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Abstract. The paper presents a method for uncertainty propagation in
Bayesian networks in symbolic, as opposed to numeric, form. The alge-
braic structure of probabilities is characterized. The prior probabilities
of instantiations and the marginal probabilities are shown to be ratio-
nal functions of the parameters, where the polynomials appearing in the
numerator and the denominator are at the most first degree in each of
the parameters. It is shown that numeric propagation algorithms can be
adapted for symbolic computations by means of canonical components.
Furthermore, the same algorithms can be used to build automatic code
generators for symbolic propagation of evidence. An example of uncer-
tainty propagation in a clique tree is used to illustrate all the steps and
the corresponding code in Mathematica is given. Finally, it is shown that
upper and lower bounds for the marginal probabilities of nodes are at-
tained at one of the canonical components.

1 Introduction

Bayesian networks are powerful tools for handling uncertainty in expert systems.
A key problem in Bayesian networks is evidence propagation. There are several
well-known methods for exact and approximate propagation of evidence in a
Bayesian network; see, for example, Pearl [1, 2], Lauritzen and Spiegelhalter [3],
Castillo and Alvarez [4], and Castillo, Gutíerrez and Hadi [5, 6]. These methods,
however, require that the joint probabilities of the nodes be given in a numeric
form. In practice, exact numeric specification of these parameters may not be
available. In such cases, there is a need for methods which are able to deal with
the parameters symbolically. Symbolic propagation leads to probabilities which
are expressed as functions of the parameters instead of real numbers. Thus, the
answers to specific queries can then be obtained by plugging the values of the
parameters in the solution, without need to redo the propagation. Furthermore,
a real practical use of this approach is the possibility of performing a sensitivity
analysis of the parameter values without the need of redoing the computations.

2 Notation and Basic Framework

Let X = {X1, X2, . . . , Xn} be a set of n discrete variables and let ri be the
cardinality (number of states) of variable Xi. A Bayesian network B over X is a
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Fig. 1. Example of a Bayesian Network with its cliques and associated clique tree.

pair (BS ,BP ), where the network structure BS is a directed acyclic graph with
one node for each variable in X. We refer to the parents of a node Xi in the
network structure as Πi and to the set of instances of Πi (specific combination
of values in the parent set) as πi (in lower case). BP is a set of n conditional
probabilities Pi(Xi|Πi), one for each variable, which gives the probabilities of
Xi, given the values of the variables in its parent set Πi. Using the chain rule,
the joint probability density of X can be written as

P (X1, X2, . . . , Xn) =
n∏

i=1

Pi(Xi|Πi). (1)

An advantage of this decomposition of the joint probability density is that each
conditional probability Pi(Xi|Πi) can be given independently of the other prob-
abilities. We can consider Pi(Xi|Πi) as a parametric family. A natural choice of
parameters is given by

θijk = Pi(k|j), k ∈ {1, . . . , ri−1}, 0 ≤ j ≤ qi;
ri−1∑

k=1

θijk ≤ 1, i ∈ {1, . . . , n}, (2)

where qi =
∏

i∈IΠi

ri is the cardinal of Πi, IΠi is the set of indices of Πi, and

θijri = 1 −
ri−1∑

k=1

θijk. (3)

For illustrative purpose, we shall use the following example:

Example 1. Assume a Bayesian network (BS , BP ) where BS is the directed graph
in Fig. 1(a) with the corresponding cliques in Fig. 1(b) and associated clique tree
in Fig. 1(c), which imply a joint probability of the set of nodes X of the form:

P (X) = P (A)P (B|A)P (C)P (D)P (E|BC)P (F |CD)P (G|E)P (H |EF ). (4)

Assume that all nodes represent binary variables with values in the set {0,1}
and that the conditional probabilities, numeric and symbolic, are given in Table
1.



P (A = 0) = p0 P (B = 0|A = 0) = 0.3
P (C = 0) = 0.4 P (B = 0|A = 1) = 0.5

P (E = 0|B = 0, C = 0) = 0.2 P (F = 0|C = 0,D = 0) = 0.1
P (E = 0|B = 0, C = 1) = 0.3 P (F = 0|C = 0,D = 1) = 0.4
P (E = 0|B = 1, C = 0) = 0.4 P (F = 0|C = 1,D = 0) = 0.3
P (E = 0|B = 1, C = 1) = 0.5 P (F = 0|C = 1,D = 1) = 0.2

P (D = 0) = p1 P (H = 0|E = 0, F = 0) = 0.2
P (G = 0|E = 0) = 0.3 P (H = 0|E = 0, F = 1) = 0.4
P (G = 0|E = 1) = 0.6 P (H = 0|E = 1, F = 0) = 0.6

P (H = 0|E = 1, F = 1) = 0.3

Table 1. Conditional probability tables showing two symbolic parameters: p0 and p1.

3 Exact Propagation in Bayesian Networks

In this section we consider an exact method for the propagation of uncertainties
(see, for example, Shachter, Andersen, and Szolovits [7]). This method will serve
as the basis for the symbolic methods in the following sections. Initially, each
conditional probability distribution P (Xi|Πi) is assigned to exactly one clique
containing the Xi’s family, (Xi, Πi). The product of the conditional probability
distributions assigned to clique Si is called the potential function, Ψi(Si), for
clique Si. With this, once the evidence E is known, the joint distribution for all
the variables can be written as

P (X) =
∏

Xi∈X−E

P (Xi|Πi)
∏

ek∈E

P (ek|Πk) =
Nc∏

k=1

Ψk(Sk), (5)

where Nc is the number of cliques and ek is the evidence. Shachter, Andersen,
and Szolovits [7] show that the joint probability for clique Si is

Pi(Si) = Ψi(Si)
∏

k∈Ai

Mki, (6)

where Ai is the set of all cliques adjacent to Si and Mki is the message sent by
clique Sk to Si, which is given by:

Mij =

(
∑

(Si−Sj)
Ψi(Si)

∏
k∈Ai−j

Mki

)
. (7)

Once Pi(Si) is known, the node marginals can be easily calculated by marginal-
izing in the cliques. These expressions lead to well-known numerical propagation
algorithms.



4 Symbolic Computations

Dealing with symbolic computations is the same as dealing with numeric values
with the only difference being that all the required operations must be performed
by a program with symbolic manipulation capabilities. Symbolic computations,
however, are intrinsically slow and require more memory. A code generator can
be easily written based on any standard propagation algorithm if, instead of
building the potential functions Ψi(Si), and calculating the Mij messages, the
probability function of the cliques, and the node marginals, we write the corre-
sponding code in the order indicated by the algorithm. We have written such
a program in C++ language. In fact the code in Fig. 2 has been generated by
this computer program given the network in Example 1. Table 2 shows that the
initial marginal probabilities of the nodes are polynomials in the parameters.

Node P(Node=0) Node P(Node=0)
A p0 B 0.5 − 0.2p0

C 0.4 D p1

E 0.04(9 + p0) F 0.02(14 − 3p1)
G 0.012(41 − p0) H 0.0004(930 − 4p0 − 30p1 + 3p0p1)

Table 2. Initial probabilities of nodes.

The previous results have been obtained without any instantiation of evi-
dence. Suppose now we have the following evidence: {D = 0, E = 0}. To this aim,
we make the ranges of variables D and E equal to (0,0), that is, u1[3] = u1[4] = 0
and repeat the calculations. Table 3 gives the new probabilities of the nodes given
this evidence. We get rational functions, i.e., quotients of polynomial functions
in the parameters with unit exponents. The fact that the probability of any
instantiation is a polynomial in the parameters is proven in Sect. 5.

Node P(Node=0) Node P(Node=0)
A (10p0)/(9 + p0) B 0.65(5 − 2p0)/(9 + p0)
C 0.2(15 + 2p0)/(9 + p0) D 1
E 1 F 0.02(105 + 11p0)/(9 + p0)
G 0.3 H 0.004(795 + 89p0)/(9 + p0)

Table 3. Conditional probabilities of the nodes, given {D = 0, E = 0}, showing the
common denominator

Tables 2 and 3 can then be used to answer all queries regarding initial or ev-



(* Probability Tables and Initialize ranges*)
T={p0,1-p0};n=1; Do[PA[i1]=T[[n]];n++,{i1,0,1}];
T={0.3,0.5,0.7,0.5};n=1; Do[PB[i1,i2]=T[[n]];n++,{i1,0,1},{i2,0,1}];
T={0.4,0.6};n=1; Do[PC[i1]=T[[n]];n++,{i1,0,1}];
T={p1,1-p1};n=1; Do[PD[i1]=T[[n]];n++,{i1,0,1}];
T={0.2,0.3,0.4,0.5,0.8,0.7,0.6,0.5};
n=1; Do[PE[i1,i2,i3]=T[[n]];n++,{i1,0,1},{i2,0,1},{i3,0,1}];
T={0.1,0.4,0.3,0.2,0.9,0.6,0.7,0.8};
n=1;Do[PF[i1,i2,i3]=T[[n]];n++,{i1,0,1},{i2,0,1},{i3,0,1}];
T={0.3,0.6,0.7,0.4}; n=1; Do[PG[i1,i2]=T[[n]];n++,{i1,0,1},{i2,0,1}];
T={0.2,0.4,0.6,0.3,0.8,0.6,0.4,0.7};
n=1; Do[PH[i1,i2,i3]=T[[n]];n++,{i1,0,1},{i2,0,1},{i3,0,1}];
Do[u0[i]=0; u1[i]=1, {i,0,7}];

(* Potential Functions *)
F0[G ,E ]:=PG[G,E];F1[D ,C ,F ]:=PC[C]*PD[D]*PF[F,C,D];
F2[H ,E ,F ]:=PH[H,E,F];F3[F ,E ,C ]:=1;
F4[C ,B ,E ]:=PE[E,B,C];F5[B ,A ]:=PA[A]*PB[B,A];

(* Messages *)
L02[E ]:=Sum[F0[G,E],{G,u0[6],u1[6]}];
L13[C ,F ]:=Sum[F1[D,C,F],{D,u0[3],u1[3]}];
L23[E ,F ]:=Sum[F2[H,E,F]*L02[E],{H,u0[7],u1[7]}];
L34[E ,C ]:=Sum[F3[F,E,C]*L13[C,F]*L23[E,F],{F,u0[5],u1[5]}];
L45[B ]:=Sum[F4[C,B,E]*L34[E,C],{C,u0[2],u1[2]},{E,u0[4],u1[4]}];
L54[B ]:=Sum[F5[B,A],{A,u0[0],u1[0]}];
L43[E ,C ]:=Sum[F4[C,B,E]*L54[B],{B,u0[1],u1[1]}];
L31[C ,F ]:=Sum[F3[F,E,C]*L23[E,F]*L43[E,C],{E,u0[4],u1[4]}];
L32[E ,F ]:=Sum[F3[F,E,C]*L13[C,F]*L43[E,C],{C,u0[2],u1[2]}];
L20[E ]:=Sum[F2[H,E,F]*L32[E,F],{H,u0[7],u1[7]},{F,u0[5],u1[5]}];

(* Cluster and Node Marginals *)
Q0[G ,E ]:=F0[G,E]*L20[E];Q1[D ,C ,F ]:=F1[D,C,F]*L31[C,F];
Q2[H ,E ,F ]:=F2[H,E,F]*L02[E]*L32[E,F];
Q3[F ,E ,C ]:=F3[F,E,C]*L13[C,F]*L23[E,F]*L43[E,C];
Q4[C ,B ,E ]:=F4[C,B,E]*L34[E,C]*L54[B];Q5[B ,A ]:=F5[B,A]*L45[B];
M[0,A ]:=Sum[Q5[B,A],{B,u0[1],u1[1]}];M[1,B ]:=Sum[Q5[B,A],{A,u0[0],u1[0]}];
M[2,C ]:=Sum[Q4[C,B,E],{B,u0[1],u1[1]},{E,u0[4],u1[4]}];
M[3,D ]:=Sum[Q1[D,C,F],{C,u0[2],u1[2]},{F,u0[5],u1[5]}];
M[4,E ]:=Sum[Q0[G,E],{G,u0[6],u1[6]}];M[6,G ]:=Sum[Q0[G,E],{E,u0[4],u1[4]}];
M[5,F ]:=Sum[Q3[F,E,C],{E,u0[4],u1[4]},{C,u0[2],u1[2]}];
M[7,H ]:=Sum[Q2[H,E,F],{E,u0[4],u1[4]},{F,u0[5],u1[5]}];

(* Normalizations *)
Do[sumConst=Chop[Simplify[Sum[M[i,t],{t,u0[i],u1[i]}]]];Do[R[i,t]:=
Simplify[Chop[M[i,t]]/sumConst];Print[”P(Node”,i,”=”,t,”)=”,R[i,t]],
{t,u0[i],u1[i]}];Print[” ”],{i,0,7}]

Fig. 2. Mathematica statements for symbolic propagation of evidence.



idential marginal probabilities associated with the network in Example 1 simply
by plugging in specific values for the parameters.

We note that the symbolic part of computations increases exponentially with
the number of parameters but not with the number of nodes.

5 Algebraic Structure of Probabilities

In this section we discuss the algebraic structure of probabilities of single nodes.
We start with the prior and later we analyze the case of posterior probabilities.

Theorem 1. The prior probability of any instantiation is a polynomial in the
parameters of degree less than or equal to the minimum of the number of param-
eters or nodes. However, it is a first degree polynomial in each parameter.

Proof. According to (1) the probability of an instantiation (x1, . . . , xn) is
n∏

i=1

P (xi|πi),

that is, a product of n factors. Each factor is either θijk, if xi < ri or

1 −
ri−1∑

k=1

θijk,

if xi = ri (see (3)), that is, a parameter or a first degree polynomial in some
parameters.

In addition, each parameter appears at most in one factor and dependent
parameters, such as θijk1 and θijk2 , do not appear in the same factor. Thus, we
get a polynomial of degree less than or equal to the minimum of the number of
parameters or nodes, which is first degree in each parameter. ut

Corollary 2. The prior node marginals are polynomials in the parameters of
the same form.

Proof. The prior marginals of any node are the sum of the probabilities of a
subset of instantiations. ut

It is well-known from probability theory, that after some evidence is avail-
able, the joint probability of the remaining nodes is proportional to (1) with
the evidential nodes instantiated to their evidence values. Thus, while Equa-
tion (1) gives the true (normalized) joint probability of nodes, instantiation of
the evidential variables in (1) leads to the unnormalized joint probability of the
remaining nodes. Thus, the same methods can be used for prior and posterior
probabilities, the only difference being that in the later case the normalization
constant must be determined. However, this constant is common to the joint
and to any of the possible marginal probabilities. Thus, we have the following
corollary.



Corollary 3. The posterior node marginals, i.e., the node marginals given some
evidence E, are rational functions of the parameters, that is, quotient of polyno-
mials in the parameters of the same form. The denominator polynomial is the
same for all nodes.

Proof. When normalizing probabilities we divide by their sum, that is, by a
polynomial of the same form; then, the rational functions arise. ut

Because the denominator polynomial is the same for any of the possible
marginals, for implementation purposes, it is more convenient to calculate and
store all the numerator polynomials for each node and calculate and store the
common denominator polynomial separately.

It is interesting to know the total number of monomials involved. This is
given by the following theorem.

Theorem 4. The total number of monomials is given by

n∏

i=1

(1 + si), (8)

where si is the number of parameters θijk, i.e., those related to node i.

Proof. Each monomial is generated from n factors, each associated with a given
node. Each factor can be a constant value or one of the parameters. ut

Corollary 5. The maximum number of monomials is given by

n∏

i=1

[1 + qi(ri − 1)]. (9)

Proof. The maximum number of parameters related to node i is qi(ri − 1) and
using (8), (9) holds. ut

Once we know the structure of the marginal probabilities we can exploit it
to obtain symbolic results using numerical procedures, as follows.

6 Symbolic Propagation and Numeric Methods

In this section we show how symbolic propagation can be performed using nu-
meric methods. This has special importance for large networks. Consider the
network in Example 1 and assume that we want to know the influence of the
parameters p0 and p1 on the conditional probabilities of the remaining nodes
given the evidence {D = 0, E = 0}. Then, for any node i we know that the
unnormalized marginal probability p∗

ik(p0, p1) is a polynomial of the form

P (Xi = k|D = 0,E = 0) = aik + bikp0 + cikp1 + dikp0p1 = p∗
ik(p0, p1). (10)



Choosing C = {(0, 0), (0, 1), (1, 0), (1,1)}, which is the so-called canonical com-
ponent set, we get the system of equations




1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1







aik

cik

bik

dik


 =




p∗
ik(0, 0)

p∗
ik(0, 1)

p∗
ik(1, 0)

p∗
ik(1, 1)


 , (11)

from which the polynomial coefficients can be calculated.
In fact, we can use any set of (p0, p1), normalized or unnormalized, values

such that the leading matrix in (11) becomes non-singular. We use the fact
that our probability can be written as a linear convex combination of a given
generating set of probabilities (the canonical probabilities), i.e., it belongs to the
convex hull generated by them.

Adding the unnormalized probabilities of any node we get the normalization
polynomial (common denominator). Note that with this method we can deal
with symbolic propagation using numeric programs. Note also that exact and
approximate numeric algorithms can be used.

6.1 Computing Canonical Components

When propagating uncertainty in the canonical cases we can save many calcu-
lations because some messages are common to all of them. Fig. 3 shows all the
clique messages indicated by arrows. We can distinguish three types of messages:

1. Messages with no index. These are common messages that need to be calcu-
lated only once.

2. Messages with only one index D or E. These messages depend on the param-
eters associated with the index node and then we must calculate as many
different messages as the number of monomials associated with it.

3. Messages with two indices D and E. These messages depend on the param-
eters associated with nodes D and E and then we must calculate as many
different messages as the number of monomials associated with them.

We can build the rational function associated with the node marginals based
only on numeric calculations. Thus, we have a numeric method that efficiently
solves the symbolic problem.

7 Symbolic Treatment of Random Evidence

Until now we have dealt with deterministic evidence. In this section we deal
with random evidence. Let Qe1,...,ek

(xi) denote the marginal of node Xi when
the evidence nodes take values e1, . . . , ek, where k is the cardinality of E . If we
assume a lottery q(e1, . . . , ek), that is, a probability over E, then the marginal
of node Xi becomes

Pq(xi) =
∑

e1,...,ek

q(e1, . . . , ek)Qe1,...,ek (xi);
∑

e1,...,ek

q(e1, . . . , ek) = 1. (12)
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Fig. 3. Clique tree and messages affected by the parameters in nodes D and E. Cliques
involving potential functions depending on parameters p0 and p1 are outlined.

It is important to note that Pq(xi) is also a rational function because it is a linear
convex combination of the rational functions Qe1,...,ek (xi). However, in this case
the conditional probability table parameters can appear with exponents larger
than one, which implies polynomial of order larger than one in each of the
parameters. The following theorem states this result.

Theorem 6. The probabilities of the nodes given a random evidence are rational
functions where the degree in each parameter of the polynomials involved is at
most the sum of the cardinalities of the evidential nodes.

Proof. The polynomial denominators of the rational functions Qe1,...,ek (xi) are in
general different for different combinations of the evidence set (e1, . . . , ek). Thus,
reduction to common denominator to get the rational function (12) implies their
product and then the result. ut

As an example, the probabilities of node C = 0 for the random evidence
P (F = 0) = a is given by

a P (C = 0|F = 0)+(1−a) P (C = 0|F = 1) =
2(3p2

1 + 40ap1 − 8p1 − 20a − 28)
3p2

1 + 22p1 − 168
.

8 Upper and Lower Bounds for Probabilities

Symbolic expressions, such as those in Tables 2 and 3, can also be used to obtain
upper and lower bounds for the marginal probabilities which is a valuable infor-
mation. This can be easily done by considering non-informative {0, 1} bounds
or other bounds given by experts. Using a theorem given by Bela-Martos (see
[8]) it is immediate to see that upper and lower bounds are attained at one of



the canonical components (vertices of the feasible convex parameter set). As
an example, from Table 2 the maximum and minimum values for the initial
probabilities of node H = 0 are attained in the set {0.372, 0.36, 0.3704, 0.3596}.

9 Conclusions

The symbolic structure of prior and posterior marginal probabilities of Bayesian
networks have been characterized as polynomials or rational functions of the
parameters, respectively, and the degrees of the polynomials have been shown
to be dependent on the deterministic or random character of evidence. This
characterization allows the symbolic propagation of evidence to be converted
to a numeric problem using the canonical components, leading to an important
saving in computation. An extra saving is obtained by identifying those messages
which are common for all or some canonical components. These components are
also shown to attain upper and lower bounds for the probabilities.
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