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ABSTRACT

In this letter a minimax method for learning functional networks
is presented. The idea of the method is to minimize the maximum
absolute error between predicted and observed values. In addition,
the invertible functions appearing in the model are assumed to be
linear convex combinations of invertible functions. This guaran-
tees the invertibility of the resulting approximations. The learning
method leads to a linear programming problem and then: (a) the
solution is obtained in a finite number of iterations, and (b) the
global optimum is attained. The method is illustrated with several
examples of applications, including the Hénon and Lozi series. The
results show that the method outperforms standard least squares
direct methods.
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1. Introduction

Functional networks have been introduced by Castillo [3] and Castillo,
Cobo, Gutiérrez and Pruneda [5]. The main advantage of functional
networks is that they can use domain knowledge together with data
knowledge. In fact, the initial topology of the network is derived from
the properties the real world is assumed to have. Next, functional equa-
tions (see Aczél [1] and Castillo and Ruiz Cobo [2]) allow simplifying
the network to obtain a much simpler topology, where the initially
multivariate neural functions can be written in terms of unidimen-
sional neuron functions. Once the uniqueness of representation of this
networks has been analyzed and sets of linearly independent functions
have been selected for approximating the resulting neuron functions,
least squares methods allow estimating the parameters of the model,
thus, guaranteeing the global optimum value is attained. Details of this
process is given in Castillo, Cobo, Gutiérrez and Pruneda [5], pp. 61–68.

In this paper we present a new minimax method for learning func-
tional networks. The idea of the method is to minimize the maximum
absolute error between predicted and observed values. The learning
method leads to a linear programming problem and then the global
optimum is attained in a finite number of iterations.

We consider two of the most popular functional network architec-
tures: the uniqueness and the separable models.

∗ The authors are grateful to the University of Cantabria, the Dirección Gen-
eral de Investigación Cient́ıfica y Técnica (DGICYT) (project TIC96-0580), and to
Iberdrola for partial support of this research.
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2. The Uniqueness Functional Network

The functional network in Figure 1 is known as the uniqueness model,
an extension of the well known associative model. The architecture of
this functional network shows that the output z can be written, as a
function of the inputs x and y as

z = f−1
3 (f1(x) + f2(y)), (1)

Figure 1. The uniqueness functional network.

The problem of the uniqueness of representation deals with the con-
straints relating the neural functions {f1, f2, f3} and {g1, g2, g3} of two
different copies of the same functional network for them to give the
same outputs for identical inputs; that is, it is equivalent to solving the
functional equation:

z = f−1
3 (f1(x) + f2(y)) = g−1

3 (g1(x) + g2(y)),

which solution is given by (see Castillo and Ruiz-Cobo [2]):

f1(x) = ag1(x) + b; f2(y) = ag2(y) + c; f−1
3 (u) = g−1

3 (
u− b− c

a
)

(2)
where a, b and c are arbitrary constants. Thus, constants a, b and c are
not identifiable. Thus, to have uniqueness of solution we only need to
fix functions f1, f2 and f3 at a point. Note that these three conditions
allow determining the values of a, b and c.

Learning the function F (x, y) = f−1
3 [f1(x) + f2(y)] is equivalent

to learning the functions f1(x), f2(x) and f3(x). To this end, we can
approximate fs(x); s = 1, 2, 3 by

f̂s(x) =
ms∑
i=1

asiφsi(x); s = 1, 2; f̂3(x) = −
m3∑
i=1

a3iφ3i(x) (3)

where the {φsi(x); i = 1, . . . , ms}; s = 1, 2, 3 are given sets of linearly
independent functions capable of approximating fs(x); s = 1, 2, 3 to
the desired accuracy.
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To estimate the coefficients {asi; i = 1, . . . , m; s = 1, 2, 3}, we use
some data set consisting of triplets {(xj1, xj2, xj3)|xj3 = F (xj1, xj2); j =
1, . . . , n}. Thus, the error of the approximation can be measured by

ej = xj3 − f̂−1
3 (f̂1(xj1) + f̂2(xj2)); j = 1, . . . , n (4)

2.1. The Least-Squares Learning Method

This learning algorithm consists of minimizing the sum of squared er-
rors, i.e.,

∑
j e2

j . This leads to a nonlinear minimization problem which
can be solved with any standard algorithm (see, e.g., [12]). However,
we can write (1) as

x3 = f−1
3 (f1(x1) + f2(x2)) ≡ f3(x3) = f1(x1) + f2(x2) (5)

and consider the errors

ej = f̂1(xj1) + f̂2(xj2)− f̂3(xj3); j = 1, . . . , n. (6)

Then, a simple linear minimization problem results, because to estimate
the coefficients {ai; i = 1, . . . , m}, we minimize the sum of square errors

Q =
n∑

j=1

e2
j =

n∑
j=1

(
ms∑
i=1

3∑
s=1

asiφsi(xjs)

)2

(7)

subject to

f̂k(x0) ≡
mk∑
i=1

akiφki(x0) = αk; k = 1, 2, 3. (8)

where αk; k = 1, 2, 3 are arbitrary but given real constants, which are
necessary to obtain a unique solution.

Using the Lagrange multipliers we build the auxiliary function

Qλ =
n∑

j=1

(
ms∑
i=1

3∑
s=1

asiφsi(xjs)

)2

+
3∑

k=1

λk

(
mk∑
i=1

akiφki(x0)− αk

)
. (9)

The minimum is obtained by solving the system of linear equations:


∂Qλ

∂atr
= 2

n∑
j=1

(
ms∑
i=1

3∑
s=1

asiφsi(xjs)

)
φtr(xjt) + λtφtr(x0) = 0,

r = 1, . . . , m, t = 1, 2, 3
∂Qλ

∂λt
=

mt∑
i=1

atiφti(x0)− αt = 0, t = 1, 2, 3

(10)
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Table I. Data obtained from an associative operation F .

x y F (x, y) x y F (x, y) x y F (x, y)

0.6378 0.0682 0.6710 0.2141 0.6465 0.9538 0.2112 0.2679 0.8791

0.3566 0.0266 0.8108 0.1743 0.1901 0.8824 0.5349 0.4655 0.7863

0.9051 0.2706 0.4655 0.6312 0.8303 0.8543 0.9463 0.1881 0.3934

0.9941 0.7795 0.5718 0.2937 0.0980 0.8367 0.6857 0.4590 0.7006

0.6558 0.0297 0.6582 0.4716 0.8124 0.9180 0.4445 0.7618 0.9111

0.1150 0.7858 1.0208 0.2702 0.5716 0.9171 0.5800 0.3202 0.7329

0.3650 0.3010 0.8294 0.9488 0.4899 0.4834 0.4187 0.1129 0.7880

0.9547 0.7103 0.5768 0.1250 0.0148 0.8889 0.2689 0.2513 0.8581

0.4692 0.9850 0.9842 0.7973 0.4388 0.6149 0.0246 0.2232 0.9266

0.6822 0.6529 0.7617 0.7544 0.6515 0.7161 0.1022 0.3327 0.9196

0.3893 0.3505 0.8276 0.1533 0.8427 1.0293 0.9706 0.2376 0.3671

0.1985 0.1323 0.8707 0.8455 0.2227 0.5211 0.9296 0.8810 0.6858

0.3763 0.2377 0.8166 0.1323 0.4422 0.9298 0.3517 0.0144 0.8126

0.4500 0.7892 0.9183

This learning algorithm has been successfully applied in problems
such as nonlinear time series or fitting two-dimensional functions (see
[4, 7]). An analysis of the performance of this model compared with
standard feed-forward neural networks trained with the back-propagation
algorithm has been also reported in [8].

One of the main limitations of the above linear least-squares algo-
rithm is that, in some cases, the function f3 obtained from the learning
process is not invertible (note that this condition is required in (1))
and, therefore, a nonlinear least-squares algorithm is needed. In this
case, the existence of a single optimal value is not guaranteed.

For example, consider the data given in Table I, obtained from the
non-linear function F (x, y) =

√
1.3 + 0.4y2 − 0.45ex.

If we consider a polynomial family of functions φ = {1, x, x2} (i.e.,
a Taylor expansion) to approximate the neuron functions f1, f2 and f3

in (1), and apply the above linear least-squares learning algorithm we
get a non-invertible function f3(x) = −12.467x + 13.467x2. Therefore,
the nonlinear minimization procedure is needed in this case.

In the following section we present a novel alternative without these
shortcomings.

2.2. The Minimax Learning Method

In this method we minimize

max
j=1,...,n

|f̂1(x1j) + f̂2(x2j)− f̂3(x3j)| (11)
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and we approximate each of the functions fs; s = 1, 2, 3 as before. In
addition, since f3 must be invertible, we assume that the functions
in the set φ3 are invertible and the corresponding coefficients a3i; i =
1, . . . , m3 are non-negative and add up to one. This guarantees the
invertibility of the resulting approximation.

Since in linear programming problems it is customary to work with
non-negative variables, we introduce the following change of variables

asi = a∗si − b; a∗si ≥ 0; b ≥ 0; i = 1, . . . , ms; s = 1, 2; (12)

Then, the problem can be stated as the linear programming problem:

Minimize ε subject to


−
m1∑
i=1

(a∗1i − b)φ1i(x1j)−
m2∑
i=1

(a∗2i − b)φ2i(x2j)+
m3∑
i=1

a3iφ3i(x3j)+ε ≥ 0;∀j
m1∑
i=1

(a∗1i − b)φ1i(x1j)+
m2∑
i=1

(a∗2i − b)φ2i(x2j)−
m3∑
i=1

a3iφ3i(x3j)+ε ≥ 0;∀j
m3∑
i=1

a3i = 1

a∗si ≥ 0, ∀i, s = 1, 2; a3i ≥ 0, ∀i; b ≥ 0
(13)

For example, consider again the data in Table I and the family of
functions φ = {1, x, x2}. Solving the linear programing problem (13),
we get the functions f̂1(x) = −0.382−0.382x−0.381x2, f̂2(y) = 1.225+
0.0077y + 0.391y2, and f̂3(x) = x2, where f3(x) can be easily inverted
thus obtaining the approximate model F̂ (x, y) = f−1

3 (f1(x) + f2(y)) =√
−0.382− 0.382x− 0.381x2 + 1.225 + 0.0077y + 0.391y2. The obtained

errors are shown in Figure 2. Figures 3 and 4 show the quality of the
obtained model not only on the training set, but on the whole domain
(0, 1)× (0, 1).

Figure 2. Errors on the 40 training samples shown in Table I.
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Figure 3. Real (left) and estimated (right) functions.

Figure 4. Error surface.

2.3. Comparison of Least-Squares and Minimax Algorithms

With the aim of comparing the performance of least-squares and mini-
max learning algorithms, we shall consider a time series from the Hénon
chaotic map which has been previously analyzed using both functional
networks (trained with the least-squares algorithm [3, 4]), and stan-
dard feed-forward neural networks (trained with the backpropagation
algorithm [11]). For instance, Castillo and Gutiérrez [4] showed that
functional networks with polynomial or trigonometric neuron functions
trained with the least-squares method outperform neural networks with
sigmoidal functions. In the following we show that even better results
can be obtained using the minimax algorithm.

The Hénon map is given by the following iterative equation (see [9]):

xn+1 = 1− ax2
n + 0.3xn−1. (14)

It can be shown that, depending on the values of the parameter a, the
system exhibits different behaviors, ranging from periodic regimes to
deterministic chaos, where orbits are sensible to small perturbations
making more difficult the analysis of the model. In particular we con-
sider a chaotic time series consisting of 500 points generated from the
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initial conditions x0 = 0.1, x1 = 0.3 for the parameter value a = 1.4
(see Figure 5). The first hundred iterations are used for the training
process and the remaining data for validating, or testing, the obtained
model.

Figure 5. Time series of a chaotic orbit of the Hénon map.

If we choose a polynomial family φ = {1, x, x2}, for all the neuron
functions, then we get the exact Hénon map given in (14). In this
case we have used some information about the structure of the un-
derlying model, i.e., the most convenient family of functions for the
polynomial dynamics of the time series. However, if we use a different
family for the neuron functions, such as a Fourier expansion given by
φ = {sin(x), cos(x), . . . , sin(m x), cos(m x)}, then we obtain an ap-
proximate model. Table II shows the performance of the least-squares
and the minimax learning algorithm for obtaining an approximate
model for different choices of m. The maximum errors of the resulting
approximate models trained over a 100-point time series are shown
in Table II. Since the number of involved parameters is large, it is
important to check whether the resulting models overfit to the training
sample. Thus, we evaluate the model with the following 400 terms in
the Hénon series. In all the cases, the train and test errors are very
similar indicating that no overfitting is produced during the training
process.

Note that the difference between the errors obtained with the least-
squares and the minimax algorithms shown in Table II is of two orders
of magnitude indicating a great difference between both methods. For
instance, Figure 6 shows the training errors in the case m = 3 obtained
with both algorithms. Note that the errors are more uniform for the
minimax algorithm, since the maximum error is being minimized in
this case.
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Table II. Performance of several Fourier functional networks for the Hénon time
series using the least-squares and the minimax learning algorithms.

Maximum Training Error Maximum Test Error

Network SSE Minimax SSE Minimax

m=2 0.279 3.40 10−3 0.288 4.55 10−3

m=3 0.048 6.42 10−4 0.049 2.72 10−4

m=4 6.36 10−3 2.14 10−5 5.97 10−3 3.48 10−5

m=5 9.17 10−4 1.72 10−6 9.81 10−4 5.56 10−6

Figure 6. Training errors en for the (a) least-squares and (b) minimax learning
algorithms.

3. The Separable Functional Network

Another interesting family of functional network architectures with
many applications is the so called separable functional networks (see
[4]), which has associated a functional expression which combines the
separate effects of input variables. For the case of two inputs, x and y,
and one output, z, we have:

z = F (x, y) =
n∑

i=1

fi(x)gi(y). (15)

For illustrative purposes, we consider the simplest architecture from
this family, which neglects double interactions by separating the con-
tributions of each of the inputs in the form

z = F (x, y) = f(x) + g(y). (16)

Note that this functional corresponds to (15) with n = 2 and g1 = f2 =
1.
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In this case, the uniqueness of representation problem among the
functions of two different representations of (16), say,

F (x, y) = f1(x) + g2(y) = f∗1 (x) + g∗2(y). (17)

gives the constraints (see [4]):

f∗1 (x) = f1(x)− c, g∗2(y) = g2(y) + c,

where c is an arbitrary constant. Therefore, during the learning process,
an initial functional condition for one of the functions have to be given
in order to have a unique representation of the functional network.

3.1. Learning a Separable Functional Network

A least-squares learning method similar to the one presented in Section
2.1 is also available for separable networks. In this case, the func-
tions f and g in (16) have to be approximated by considering a linear
combination of known functions from a given family:

f̂(x) =
m1∑
j=1

a1jφ1j(x), ĝ(x) =
m2∑
j=1

a2jφ2j(x),

Then, the error can be measured by

ei = x3i − f̂(x1i)− ĝ(x2i); i = 1, . . . , n. (18)

Thus, to find the optimum coefficients we minimize the sum of
squared errors

Q =
n∑

i=1

e2
i =

n∑
i=1


x3i −

2∑
k=1

mk∑
j=1

akjφkj(xki)




2

. (19)

subject to the condition

f̂(x0) ≡
m1∑
j=1

a1jφ1j(x0) = α0, (20)

where x0 and α0 are given constants.
Then, the minimum can be obtained by solving the following system

of linear equations, where the unknowns are the coefficients akj and the

Minimax.tex; 4/01/1999; 13:02; p.10



10 E. Castillo, J. M. Gutiérrez, A. Cobo and C. Castillo.

multiplier λ:


∂Qλ

∂a1r
= −2

n∑
i=1


x3i −

2∑
k=1

mk∑
j=1

akjφkj(xki)


 φ1r(x1i) + λφ1r(x0) = 0,

r = 1, . . . , m1,

∂Qλ

∂a2r
= −2

n∑
i=1


x3i −

2∑
k=1

mk∑
j=1

akjφkj(xki)


 φ2r(x2i) = 0,

r = 1, . . . , m2,

∂Qλ

∂λ
=

m1∑
j=1

a1jφ1j(x0)− α0 = 0.

(21)
The minimax algorithm can also be easily adapted for this new

architecture. In this method we minimize

max
j=1,...,n

|x3j − (f̂1(x1j) + f̂2(x2j))|. (22)

As before, the problem we have the linear programming problem:

Minimize ε subject to

−x3j +

m1∑
i=1

(a∗1i − b)φ1i(x1j) +
m2∑
i=1

(a∗2i − b)φ2i(x2j) + ε ≥ 0, ∀j

x3j −
m1∑
i=1

(a∗1i − b)φ1i(x1j)−
m2∑
i=1

(a∗2i − b)φ2i(x2j) + ε ≥ 0, ∀j
a∗si ≥ 0, ∀i, s = 1, 2; a3i ≥ 0, ∀i b ≥ 0

(23)

3.2. Example: A Non-Differentiable Map

With the aim of illustrating the performance of the above learning al-
gorithms with maps involving non-differentiable functions, we consider
the Lozi map [10]:

xn = 1− 1.7 |xn−1|+ 0.5 xn−2. (24)

We have considered a 100-point time series obtained with the initial
conditions x0 = 0.5 and x1 = 0.7 and trained a separable functional
network using both the least-squares and minimax algorithms. We ob-
tained similar results to the previous example. For instance, Figure 7
shows the errors obtained when considering a m = 4 Fourier family for
the functions f and g. From this figure, we can easily check how the
minimax method produces more uniform errors, since the maximum
error is being minimized.
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Figure 7. Training errors en for the (a) least-squares and (b) minimax learning
algorithms.
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