{\text {source }}}{4 \pi \mathrm{~d}^{2}} \quad \begin{gathered}\mathrm{d}=\text { source } \\ \text { distance }\end{gathered}$
In practice, this model produces unrealistic variations in intensity.

Experimental model:

$$
0 \leq \mathrm{p} \leq 2 \quad \mathrm{I}=\frac{\mathrm{I}_{\text {source }}}{\mathrm{d}^{\mathrm{p}}+\mathrm{K}}
$$

© 2001 Andrés Iglesias. See: http://personales.unican.es/iglesias
K is an arbitrary constant used to prevent infinite intensity when $\mathrm{d}=0$

Illumination Models

Illumination model 4: Ambient + diffuse + specular + attenuation light
Phong, B. T. Illumination for Computer Generated Images, Communications of the ACM, Vol. 18, pp. 311-317, 1975.

Phong Model:

$$
\begin{aligned}
& I=K_{\alpha} I_{\alpha}+\frac{I_{l}}{d^{p}+K}\left(K_{d} \cos (\theta)+K_{s} \cos ^{n}(\alpha)\right) \\
& I=\text { Ambient }+ \text { attenuation }(\text { diffuse }+ \text { specular })
\end{aligned}
$$

$$
I=K_{\alpha} I_{\alpha}+\frac{I_{l}}{d^{p}+K}\left(K_{d}(N . L)+K_{s}(R . V)^{n}\right)
$$

Individual shading functions are used for each of the three primary colors Multiple light sources: their effects are to be linearly added.

Illumination Models

Polygon shading

Until now, we compute the intensity light at a single point on a surface
But, many objects are given by meshes of polygons !!!!!

© 2001 Andrés Iglesias. See: http://personales.unican.es/iglesias

Illumination Models

Polygon shading

How to compute the intensity across the polygon?

1. Compute the shade at all points: Unnecessary and impractical
2. Compute the shade at the centre and use this to represent the whole polygon: Flat shading

3. Compute shade at key points and interpolate for the rest:
Gouraud and Phong shading

Illumination Models

Polygon shading: Flat shading

Is the simplest method and the most computationally efficient. But it is also:

1. Not realistic: it exhibits polygon structure.

Illumination Models

Polygon shading: Flat shading

2. Simultaneous contrast: an area of constant brightness surrounded by a dark area is perceived to be brighter than the same area surrounded by a light area

$$
\begin{array}{|l|l|}
\hline \mathrm{I}_{\text {background }}=1 & \mathrm{I}_{\text {background }}=0 \\
\mathrm{I}_{\text {center }}=0.5 & \mathrm{I}_{\text {center }}=0.5 \\
\hline
\end{array}
$$

3. Mach banding: brightness perceived by the eye tends to overshoot at the boundaries of regions of constant intensity

Abrupt changes in the shading of two adjacent polygons are perceived to be even greater

Illumination Models

Polygon shading: Gouraud shading

Gouraud, H. Computer Display of Curved Surfaces, IEEE Transactions on Comput., C-20, pp. 623-628, 1971.

Given a polygon and a scan-line, the problem is to determine the intensity at an interior point, such as P

1. First compute the intensity values at each polygon vertex

$$
\text { Output: } I_{A}, I_{B}, I_{C}, I_{D}
$$

2. Next compute the intensity at points Q and R using linear interpolation

$$
\text { Output: } I_{Q}, I_{R}
$$

3. Finally, linearly interpolate between I_{Q} and I_{R} to get intensity at point P

$$
\text { Output: } I_{P}
$$

Illumination Models

Polygon shading: Gouraud shading

1. First compute the intensity values at each polygon vertex

We need the vertex normal vector N_{v}

avering the cross products X of all the edges that terminate at the vertex

$$
N_{v}=\frac{v \cdot v_{1} \times v \cdot v_{2}+v \cdot v_{2} \times v \cdot v_{3}+v \cdot v_{3} \times v \cdot v_{4}+v \cdot v_{4} \times v \cdot v_{1}}{N_{1}} \frac{N_{3}}{N_{4}}
$$

Illumination Models

Polygon shading: Gouraud shading

2. Next compute the intensity at points Q and R using linear interpolation

$$
\begin{aligned}
& \text { Intensity at a point } \mathrm{Q} \text { : } \\
& I_{Q}=u I_{A}+(1-u) I_{B} \\
& \text { where } u=\frac{A Q}{A B}
\end{aligned}
$$

Intensity at a point R :
$I_{R}=v I_{C}+(1-v) I_{D}$
where $v=\frac{C R}{C D}$

Illumination Models

Polygon shading: Gouraud shading

3. Finally, linearly interpolate between
I_{Q} and I_{R} to get intensity at the point P
Intensity at a point P :
$I_{R}=t I_{Q}+(1-t) I_{R}$
where $t=\frac{Q P}{Q R}$
Problems of Gouraud shading:

- This method yields only to continuity of intensity, but not continuity of changes of intensity => Mach banding
- Silhouette edges are still polygonal

Illumination Models

Polygon shading: Phong shading

It is similar to Gouraud shading, except we linearly interpolate the surface normal vector across the polygon

