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ABSTRACT

The paper presents a new efficient method for uncertainty propagation in discrete
Bayesian networks in symbolic, as opposed to numeric, form, when considering some
of the probabilities of the Bayesian network as parameters. The algebraic structure
of the conditional probabilities of any set of nodes, given some evidence, is char-
acterized as ratios of linear polynomials in the parameters. We use this result to
carry out these symbolic expressions efficiently by calculating the coefficients of the
polynomials involved, using standard numerical algorithms. The numeric canonical
components method is proposed as an alternative to symbolic computations, gaining
in speed and simplicity. It is also shown how to avoid redundancy when calculat-
ing the numeric canonical components probabilities using standard message-passing
methods. The canonical components can also be used to obtain lower and upper
bounds for the symbolic expression associated with the probabilities. Finally, we
analyze the problem of symbolic evidence, which allows answering multiple queries
regarding a given set of evidential nodes. In this case, the algebraic structure of
the symbolic expressions obtained for the probabilities are shown to be ratios of
non-linear polynomial expressions. Then we can perform symbolic inference with
only a small set of symbolic evidential nodes. The methodology is illustrated by
examples.

Key Words: Symbolic calculus, Sensitivity analysis, Propagation of uncertainty,
Canonical components.

1 Introduction

Bayesian networks are powerful tools both for graphically representing the relation-
ships among a set of variables and for dealing with uncertainties in expert systems.
A key problem in Bayesian networks is evidence propagation, that is, obtaining the
posterior distributions of variables when some evidence is observed. Several effi-
cient methods for propagation of evidence in Bayesian networks have been proposed
in recent years. Exact methods exploit the independence structure contained in
the network to efficiently propagate uncertainty (see, for example, Kim and Pearl
(1983), Lauritzen and Spiegelhalter (1988), Jensen, Olesen, and Andersen (1990),
Pearl (1988), and Shachter, Andersen, and Szolovits (1994)). Stochastic simulation
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constitute an interesting alternative in highly connected networks, where exact al-
gorithms may become inefficient (Pearl (1986), Henrion (1988), Shachter and Peot
(1990a), Fung and Chang (1990), Bouckaert, Castillo, and Gutiérrez (1996)). Re-
cently, search-based approximation algorithms, which search for high probability con-
figurations through a space of possible values, have emerged as an alternative to the
above methods in special cases as, for example, in Bayesian networks with extreme
probabilities (Poole (1993), Santos and Shimony (1994), Li and D’Ambrosio (1995)).

However, all exact and approximate methods require that the joint probabilities
of the nodes be specified numerically, that is, all the parameters must be assigned
numeric values. In practice, exact numeric specification of these parameters may not
be available or it may happens that the subject matter specialists can specify only
ranges of values for the parameters rather than their exact values. In such cases,
there is a need for symbolic methods which are able to deal with the parameters
themselves, without assigning them numeric values.

Symbolic propagation leads to solutions which are expressed as functions of the
parameters in symbolic form. Thus, the answers to general queries can be given
symbolically in terms of the parameters and the answers to specific queries can then
be obtained by plugging the values of the parameters in the solution which is given
in symbolic form, without need to redo the propagation. Furthermore, symbolic
propagation allows one to study the sensitivity of the results to changes in parameter
values with little additional computational effort.

Recently, two main approaches have been proposed for symbolic inference in
Bayesian networks. The symbolic probabilistic inference algorithm (SPI) (Shachter,
D’Ambrosio, and DelFabero (1990b), Li and D’Ambrosio (1994)) is a goal directed
method which performs only those calculations that are required to respond to queries.
Symbolic expressions can be obtained by postponing evaluation of expressions, main-
taining them in symbolic form. On the other hand, Castillo, Gutiérrez and Hadi
(1995a, 1995b, 1996) perform symbolic calculations using slightly modified versions of
standard numerical propagation algorithms by first replacing the values of the initial
probabilities by symbolic parameters, then using computer packages with symbolic
computational capabilities (such as, Mathematica and Maple) to propagate uncer-
tainty. As opposed to SPI algorithm, this method is not goal oriented, but allows us
to obtain symbolic expressions for all the nodes in the network.

However, both methods suffer from the same problem: they need to use special
programs, or extra computational efforts implementing the necessary code, to carry
out the symbolic computations. Furthermore, computing and simplifying symbolic
expressions is a computationally expensive task, and it becomes increasingly ineffi-
cient when dealing with large networks, or large numbers of symbolic parameters. In
this paper we present an efficient approach to symbolic propagation that takes advan-
tage of the polynomial structure of the probabilities of the nodes to avoid symbolic
computations. The main idea of the method is obtaining the symbolic expressions
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through a numerical algorithm to compute the coefficients of the associated polyno-
mials. Then, all the computations are carried out numerically, avoiding the use of the
computationally expensive symbolic manipulations. The main findings of this paper
are the following:

• The algebraic structure of initial or updated conditional probabilities of events,
given the evidence, when considering as parameters several probabilities in the
Bayesian network has been characterized as ratios of linear polynomials in each
one of the parameters.

• Taking advantage of this structure of the probabilities, a new method which
obtains symbolic expression of the parameters by performing only numerical
computations is introduced. Each symbolic query can be answered by perform-
ing numeric computations (numeric canonical components) using any of the
mentioned above standard methods. Furthermore we show that, when using
message-passing algorithms to obtain the numerical values associated with the
canonical components, some of the messages are common to several compo-
nents. Consequently, important savings in computation time can be obtained
by avoiding redundant calculations.

• The upper and lower bounds for the symbolic expressions for the probabilities
are attained at canonical cases. Thus, calculating these values does no require
extra computation effort, because it reduces to the simple operation of finding
the maximum and minimum values and can be done during the process of calcu-
lating these expressions. These bounds provide a useful information about the
sensitivity of certain parameters in the probability of the nodes in the network.

• When introducing symbolic evidence in the network, the symbolic expressions
for the conditional probabilities are now ratios of non-linear polynomials on
the symbolic probabilities and symbolic evidential parameters. Then, symbolic
propagation of symbolic evidence can only be efficiently performed in cases with
a small number of symbolic evidential nodes.

The rest of the paper is organized as follows. Section 2 gives the notation and
the basic framework. In Section 3 we present some theoretical results characterizing
the algebraic structure of the probabilities when dealing with symbolic parameters.
In Section 4 we take advantage of this algebraic structure to introduce the numeric
canonical components method for efficient symbolic propagation of uncertainty. The
problem of finding lower and upper bounds for the symbolic expressions corresponding
to the probabilities of the nodes is analyzed in Section 5. Section 6 introduces symbolic
evidence and illustrates how to obtain symbolic expression in this situation using the
previous method.
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2 Notation

Let X = {X1, X2, . . . , Xn} be a set of n discrete variables, each can take values
in the set {0, 1, . . . , ri}. A Bayesian network over X is a pair (G, P ), where the
graph G is a directed acyclic graph (DAG) with one node for each variable in X
and P = {P1(x1|π1), . . . , Pn(xn|πn)} is a set of n conditional probability distributions
(CPD), one for each variable, where Πi is the set of parents of node Xi in G. Using
the chain rule, the joint probability distribution (JPD) of X can be written as the
product of the above conditional probabilities, that is,

P (x1, x2, . . . , xn) =
n∏

i=1

Pi(xi|πi). (1)

Some of the CPD in (1) can be specified numerically and others symbolically, that
is, Pi(xi|πi) can be a parametric family. When Pi(xi|πi) is a parametric family, we
refer to the node Xi as a symbolic node. A convenient choice of the parameters in
this case is given by

θijπ = Pi(Xi = j|Πi = π), j ∈ {0, . . . , ri},

where π is any possible instantiation of the parents of Xi. Thus, the first subscript in
θijπ refers to the node number, the second subscript refers to the state of the node,
and the remaining subscripts refer to the parents’ instantiations. Since

∑ri
j=0 θijπ = 1,

for all i and π, any one of the parameters can be written as one minus the sum of all
others. For example, θiriπ is

θiriπ = 1−
ri−1∑
j=0

θijπ. (2)

To simplify the notation in cases where a variable Xi does not have parents, we use
θij to denote Pi(Xi = j), j ∈ {0, . . . , ri}.

For illustrative purpose, we shall use the following example.

Example 1 Consider a discrete Bayesian network consisting of the set of variables
X = {X1, . . . , X8} with the relationships represented in the DAG G, given in Figure
1. The structure of G implies that the JPD, P (x), of the set of nodes can be written,
in the form of (1), as:

P (x) = P (x1)P (x2|x1)P (x3|x1)P (x4|x2, x3)P (x5|x3)P (x6|x4)P (x7|x4)P (x8|x5). (3)

For simplicity, but without loss of generality, we assume that all nodes represent
binary variables with values in the set {0, 1}. This and the structure of the probability
distribution in (3) imply that the JPD of the eight variables depends on 34 parameters
Θ = {θijπ}. These parameters are given in Table 1. Note, however, that only 4 of the
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X1

X2 X3

X5X4

X6 X7 X8

parameters are given in symbolic form; the rest are assigned fixed numerical values.
Therefore, in this example, the only symbolic nodes are X3 and X6. Moreover, only
two of these 4 symbolic parameters are free (because the probabilities in each CPD
must add up to one).

Figure 1: Example of a Bayesian Network.

In this situation, the symbolic propagation algorithms mentioned above allow us
to obtain the marginal, or conditional, probabilities of the nodes in the network as
functions of the free parameters θ300 and θ600. For illustrative purposes Table 2 shows
the symbolic expressions corresponding to the initial probabilities and Table 3 shows
the conditional probabilities, given the evidence {X2 = 1, X5 = 1}.

Tables 2 and 3 can then be used to answer several queries regarding initial or
evidential probabilities associated with the network in Figure 1 simply by plugging
in specific values for the parameters. For example, in Figure 2 we show the resulting
conditional probabilities for the nodes in the network, given the evidence {X2 =
1, X5 = 1}, for the values of the parameters θ300 = 0.4 and θ600 = 0.8. These
probabilities can be obtained from the information in Table 3 by simple substitution.
All this results have been obtained using the symbolic package Mathematica, with
the code generated by the program X-pert SymbolicTM (Castillo et al. (1996)), an
inference symbolic code generator for Mathematica and Maple programs. However,
the same results can be carried out using the SPI algorithm (Shachter et al. 1990b).

3 Algebraic Structure of Probabilities

An examination of the probabilities given in Tables 2 and 3 reveals the fact that
there is a common structure underlying the symbolic expressions associated with the
probabilities of the nodes. In this section, we characterize the algebraic structure of
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X Parameters

X = 0 X = 1

X1 θ10 = P (X1 = 0) = 0.2 θ11 = P (X1 = 1) = 0.8

X2 θ200 = P (X2 = 0|X1 = 0) = 0.3 θ210 = P (X2 = 1|X1 = 0) = 0.7
θ201 = P (X2 = 0|X1 = 1) = 0.5 θ211 = P (X2 = 1|X1 = 1) = 0.5

X3 θ300 = P (X3 = 0|X1 = 0) θ310 = P (X3 = 1|X1 = 0)
θ301 = P (X3 = 0|X1 = 1) = 0.5 θ311 = P (X3 = 1|X1 = 1) = 0.5

X3 θ4000 = P (X4 = 0|X2 = 0, X3 = 0) = 0.1 θ4100 = P (X4 = 1|X2 = 0, X3 = 0) = 0.9
θ4001 = P (X4 = 0|X2 = 0, X3 = 1) = 0.3 θ4101 = P (X4 = 1|X2 = 0, X3 = 1) = 0.7
θ4010 = P (X4 = 0|X2 = 1, X3 = 0) = 0.8 θ4110 = P (X4 = 1|X2 = 1, X3 = 0) = 0.2
θ4011 = P (X4 = 0|X2 = 1, X3 = 1) = 0.4 θ4111 = P (X4 = 1|X2 = 1, X3 = 1) = 0.6

X5 θ500 = P (X5 = 0|X3 = 0) = 0.3 θ510 = P (X5 = 1|X3 = 0) = 0.7
θ501 = P (X5 = 0|X3 = 1) = 0.1 θ511 = P (X5 = 1|X3 = 1) = 0.9

X6 θ600 = P (X6 = 0|X4 = 0) θ610 = P (X6 = 1|X4 = 0)
θ601 = P (X6 = 0|X4 = 1) = 0.9 θ611 = P (X6 = 1|X4 = 1) = 0.1

X7 θ700 = P (X7 = 0|X4 = 0) = 0.3 θ710 = P (X7 = 1|X4 = 0) = 0.7
θ701 = P (X7 = 0|X4 = 1) = 0.6 θ711 = P (X7 = 1|X4 = 1) = 0.4

X8 θ800 = P (X8 = 0|X5 = 0) = 0.2 θ810 = P (X8 = 1|X5 = 0) = 0.8
θ801 = P (X8 = 0|X5 = 1) = 0.4 θ811 = P (X8 = 1|X5 = 1) = 0.6

Table 1: The CPD required to define the JPD of X1, . . . , X8 with four symbolic parameters θ300,
θ310, θ600, and θ610.

Xi P (Xi = 0)

X1 0.2
X2 0.46
X3 0.4 + 0.2 θ300

X4 0.424− 0.056 θ300

X5 0.18 + 0.04 θ300

X6 0.5184 + 0.0504 θ300 + 0.424 θ600 − 0.056 θ300 θ600

X7 0.4728 + 0.0168 θ300

X8 0.364− 0.008 θ300

Table 2: Initial marginal probability distributions of the nodes.
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X1

0
1

0.264
0.736

0
1

0.000
1.000

0
1

0.413
0.587

0
1

0.000
1.000

0
1

0.400
0.600

0
1

0.358
0.642

0
1

0.864
0.136

0
1

0.493
0.507

X2 X3

X4 X5

X6 X7 X8

Xi P (Xi = 0|X2 = 1, X5 = 1)

X1 (0.126− 0.028 θ300)/(0.446− 0.028 θ300)
X2 0
X3 (0.140 + 0.098 θ300)/(0.446− 0.028 θ300)
X4 (0.164− 0.021 θ300)/(0.446− 0.028 θ300)
X5 0
X6 (0.253− 0.006 θ300 + 0.164 θ600 − 0.021 θ300 θ600)/(0.446− 0.028 θ300)
X7 (0.218− 0.010 θ300)/(0.446− 0.028 θ300)
X8 (0.178− 0.011 θ300)/(0.446− 0.028 θ300)

Table 3: Conditional probabilities of the nodes, given e = {X2 = 1, X5 = 1}.

Figure 2: Marginal posterior probability distributions of the nodes given the evidence
e = {X2 = 1, X5 = 1} and the symbolic parameter’s values θ300 = 0.4, θ600 = 0.8. Light rect-
angles show the evidence nodes.
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these expressions as functions of the symbolic parameters. We start with the case of
marginal probabilities and later we analyze the case of conditional probabilities.

Theorem 1 The prior probability of any instantiation, (x1, . . . , xn), of the nodes in
the network is a polynomial in the symbolic parameters of degree less than or equal
to the number of symbolic nodes. However, it is a first degree polynomial in each
parameter.

Proof: According to (1) the probability of an instantiation (x1, . . . , xn) is

P (x1, . . . , xn) =
n∏

i=1

P (xi|πi) =
n∏

i=1

θixiπi
.

Note that all the parameters appearing in the above product are associated with dif-
ferent variables, and some of them may be specified numerically. Thus, P (x1, . . . , xn)
is a monomial of degree less than or equal the number of symbolic nodes. Note
that P (x1, . . . , xn) may become a polynomial when considering only the set of free
parameters (see (2)). This simply requires replacing the parameters θiriπi

by

1−
ri−1∏
j=0

θijπi
.

Therefore, we create as many different monomials as the cardinality of Xi, but each
of the resulting monomials is still first degree in each parameter.

Corollary 1 The prior marginal probability of any set of nodes Y ⊂ X is a polyno-
mial in the parameters of degree less than or equal to the number of symbolic nodes.
However, it is a first degree polynomial in each parameter.

Proof: For simplicity, assume Y = {X1, . . . , Xr}. Then P (y) is the sum of the
probabilities of a subset of instantiations:

P (y) = P (x1, . . . , xr) =
∑

xr+1,...,xn

P (x1, . . . , xr, xr+1, . . . , xn) =
∑

xr+1,...,xn

n∏
i=1

θixiπi

Therefore, the prior marginals of any node are also polynomials of the symbolic
parameters of first degree in each parameter.

For example, as can be seen in Table 2, the prior marginal probability of all nodes
in the Bayesian network of Example 1 are polynomials of first degree in each of the
free symbolic parameters θ300 and θ600.

Corollary 2 The posterior marginal probability of any set of nodes Y , i.e., the condi-
tional of the set Y given some evidence E = e, is a ratio of two polynomial functions of
the parameters. Furthermore, the denominator polynomial is the same for all nodes.
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Proof: We have:

P (y|e) =
P (y, e)

P (e)
.

Using Corollary 1, both the numerator and the denominator are first degree polyno-
mials on the symbolic parameters, since they are marginal probabilities of a subset
of nodes of the network.

Note that, in the above expressions, the denominator polynomial is the same for
any conditional probability P (y|e), for a given evidence set E = e. Then, in prac-
tical situations and for implementation purposes, it is more convenient to calculate
and store only the numerator polynomials for each node and calculate the common
denominator polynomial by normalization.

For example, the probabilities in Table 3 show that the posterior distribution of
the nodes, given the evidence {X2 = 1, X5 = 1}, is a ratio of two polynomials, and
that the denominator polynomial is the same for all nodes.

Once we know the structure of the marginal and conditional probabilities we can
exploit it to obtain symbolic results in an efficient way.

4 Efficient Symbolic Inference

Suppose that we are dealing with a set of symbolic nodes {Xi1 , . . . , Xis} ⊂ X. Let
Θ = {Θ1, . . . , Θs} be the set of symbolic parameters included in the network, where
Θk stands for the symbolic parameters associated with the symbolic node Xik , with
k = 1, . . . , s. Corollaries 1 and 2 guarantee that the conditional probabilities of a
typical node Xi, given some evidence E = e, P (Xi = j|E = e), j = 0, . . . , ri, is
either a polynomial or a ratio of two polynomials. Theorem 1 guarantees that each
monomial forming these polynomials contains at most one parameter of Θk, for each
k = 1, . . . , s. Therefore, we build the set of feasible monomials, M , by taking the
cartesian product of the sets of symbols corresponding to the different symbolic nodes
forming Θ. Then, we have

M = Θ1 × . . .×Θs. (4)

Thus, the general form of these polynomials is:

∑
mr∈M

crmr, (5)

where cr is the numerical coefficient associated with the monomial mr ∈M .
In this section, we develop a new method, which we refer to as the numeric

canonical components, for computing the coefficients cr by instantiating the symbolic
parameters, Θ, and computing the resulting numerical probabilities. Then, once the
coefficients have been obtained, the polynomials and, hence, the probabilities P (xi|e)
can be easily obtained.
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We will also show that there are some analogies between the canonical components
symbolic method and the conditioning algorithms used to propagate uncertainty in
multiply-connected networks (see, for example, Pearl (1988)). Both methods perform
several numerical propagations associated with different instantiations of certain pa-
rameters in the network to achieve the desired solution.

4.1 Numeric Canonical Components Method

Let M be the set of monomials needed to compute P (Xi = j|E = e) for j = 0, . . . , ri.
Let m be the number of monomials in M . From (5), the polynomial needed to
compute P (Xi = j|E = e) is of the form:

P (Xi = j|E = e) ∝
∑

mk∈M

cij
k mk = pij(Θ), j = 0, . . . , ri. (6)

The term pij(Θ) represents the unnormalized probability P (Xi = j|E = e). Thus,
pij(Θ) can be written as a linear combination of the monomials in M . Our objective
now is to compute the coefficients cij

k .
If the parameters Θ are assigned numerical values, say θ, then pij(θ) can be

obtained by replacing Θ by θ and using any numeric propagation method to compute
P (Xi = j|E = e, Θ = θ). Similarly, the monomials mk takes a numerical value, the
product of the parameters involved in mk. Thus, we have

∑
mk∈M

cij
k mk = pij(θ). (7)

Note that in (7) all the monomials mk, and the unnormalized probability pij(θ)
are known numbers, and the only unknowns are the coefficients cij

k , k = 1, . . . , m. To
compute these coefficients, we need to construct any set of m independent equations
each is of the form (7). These equations can be obtained using m sets of distinct
instantiations Θ. Let these values be denoted by C = {θ1, . . . , θm}. We refer to
the elements in C as the canonical components. Let Tij be the m ×m non-singular
matrix, whose ik-th element is the value of the monomial mk obtained by replacing Θ
by θi, the i-th instantiation of Θ. We refer to the matrix Tij as the canonical matrix
associated with the set of canonical components C. Let

cij =




cij
1
...

cij
m


 , and pij =




pij(θ1)
...

pij(θm)


 . (8)

From (7) the m independent linear equations can be written as

Tij cij = pij, (9)
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which implies that the vector of coefficients cij is given by

cij = T−1
ij pij. (10)

The values of the coefficients in cij can then be substituted in (6) and the unnormal-
ized probability pij(Θ) is expressed as a function of Θ.

Therefore, Equations (6), (8) and (9) provide an efficient algorithm for symbolic
propagation that does not require any symbolic computation. We refer to this al-
gorithm as the numeric canonical components method (NCCM). This algorithm is
summarized as follows:

Algorithm 1 (Numeric Canonical Components):

1. Construct m sets of instantiations of Θ: θ1, . . . , θm, providing m independent
linear equations in cij, when substituting the values of θi in (7).

2. Calculate the m×m non-singular matrix Tij whose ik-th element is the value
of the monomial mk obtained by replacing Θ by θi, the i-th instantiation of Θ.

3. Compute the vector of probabilities pij in (8) using any standard numerical
propagation method.

4. Solve the linear system of equations (9) to obtain the desired coefficients cij.

5. Substitute the obtained values of cij in (6) and normalize to obtain the symbolic
expression for the probabilities P (Xi = j|E = e).

Note that, Step 3 of Algorithm 1 requires the use of a numeric propagation method
to propagate uncertainty as many times as the number of possible combinations of
the symbolic parameters. This means that the number of numerical propagations
increases combinatorially with the number of symbolic parameters. This problem is
also present in other propagation algorithms. For example, conditioning algorithms
suffer from this problem with respect the number of nodes in the cutset. Therefore,
the role of symbolic nodes in the canonical components symbolic method is similar
to the role of conditioning nodes in the conditioning algorithms.

Algorithm 1 requires calculating and solving a linear system of equations. In the
following, we show that by imposing certain conditions in the symbolic parameters,
it is always possible to find a set of canonical components whose corresponding Tij

matrix is the identity matrix. Thus, the symbolic expressions associated with the
probabilities can be obtained directly without the need for solving the linear system
of equations (9).

Consider a typical symbolic node Xi with the associated parameters θijπ. Some of
these parameters may be specified numerically, and some may be given in symbolic
form. Assume that a subset of the parameters θijπ is given in symbolic form for a given
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instantiation π of Πi, and the parameters for all other instantiations are numeric. For
example, the Bayesian network of Example 1 satisfies this assumption because the
symbolic parameters corresponding to each of the symbolic nodes are associated with
the same instantiation of the set of parents (see Table 2). For example, X1 is the only
parent of the symbolic node X3, and both the symbolic parameters θ300 and θ310 are
associated with the same instantiation of X1: X1 = 0.

In this situation, the canonical components resulting from considering extreme
values for the symbolic parameters produce an identity canonical matrix Tij. The
next theorem states this fact.

Theorem 2 Given a set of symbolic nodes {Xi1 , . . . , Xis} with associated symbolic
parameters Θ = {Θ1, . . . , Θs}, where Θk = {θikjπk

, j = 0, . . . , rik}, and πk is a given
instantiation of Πik , then, the canonical matrix associated with the set of canonical
components C defined by the cartesian product C = C1 × . . .× Cn, where

Ck = {{θik0πk
= 1, θik1πk

= 0, . . . , θikrik
πk

= 0}, . . . , {θik0πk
= 0, θik1πk

= 0, . . . , θikrik
πk

= 1}}

is the m×m identity matrix.

Proof: From (4), the set of monomials mk is given by: M = Θ1× . . .×Θs. In this
case, using the assumption Θk = {θikjπk

, j = 0, . . . , rik}, we have:

M = {{θi10π1 , . . . , θi1ri1
π1} × . . .× {θis0πs , . . . , θi1risπs}}.

Therefore, any instantiation of the symbolic parameters in C annihilates all the mono-
mials in M but one. Let θ ∈ C be a typical canonical component. Then, all the
parameters in Θk are zero, but one, θikjkπk

, for k = 1, . . . , m. Thus, substituting
this numerical values in the monomials in M , the monomial θi1j1π1 . . . θisjsπs takes
the value 1; the rest of monomials vanish. Therefore, every row in the matrix Tij

contains one element with the value 1 and all the others are 0. Finally, the process
of the construction of M and C guarantees that the matrix Tij is the identity matrix
of order m×m.
Then, the solution cij of the system of linear equations (9) becomes:

cij = pij. (11)

Therefore, in this situation, the Algorithm 1 can be simplified as follows:

Algorithm 2 (Modified Numeric Canonical Components):

1. Construct m sets of instantiations of Θ in the form indicated in Theorem 2,
C = {θ1, . . . , θm}.

2. Compute the vector of probabilities pij = (pij(θ1), . . . , pij(θm)), using any stan-
dard propagation numeric method.
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3. Set cij = pij, substitute cij in (6), and normalize to obtain the symbolic ex-
pression for the probabilities P (Xi = j|E = e).

Note that with the assumption considered in Theorem 2, the canonical components
allow us to perform symbolic propagation in a straightforward and efficient way. If the
assumption given in Theorem 2 is not satisfied, then the resulting canonical matrix
associated with the canonical set of parameters C may be different from the identity
matrix, and it will be necessary to solve the system of equations (10) to obtain the
polynomial coefficients.

The performance of this algorithm is illustrated in the following section with an
example.

4.2 Numeric Canonical Components by Example

Consider the network in Figure 1 and suppose that we are given the evidence e =
{X2 = 1, X5 = 1}. We wish to assess the influence influence of the symbolic pa-
rameters on the conditional probabilities of the remaining nodes. In this example
the set of symbolic nodes is {X3, X6} and the set of parameters is Θ = {Θ3, Θ6}=
{{θ300, θ310}, {θ600, θ610}} (see Table 1). Then, the set of feasible monomials is given
by

M = Θ3 ×Θ6

= {θ300θ600, θ300θ610, θ310θ600, θ310θ610}
= {m1, m2, m3, m4}.

Then, for any node Xi in the network, we know that the unnormalized conditional
probability P (Xj = j|e) is a polynomial function of the form

P (Xj = j|e) ∝
4∑

k=1

cij
k mk = pij(Θ). (12)

Thus, our aim consists of obtaining the coefficients {cij
k ; k = 1, . . . , 4} for each node

Xi and each possible value j. To this aim, we consider the canonical components
associated with the symbolic set of parameters Θ. In this case, given that we are
dealing with binary variables, there are only two possible canonical combinations of
the parameters in Θi, {1, 0} and {0, 1}. Then, we have the following set of canonical
components:

C = = {{1, 0}, {0, 1}} × {{1, 0}, {0, 1}}
= {{1, 0; 1, 0}, {1, 0; 0, 1}, {0, 1; 1, 0}, {0, 1; 0, 1}}
= {c1, c2, c3, c4}.
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Then, by instantiating the symbolic parameters to the corresponding values given in
its canonical components all the monomials appearing in (12) become either 0 or 1.
Then, we obtain an expression that only depends on the coefficients cij:

pij(Θ = c1) = cij
1 , pij(Θ = c2) = cij

2 ,

pij(Θ = c3) = cij
3 , pij(Θ = c4) = cij

4 .

Thus, in this case, the matrix Tij is the identity matrix because all the symbolic
parameters of the symbolic nodes are associated with the same instantiation of the
set of parents. Then, we have:




cij
1

cij
2

cij
3

cij
4




=




pij(c1)
pij(c2)
pij(c3)
pij(c4)




. (13)

It is interesting to point out here that the feasible set (the set generated by all
feasible parameter values) for the probabilities of any set of nodes is the convex hull
generated by the canonical probabilities.

In Figure 3 we show the unnormalized conditional probabilities pij(ck) of all nodes,
given the evidence e = {X2 = 1, X5 = 1}, associated with the four possible canonical
components. Using these values we can obtain all the rational functions in Table 3.
For instance, from Figure 3 we get the following values for the node X6:




c60
1

c60
2

c60
3

c60
4




=




0.390
0.247
0.418
0.254




, (14)

and 


c61
1

c61
2

c61
3

c61
4




=




0.028
0.171
0.029
0.193




, (15)

that is, the coefficients of the numerator polynomials for X6 = 0 and X6 = 1, respec-
tively. Then, substituting these values in (12) we obtain:

P (X6 = 0|e) ∝ 0.390 θ300θ600 + 0.247 θ300θ610 + 0.418 θ310θ600 + 0.254 θ310θ610.

P (X6 = 1|e) ∝ 0.028 θ300θ600 + 0.171 θ300θ610 + 0.029 θ310θ600 + 0.193 θ310θ610.

Adding both polynomials we obtain the denominator normalizing polynomial, that
is,

14






c60
1

c60
2

c60
3

c60
4




+




c61
1

c61
2

c61
3

c61
4




=




0.418
0.418
0.447
0.447




.

Thus, we have:

P (X6 = 0|e) = (0.390 θ300θ600 + 0.247 θ300θ610 + 0.418 θ310θ600 + 0.254 θ310θ610)/d,

P (X6 = 1|e) = (0.028 θ300θ600 + 0.171 θ300θ610 + 0.029 θ310θ600 + 0.193 θ310θ610)/d,

where d = 0.418 θ300θ600 + 0.418 θ300θ610 + 0.447 θ310θ600 + 0.447 θ310θ610.
Finally, eliminating the dependent parameters we get the expression shown in

Table 3. Note that the only symbolic operation realized in this process is simplifying
the final expression to eliminate the dependent parameters. However, this is an
optional operation and, in some cases, it is more convenient to keep the expression
with all the parameters, and simplify the numerical results after plugging in some
specific values for the parameters.

We should mention here that, although we are using only exact propagation meth-
ods for illustrative purposes, the methodology continues to work when using approxi-
mate or simulation propagation methods, such as those described in the introduction,
or even combine exact and approximate methods.

4.3 Efficient Computation of Canonical Components

The proposed symbolic inference method requires several applications of a numeric
approximate or exact propagation algorithm to calculate the numerical probabili-
ties associated with each one of the canonical components. Therefore, the number
of propagations increases combinatorially with the number of symbolic parameters.
However, when propagating uncertainty in the canonical cases using some of the
message-passing algorithms (see, e.g., Kim and Pearl (1983), Jensen et al. (1990) or
Shachter et al. (1994)), we can save many calculations because some messages are
common to several canonical components. In this section, we illustrate this fact in two
of the main message passing algorithms: the algorithm for polytrees (see, for example,
Kim and Pearl (1983), and Pearl (1988)), and the clustering algorithm (Shachter et
al. (1994)).

Figure 4 illustrates the message-passing process corresponding to a typical node Xi

in a polytree when applying Kim-Pearl algorithm. In this figure, Θk stands for the set
of parameters contained in the connected component associated with node Xk when
dropping the link Xk−Xi, while Θk is the set of parameters associated with node Xk.
Note that the message from node Xk to node Xi depends only on those parameters,
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Figure 3: The four elemental canonical cases. The first column in the table for each node Xi is
the state of Xi and the second column is the unnormalized marginal probabilities of Xi, given the
evidence e = {X2 = 1, X5 = 1}. Light rectangles show the evidence nodes.
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Xj Xk

Xi

Xr Xs

Θk

ΘiΘjkr

ΘiΘjrs

Θs

Θk

Θs

Θj

Θr

while the message passed from Xi to Xk depends on the remaining parameters in the
Bayesian network. Note also that if Θk does not contain any symbolic parameter,
then all the messages coming from this region of the graph to Xi need to be calculated
only once, because they have the same value for every canonical component.

Figure 4: Parametric dependence of the messages in a general node in a polytree.

The same computational savings are obtained when applying clustering message-
passing algorithms. In this case, the situation is the same except that we deal with a
tree of clusters (sets of nodes) instead of a tree of nodes.

For instance, suppose we are given the multiply-connected graph in Figure 1 with
the numeric and symbolic probabilities in Table 1. Figure 5 shows all the messages
needed to propagate evidence in a family tree associated with the Bayesian network
of Figure 1, using this method. In Figure 5, the cluster messages are indicated by
arrows. We can distinguish two types of messages:

1. Messages with no index. These are common messages for all the canonical
components. Thus need to be calculated only once.

2. Messages with one or more indices such as Θ3, Θ6, or Θ3Θ6. These messages
depend on these parameters and then we must calculate as many different mes-
sages as the number of monomials associated with them.
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X2, X3, X4X4, X6X1, X7 X1, X2, X3

X5, X8 X3, X5

Θ3,Θ6

Θ3,Θ6

Θ3,Θ6

Θ6

Θ3Θ3

Θ6

Θ3Θ6

Thus, in this example we can build the rational function associated with the node
marginals by performing only half of the computations.

Figure 5: Family tree and messages affected by the relevant parameters. The clusters involving
potential functions depending on parameters Θ3 or Θ6 are outlined.

5 Upper and Lower Bounds for Probabilities

The symbolic expressions obtained for the probabilities, such as those in Tables 2 and
3, can also be used to obtain upper and lower bounds for the marginal probabilities
which is a useful information for performing sensitivity analysis (Castillo, Gutiérrez,
and Hadi (1995c)). In this section we show that the bounds of the obtained ratios of
polynomials are attained at one of the canonical components (vertices of the feasible
convex parameter set). Thus, it is very easy to obtain the lower and upper bounds of
the expression associated with the probabilities when using the canonical components
method.

We use the following theorem given by Bela-Martos (1964).

Theorem 3 (Bela Martos, 1964) If the linear fractional functional of a vector u,

c ∗ u− c0

d ∗ u− d0

, (16)

where c and d are vector coefficients and c0 and d0 are real constants, is defined in
the convex polyhedral Au ≤ a0,u ≥ 0, where A is a constant matrix and a0 is a
constant vector, and the denominator in (16) does not vanish in the polyhedral, then
the functional reaches the maximum at least in one of the vertices of the polyhedron.

In our case, u is the set of symbolic parameters and the fractional functions
(16) are the symbolic expressions associated with the probabilities. In this case, the
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P (Xi = xi) P (Xi = xi|X2 = 1, X5 = 1)

Xi xi Lower Upper Range Lower Upper Range

X1 0 0.200 0.200 0.000 0.234 0.282 0.048
1 0.800 0.800 0.000 0.718 0.766 0.048

X2 0 0.460 0.460 0.000 0.000 0.000 0.000
1 0.540 0.540 0.000 1.000 1.000 0.000

X3 0 0.400 0.600 0.200 0.315 0.569 0.255
1 0.400 0.600 0.200 0.431 0.685 0.255

X4 0 0.368 0.424 0.056 0.343 0.369 0.026
1 0.576 0.632 0.056 0.631 0.657 0.026

X5 0 0.180 0.220 0.040 0.000 0.000 0.000
1 0.780 0.820 0.040 1.000 1.000 0.000

X6 0 0.518 0.942 0.424 0.568 0.936 0.369
1 0.058 0.482 0.424 0.064 0.432 0.369

X7 0 0.473 0.490 0.017 0.489 0.497 0.008
1 0.510 0.527 0.017 0.503 0.511 0.008

X7 0 0.356 0.364 0.008 0.400 0.400 0.000
1 0.636 0.644 0.008 0.600 0.600 0.000

Table 4: Lower and upper bounds for the initial marginal probabilities P (Xi = xi) (no evidence),
and the conditional probabilities P (Xi = xi|X2 = 1, X5 = 1).

convex polyhedral is defined by u ≤ 1,u ≥ 0, that is, A is the identity matrix and
a0 = 1. Then, using Theorem 3, we know that the lower and upper bounds of the
symbolic expressions associated with the probabilities are attained at the vertices of
this polyhedron, that is, at some of the canonical components associated with the
symbolic set of parameters.

As an example, Figure 3 shows the unnormalized conditional probabilities for the
nodes. For the event X6 = 0, normalizing the conditional probabilities corresponding
to the four canonical cases, we obtain the set of probabilities P (X6 = 0|X2 = 1, X5 =
1) in the four canonical cases: {0.936, 0.568, 0.934, 0.591}. Thus, the maximum possi-
ble value for the probability of this event is 0.936 and the minimum is 0.568. Table 4
shows the lower bound, the upper bound, and the range (the difference between lower
and upper bounds) for all the probabilities of the nodes in the Bayesian network given
in Example 1, in two different cases: no evidence, and evidence e = {X2 = 1, X5 = 1}.
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6 Symbolic Treatment of Random Evidence

In the previous sections, we have dealt with deterministic evidence, i.e. the calculation
of some conditional probability P (Xi|E = e), where the evidence nodes in the set
E = {E1, . . . , Em} take known values e = {E1 = e1, . . . , Em = em}. In this section
we deal with symbolic evidence. Suppose that a probability q(e1, . . . , em) over E,
with

∑
e1,...,em

q(e1, . . . , em) = 1, is given. Then the conditional probability with this
random evidence is

Pq(Xi|E = e) = P (Xi|(E1, . . . , Em) = (e1, . . . , em) with probability q(e1, . . . , em)).

In this case, the conditional probability becomes

Pq(Xi|E = e) =
∑

e1,...,em

q(e1, . . . , em)Ae1,...,em(Xi), (17)

where Ae1,...,em(xi) = P (Xi = xi|(E1, . . . , Em) = (e1, . . . , em)). Note that this expres-
sion can be obtained by applying the symbolic canonical components methods for
each combination of values of the evidence variables.

It is important to note that Pq(xi|E = e) is also a rational function because it
is a linear convex combination of the rational functions Ae1,...,em(xi). However, in
this case the parameters of the conditional probability distributions can appear with
exponents larger than one, which implies polynomial of order larger than one in each
of the parameters. This result is stated in the following theorem.

Theorem 4 The probabilities of the nodes given a random evidence are rational func-
tions where the degree in each parameter of the polynomials involved is at most equal
to the sum of the cardinalities of the random evidential nodes.

Proof: The polynomial denominators of the rational functions Qe1,...,ek
(xi) are in

general different for different combinations of the evidence set (e1, . . . , ek). Thus, the
common denominator is the product of different rational functions. The number of
these rational functions, and hence the degree of the polynomial, cannot exceed the
sum of the cardinalities of the evidential nodes.

Example 2 Suppose that we know the deterministic evidence X2 = 1, and we con-
sider the event X5 = x5 in symbolic form, that is, the event X5 = 0 is assigned
a probability p and the event X5 = 1 is assigned a probability 1 − p. With this
information, we wish to compute P (X6 = x6|X2 = 1, X5 = x5). In this case we have:

P (X6 = 0|X2 = 1, X5 = 0) =
0.056 + 0.019 θ300 + 0.032 θ600 + 0.007 θ300 θ600

0.094 + 0.028 θ300

= s0, (18)
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and the probability of the event X6 = 0 when the evidence is X5 = 1 is

P (X6 = 0|X2 = 1, X5 = 1) =
0.253− 0.006 θ300 + 0.164 θ600 − 0.021 θ300 θ600

0.446− 0.028 θ300

= s1. (19)

Thus, the probability of the event X6 = 0 in this case is a linear convex combination
of s0 and s1 which is equal to: ps0 + (1− p)s1 = a/b, where

a = −30.334− 1.522 p− 8.316 θ300 − 0.492 p θ300 + 0.214 θ2
300

+0.464 p θ2
300 − 19.663 θ600 + 1.459 p θ600

−3.339 θ300 θ600 + 0.5 p θ300 θ600 + 0.75 θ2
300 θ600 − 0.5 p θ2

300 θ600,

and
b = −53.474− 12.571 θ300 + θ2

300.

Note that the polynomials involved are second degree in θ300 as would be expected
by Theorem 4.

Note that the symbolic expressions (18) and (19) can be obtained using the sym-
bolic canonical components method by considering the evidences X5 = 0 and X5 = 1,
respectively. Note also that in cases where the linear convex combinations are com-
plicated expressions, they may be kept in the expanded form and the simplification
process may be realized after considering specific numerical values.
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