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ABSTRACT

The paper presents an efficient computational method for performing sensitivity analysis in
discrete Bayesian networks. The method exploits the structure of conditional probabilities
of a target node given the evidence. First, the set of parameters which are relevant to the
calculation of the conditional probabilities of the target node is identified. Next, this set
is reduced by removing those combinations of the parameters which either contradict the
available evidence or are incompatible. Finally, using the canonical components associated
with the resulting subset of parameters, the desired conditional probabilities are obtained.
In this way, an important saving in the calculations is achieved. The proposed method can
also be used to compute exact upper and lower bounds for the conditional probabilities,
hence a sensitivity analysis can be easily performed. Examples are used to illustrate the
proposed methodology.

Key Words: Propagation of uncertainty, Symbolic probabilistic inference, Canonical com-
ponents, Efficient computations.

1 Introduction

Evidence propagation in Bayesian networks has been an active area of research during the last
two decades. Consequently, several exact and approximate propagation methods have been
proposed in the literature; see, for example, Pearl (1986,1988), Lauritzen and Spiegelhalter
(1988), and Castillo, Gutiérrez and Hadi (1996). These methods, however, require that the
joint probabilities of the nodes be specified numerically.

One aim of the analysis of discrete Bayesian networks is often to compute the conditional
probabilities of a target node in the network. A question that usually arises in this context is
that of sensitivity analysis, that is, how sensitive are these conditional probabilities to small
changes in the parameters and/or evidence values?

One way of performing sensitivity analysis is to change the parameters values and then,
using an evidence propagation method, monitor the effects of these changes on the conditional
probabilities. Clearly, this brute force method is computationally intensive.

Another way of performing sensitivity analysis is suggested by Laskey (1995) who mea-
sures the impact of a small changes in one parameter on a target probability of interest.
This is done using the partial derivative of output probabilities with respect to parameter
being varied.

Sensitivity analysis can also be performed using symbolic probabilistic inference (SPI).
For example, Li and D’Ambrosio (1994) and Chang and Fung (1995) give a goal directed
algorithms which perform only those calculations that are required to respond to queries.
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Castillo, Gutiérrez and Hadi (1995) perform symbolic calculations by first replacing the val-
ues of the initial probabilities by symbolic parameters, then using computer packages with
symbolic computational capabilities (such as, Mathematica and Maple) to propagate uncer-
tainty. This leads to probabilities which are expressed as functions of the parameters instead
of actual numbers. Thus, the answers to specific sensitivity analysis queries can then be ob-
tained directly without the need to redo the computations. This method, however, is suitable
for Bayesian networks of a small number of variables, but is inefficient for larger networks
due to the need for using symbolic packages. Nevertheless, the symbolic representation of
the initial probabilities was useful in determining the algebraic structure of probabilities as
a function of the parameters and/or evidence values. This algebraic structure leads to the
following conclusions:

1. The conditional probabilities are ratios of polynomial functions of parameters and
evidences, and

2. Numerical methods can be used to calculate the coefficients of the polynomials using
the so called canonical components.

In this paper we further examine the algebraic and dependency structures of probabilities.
We found that not all the terms of the general polynomial functions actually contribute to
the conditional probabilities. Important implications of this finding include:

1. Substantial computational savings can be achieved by identifying and using only the
relevant parameters in the polynomials.

2. The symbolic expressions of conditional probabilities can also be used to obtain lower
and upper bounds for the marginal probabilities. These bounds can provide valuable
information for performing sensitivity analysis of a Bayesian network.

3. An important advantage of the proposed method is that it can be performed using the
currently available numeric propagation methods, thus making both symbolic compu-
tations and sensitivity analysis feasible even for large networks.

Section 2 gives the necessary notation. Section 3 reviews some recent results about
the algebraic structure of conditional probabilities. Section 4 gives algorithms for efficient
computations of the desired conditional probabilities. In Section 5 we illustrate the method
described in Section 4 by an example. Section 6 shows how to obtain lower and upper bounds
for the conditional probabilities. Finally, Section 7 gives some conclusions.

2 Notation

Let X = {X1, X2, . . . , Xn} be a set of n discrete variables, each can take values in the set
{0,1, . . . , ri − 1}, where ri is the cardinality (number of states) of variable Xi. A Bayesian
network over X is a pair (D, P ), where the graph D is a directed acyclic graph (DAG)
with one node for each variable in X and P = {P1(X1|Π1), . . . , Pn(Xn|Πn)} is a set of n

conditional probabilities, one for each variable. Note that Pi(Xi|Πi) gives the probabilities
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of Xi, given the values of the variables in its parent set Πi. Using the chain rule, the joint
probability density of X can be written as the product of the above conditional probabilities,
that is,

P (X1, X2, . . . , Xn) =
n∏

i=1
Pi(Xi|Πi). (1)

Some of the conditional probability distributions in (1) can be specified numerically and
others symbolically, that is, Pi(Xi|Πi) can be a parametric family. When Pi(Xi|Πi) is a
parametric family, we refer to the node Xi as a chance node. A convenient choice of the
parameters in this case is given by

θijπ = Pi(Xi = j|Πi = π), j ∈ {0, . . . , ri − 1}, (2)

where π is any possible instantiation of the parents of Xi. Thus, the first subscript in θijπ

refers to the node number, the second subscript refers to the state of the node, and the
remaining subscripts refer to the parents’ instantiations. Since

∑ri−1
j=0 θijπ = 1, for all i and

π, any one of the parameters can be written as one minus the sum of all others. For example,
θi0π is

θi0π = 1 −
ri−1∑

j=1
θijπ. (3)

To simplify the notation in cases where a variable Xi does not have parents, we use θij

to denote Pi(Xi = j), j ∈ {0, . . . , ri − 1}. We illustrate this notation using the following
example.

Example 1 Consider a discrete Bayesian network consisting of three variables X = {X1, X2,
X3} whose corresponding DAG D is given in Figure 1. The structure of D implies that the
joint probability of the set of nodes can be written, in the form of (1), as:

P (X1, X2, X3) = P (X1)P (X2|X1)P (X3|X1, X2). (4)

For simplicity, but without loss of generality, assume that all nodes represent binary variables
with values in the set {0,1}. This and the structure of the probability distribution in (4)
imply that the joint probability distribution of the three variables depends on 14 parameters
Θ = {θijπ}. These parameters are given in Table 1. Note, however, that only 7 of the
parameters are free (because the probabilities in each conditional distribution must add up
to unity). These 7 parameters are given in Table 1 under either the column labeled Xi = 0
or the column labeled Xi = 1.

The symbolic method of Castillo et al. (1995) can be used to calculate the conditional
probabilities of single nodes when the parameters are given in symbolic form as is the case
here. For example, suppose that the target node is X3. Using the symbolic method, the
probabilities P (X3 = 0|evidence) for different evidences are computed and displayed in Table
2. In this paper we show how these symbolic expressions for the conditional probabilities
can be computed efficiently by exploiting the algebraic and the dependency structures of the
parameters.

3



Node Parameters
Xi Parents Xi = 0 Xi = 1
X1 None θ10 = P (X1 = 0) θ11 = P (X1 = 1)
X2 X1 θ200 = P (X2 = 0|X1 = 0) θ210 = P (X2 = 1|X1 = 0)

θ201 = P (X2 = 0|X1 = 1) θ211 = P (X2 = 1|X1 = 1)
X3 X1, X2 θ3000 = P (X3 = 0|X1 = 0, X2 = 0) θ3100 = P (X3 = 1|X1 = 0, X2 = 0)

θ3001 = P (X3 = 0|X1 = 0, X2 = 1) θ3101 = P (X3 = 1|X1 = 0, X2 = 1)
θ3010 = P (X3 = 0|X1 = 1, X2 = 0) θ3110 = P (X3 = 1|X1 = 1, X2 = 0)
θ3011 = P (X3 = 0|X1 = 1, X2 = 1) θ3111 = P (X3 = 1|X1 = 1, X2 = 1)

Table 1: Conditional probability tables associated with the network in Figure 1.

Evidence P (X3 = 0|evidence)

None θ10θ200θ3000 + θ10θ3001 − θ10θ200θ3001 + θ201θ3010−
−θ10θ201θ3010 + θ3011 − θ10θ3011 − θ201θ3011 + θ10θ201θ3011

X1 = 0 θ200θ3000 + θ3001 − θ200θ3001

X2 = 0
θ10θ200θ3000 + θ201θ3010 − θ10θ201θ3010

θ10θ200 + θ201 − θ10θ201

Table 2: Symbolic expressions for the probability P (X3 = 0|evidence) for several evidence cases for the
network in Example 1.
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X1

X2 X3

Figure 1: An example of a three-node Bayesian Network.

3 Algebraic Structure of Conditional Probabilities

Castillo et al. (1995) give the following theorems which characterize the algebraic structure
of conditional probabilities of single nodes.

Theorem 1 The prior marginal probability of any set of nodes Y is a polynomial in the
parameters of degree less than or equal to the minimum of the number of parameters or
nodes. However, it is a first degree polynomial in each parameter.

For example, as can be seen in the first row of Table 2, the prior marginal probability of
node X3 given no evidence is a polynomial of first degree in each of the symbolic parameters.

Theorem 2 The posterior marginal probability of any set of nodes Y , i.e., the conditional
of the set Y given some evidence E, is a ratio of two polynomial functions of the parameters.
Furthermore, the denominator polynomial is the same for all nodes.

For example, the last two rows in Table 2 show that the posterior distribution of node X3

given some evidence values, is a ratio of two polynomials (note that the first of these two
cases is a polynomial function of the parameters, but this is only because the denominator
in this case is equal to 1).

The second part of Theorem 2 states that the denominator polynomial is the same for
all nodes. For example, the denominators of the rational functions P (X1 = i|X2 = 0) and
P (X3 = j|X2 = 0), for all values of i and j, are the same. This implies that the denominator
is a normalizing constant and need not be explicitly computed in every case.

Theorems 1 and 2 guarantee that the conditional probabilities of a target node given
some evidence is either a polynomial or a ratio of two polynomials. The general form of
these polynomials is: ∑

mr∈M
crmr, (5)

where cr is the numerical coefficient associated with the monomial mr. The set of monomials
M is formed by taking a cartesian product of the subsets of the parameters. Note that the
representation of the joint probability P (X) in (1), implies that parameters with the same
index i (e.g. θijπ and θikπ) cannot appear in the same monomial. For example, θ200 and θ201,
in Example 1. For this reason the monomials are constructed by taking a cartesian product,
rather all possible combinations of the parameters.

In the next section we develop a method for computing these polynomials, and hence
P (Xi|E), in an efficient way.
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4 Efficient Computations of Conditional Probabilities

The proposed method consists of three steps:

1. Identify the minimal subset of the parameters which contains sufficient information to
compute the conditional probabilities,

2. Construct the monomials by taking the cartesian product of the subsets of sufficient
parameters, then eliminate the monomials which contain infeasible combinations of the
parameters, and

3. Compute the polynomial coefficients required to compute the desired conditional prob-
abilities.

These steps are presented in details below.

4.1 Identifying the Set of Relevant Nodes

The conditional probability P (Xi|E) does not necessarily involve all nodes. Thus, the com-
putations of P (Xi|E) can be simplified by identifying only the set of nodes that are relevant
to the calculation of P (Xi|E). This set of relevant nodes can be obtained using either one
of the two algorithms given in Geiger et al. (1990) and Shachter (1990). The first of these
algorithms is given below.

Algorithm 1 (Identifies the Set of Relevant Nodes)

• Input: A Bayesian network (D, P ) and two sets of nodes: a target set Y and an
evidential set E (possibly empty).

• Output: The set of relevant nodes V needed to compute P (Y |E).

• Step 1: Construct a DAG D′ by augmenting D with a dummy node Vi and adding a
link Vi → Xi for every chance node Xi in D.

• Step 2: Identify the set V of dummy nodes in D′ not d-separated from Y by E.

The node Vi represents the parameters, Θi, of node Xi. Step 2 of Algorithm 1 can be
carried out in linear time using an algorithm provided by Geiger et al. (1990). Using this
algorithm one can significantly reduce the set of parameters to be considered in the analysis.

We now illustrate Algorithm 1 using the Bayesian network of Example 1. We identify
the relevant set of nodes needed to calculate the conditional probability P (X3|evidence) in
three different cases:

1. Case 1: No evidence.

2. Case 2: Evidence X1 = 0.

3. Case 3: Evidence X2 = 0.
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The first step of Algorithm 1 is common for all three cases:

• Step 1: In this example, all the nodes are chance nodes because the corresponding
probability tables are given symbolically. We construct a new DAG D′ by adding the
dummy nodes {V1, V2, V3} and the corresponding links, as shown in Figure 2. From
Table 1, the sets of parameters corresponding to the dummy nodes are:

NodeV1 : Θ1 = {θ10, θ11},
Node V2 : Θ2 = {θ200, θ201, θ210, θ211},

Node V3 : Θ3 = {θ3000, θ3001, θ3010, θ3011, θ3100, θ3101, θ3110, θ3111}.

Note that we are dealing with all possible parameters associated with the nodes, with-
out considering the relationships among them (see Equation (3)). Dealing with all
parameters will facilitate finding the coefficients of the polynomials in an efficient way
as we shall see in Section 4.4.

• Step 2: Figure 3 shows the moralized ancestral graph associated with node X3 for the
above three cases. From these graphs we conclude the following:

– Case 1: No evidence. All nodes Vi are not d-separated from the target node X3

as can be seen in Figure 3(a). Thus, V = {V1, V2, V3}.

– Case 2: Evidence X1 = 0. Figure 3(b) shows that only node V1 is d-separated
from X3 by X1. Thus, V = {V2, V3}.

– Case 3: Evidence X2 = 0. Figure 3(c) shows that none of the dummy nodes is
d-separated from X3 by X2. Then, V = {V1, V2, V3}.

X1

X2 X3

V2

Θ2

V3

Θ3

V1

Θ1

Figure 2: Augmented graph obtained by adding a dummy node Vi and a link Vi → Xi, for every chance
node Xi.

4.2 Identifying the Set of Sufficient Parameters

The set of relevant nodes V is identified by Algorithm 1. Let Θ be the set of all the parameters
associated with the dummy nodes Vi that are included in V . Note that the set Θ contains all
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X1

X2 X3

V2 V3

V1

X1

X2 X3

V2 V3

V1

(b) (c)

X1

X2 X3

V2 V3

V1

(a) No evidence

Evidence X1 = 0 Evidence X2 = 0

Figure 3: Identifying relevant nodes for three different evidence cases.

the parameters that appear in the polynomial expression needed to compute P (Xi|E). When
identifying the set of relevant nodes (and hence the set of sufficient parameters Θ), Algorithm
1 takes into consideration only the set of evidence variables, but it does not make use of their
values. By considering the values of the evidence variables, the set of sufficient parameters
Θ can be reduced even further by identifying and eliminating the set of parameters which
are in contradiction with the evidence. These parameters are identified using the following
two rules:

• Rule 1: Eliminate the parameters θijπ if xi 6= j for Xi ∈ E .

• Rule 2: Eliminate the parameters θijπ if parents’ instantiations π are incompatible
with the evidence.

The resultant set Θ now contains the minimal sufficient subset of parameters. The following
algorithm identifies such a subset:

Algorithm 2 (Identifies Minimal Subset of Sufficient Parameters)

• Input: A Bayesian network (D, P ) and two sets of nodes: a target set Y and an
evidential set E (possibly empty).

• Output: The minimum set of parameters Θ that contains sufficient information to
compute P (Y |E).
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• Step 1: Use Algorithm 1 to calculate the set of relevant nodes V and the associated
set of parameters Θ that contains sufficient information to compute P (Y |E).

• Step 2: If there is evidence, remove from Θ the parameters θijπ if xi 6= j for Xi ∈ E
(Rule 1).

• Step 3: If there is evidence, remove from Θ the parameters θijπ if the values of parents’
instantiations π are incompatible with the evidence (Rule 2).

We illustrate Algorithm 2 using the Bayesian network in Figure 1 and the three cases
mentioned above.

• Step 1: The results of this step are given in Step 2 of Algorithm 1. Therefore, the
sets of sufficient parameters associated with the three cases are:

Case 1 (no evidence) : Θ = {Θ1, Θ2, Θ3},

Case 2 (X1 = 0) : Θ = {Θ2, Θ3},

Case 3 (X2 = 0) : Θ = {Θ1, Θ2, Θ3},

• Step 2: The results of this step are given for each case below:

– Case 1: No Evidence. Since there is no evidence, Step 2 does not apply here.
Thus, no reduction of Θ is possible at this step.

– Case 2: Evidence X1 = 0. The set Θ = {Θ2, Θ3} does not contain parameters
associated with the evidence node X1. Therefore, no parameters are removed
from Θ at this step.

– Case 3: Evidence X2 = 0. The parameters θ210, and θ211 are removed from Θ
because they do not match the evidence X2 = 0 (they indicate that X2 = 1).

• Step 3: The results of this step are given for each case below:

– Case 1: No evidence. Step 3 does not apply because there is no evidence. Thus,
Θ = {Θ1, Θ2, Θ3} is the minimal set of sufficient parameters needed to calculate
P (X3).

– Case 2: Evidence X1 = 0. The instantiations of the parents associated with
parameters θ201, θ211 do not match the evidence X1 = 0. The same is true for the
parameters θ3j10 and θ3j11, for all values of j. Thus, we remove these parameters
from Θ and obtain

Θ = {{θ201, θ211}; {θ3000, θ3001, θ3100, θ3101}},

which is the minimal subset of parameters needed to calculate P (X3|X1 = 0).
Note that the number of parameters is reduced from 14 to 6 parameters (or from
7 to 3 free parameters).
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– Case 3: Evidence X2 = 0. The parameters θ3j01 and θ3j11, for all values of j
contradict the evidence X2 = 0, hence they are removed from Θ. The resultant
minimal sufficient subset of parameters is

Θ = {{θ10, θ11}; {θ200, θ201}; {θ3000, θ3010, θ3100, θ3110}}.

The final results of applying Algorithms 1 and 2 to the Bayesian network of Example 1
are summarized in Table 3. We make the following remarks:

1. In Case 1 of no evidence, Algorithms 1 and 2 did not decrease the number of initial
parameters, 14, because (1) there is no evidence and (2) there is no independency
structure in the Bayesian network of Example 1. When there is no evidence but the
structure of the network is not highly dependent, Algorithm 1 can still produce a
substantial reduction in number of initial parameters, as we shall see in Section 5.

2. When evidence is available (as in Cases 2 and 3), Algorithm 2 produces a more substan-
tial reduction in the number of parameters than Algorithm 1, as would be expected.
For example, in Case 2, the two algorithms reduced the number of parameters by 2
and 6, respectively.

3. By comparing the expressions for the probability P (X3|E), written in symbolic form
as given in Table 2, with the parameters in Table 3, we see that the results in the two
tables agree. For example, P (X3 = 0|X1 = 0) does not depend of the parameters in
Θ1, whereas P (X3 = 0|X2 = 0) does depend on all parameters. Note that Table 2
shows the probabilities as function of only the free parameters.

4.3 Identifying Feasible Monomials

Once the minimal sufficient subsets of parameters has been identified, they are combined
to obtain the final polynomial required to compute the conditional probabilities. As stated
in Section 3, the monomials are obtained by taking the cartesian product of the minimal
sufficient subsets of parameters. The set of all monomials obtained by the cartesian product
can be reduced further by eliminating the set of all infeasible combinations of the parameters.
This reduction can be done using the following rule:

• Rule 3: Parameters associated with contradicting conditioning instantiations cannot
appear in the same monomial. For example, in Example 1, θ200 (which conditions on
X1 = 0) and θ3010 (which conditions on X1 = 1) cannot occur simultaneously.

Combining Algorithm 2 with the above rule, we obtain the following algorithm:

Algorithm 3 (Identifies Feasible Monomials)

• Input: A Bayesian network (D, P ) and two sets of nodes: a target set Y and an
evidential set E (possibly empty).
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Initially
Case Parameters Number
No evidence {Θ1,Θ2, Θ3} 14
X1 = 0 {Θ1,Θ2, Θ3} 14
X2 = 0 {Θ1,Θ2, Θ3} 14

After Algorithm 1
Case Parameters Number
No evidence {Θ1,Θ2, Θ3} 14
X1 = 0 {Θ2, Θ3} 12
X2 = 0 {Θ1,Θ2, Θ3} 14

After Algorithm 2
Case Parameters Number
No evidence {Θ1,Θ2, Θ3} 14
X1 = 0 {θ200, θ210, θ3000, θ3001, θ3100, θ3101} 6
X2 = 0 {θ10, θ11, θ200, θ201, θ3000, θ3010, θ3100, θ3110} 8

Table 3: Set of relevant parameters needed to calculate P (X3|evidence), for three different evidence cases
before and after applying Algorithms 1, 2.

• Output: The minimum set of monomials M which forms the polynomial expression
needed to compute the probability P (Y |E).

• Step 1: Using Algorithm 2, identify the set Θ of minimal sufficient parameters.

• Step 2: Obtain the set of monomials M by taking the cartesian product of the subsets
of parameters in Θ.

• Step 3: Using Rule 3, remove from M those monomials which contain a set of in-
compatible parameters.

Table 4 shows the set of minimum monomials obtained initially, and after applying Al-
gorithms 2 and 3, to the three evidence cases mentioned above. As an illustrative example,
we apply Algorithm 3 to obtain the feasible monomials in Case 2: Evidence X1 = 0.

• Step 1: The minimal sufficient set of parameters obtained by Algorithm 2 is:

Θ = {{θ200, θ210}; {θ3000, θ3001, θ3100, θ3101}},

as shown in Table 3.

• Step 2: The set of monomials obtained by taking the cartesian product is:

θ200θ3000, θ200θ3001, θ200θ3100, θ200θ3101

θ210θ3000, θ210θ3001, θ210θ3100, θ210θ3101.

Note that, at this step, the set M has been reduced from 64 to 8 candidate monomials.
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Initially
Case Monomials Number
No evidence Θ1 ∗ Θ2 ∗ Θ3 64
X1 = 0 Θ1 ∗ Θ2 ∗ Θ3 64
X2 = 0 Θ1 ∗ Θ2 ∗ Θ3 64

After Algorithm 2
Case Monomials Number
No evidence Θ1 ∗ Θ2 ∗ Θ3 64
X1 = 0 {θ200, θ210} ∗ {θ3000, θ3001, θ3100, θ3101} 8
X2 = 0 {θ10, θ11} ∗ {θ200, θ201} ∗ {θ3000, θ3010, θ3100, θ3110} 16

After Algorithm 3
Case Monomials Number
No evidence {{θ10} ∗ {θ200} ∗ {θ3000, θ3100}; {θ10} ∗ {θ210} ∗ {θ3001, θ3101};

{θ11} ∗ {θ201} ∗ {θ3010, θ3110}; {θ11} ∗ {θ211} ∗ {θ3011, θ3111}} 8
X1 = 0 {{θ200} ∗ {θ3000, θ3100}; {θ210} ∗ {θ3001, θ3101}} 4
X2 = 0 {θ10θ200θ3000, θ11θ201θ3110} 2

Table 4: Set of monomials needed to calculate P (X3|evidence), for three different evidence cases.

• Step 3: The parameters θ3001, and θ3101 indicate that X2 = 1. By Rule 3, they can not
appear in the same monomial with parameter θ200, which indicates that X2 = 0. The
same is true for parameters θ210, θ3000, and θ3100. Thus, four monomials are eliminated
and the set is reduced to:

θ200θ3000, θ200θ3110

θ210θ3001, θ210θ3101.

Thus, the number of monomials is reduced to 4.

As can be seen from Table 4, the number of candidate monomials has been reduced to a
minimum after applying Algorithm 3.

4.4 Computing the Polynomial Coefficients

The set of monomials M constructed by Algorithm 3 contains all the monomials needed to
compute P (Xi = j|E) for j = 0, . . . , ri − 1. This set can be divided into ri subsets where
the j-th subset Mj contains the set of monomials needed to compute P (Xi = j|E) for one
value of j. Let nj be the number of monomials in Mj and mjk be the k-th monomial in the
subset Mj. Note that the monomials are products of certain subsets of the parameters Θ.
From (5), the polynomial needed to compute P (Xi = j|E) is of the form

pj(Θ) =
∑

mjk∈Mj

cjkmjk ∝ P (Xi = j|E), j = 0, . . . , ri − 1. (6)

Thus, P (Xi = j|E) can be written as a linear convex combination of the monomials in Mj.
Our objective now is to compute the coefficients cjk.
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If the parameters Θ are assigned numerical values, say θ, then pj(θ) can be obtained by
replacing Θ by θ and using any numeric propagation method to compute P (Xi = j|E, Θ = θ).
Thus, we have

P (Xi = j|E , Θ = θ) ∝ pj(θ) =
∑

mjk∈Mj

cjkmjk. (7)

The term pj(θ) represents the unnormalized probability P (Xi = j|E , Θ = θ). Note that
in (7) all the monomials and pj(θ) are known numbers and the only unknowns are the
coefficients cjk, k = 1, . . . , nj . To compute these coefficients, we need to construct any set
of nj independent equations each is of the form (7). These equations can be obtained using
nj sets of distinct values of Θ. Let these values be denoted by θ1, . . . , θnj . Let Tj be the
nj ×nj non-singular matrix whose ik-th element is the values of the monomial mjk obtained
by replacing Θ by θi, the i-th set of numeric values of Θ. Let

cj =




cj1
...

cjnj


 , and pj =




P (Xi = j|E , Θ = θ1)
...

P (Xi = j|E , Θ = θnj)


 .

From (7) the nj independent linear equations can be written as

Tj cj = pj ,

which implies that the coefficients cjk are given by

cj = T−1
j pj.

The values of the coefficients cjk can then be substituted in (6) and the unnormalized prob-
ability pj(θ) is expressed as a function of Θ.

The above calculations are summarized in the following algorithm.

Algorithm 4 (Computes Polynomial Coefficients)

• Input: A Bayesian network (D, P ), a target node Xi and an evidential set E (possibly
empty).

• Output: The polynomial coefficients cjk in (6).

• Step 1: Use Algorithm 3 to identify the minimum set of monomials M needed to
calculate the probability P (Xi|E).

• Step 2: For each possible state j of node Xi: j = 0, . . . , (ri − 1). Build the subset Mj

by considering those monomials in M containing some parameter of the form θijπ, for
some π. Note that this process divide the set M in ri − 1 different sets of monomials.

• Step 3: For each possible state j of node Xi, calculate the coefficients cjk, k =
1, . . . , nj, as follows:

1. Construct the nj × nj nonsingular matrix Tj such that Tjcj = pj.

2. Use any numeric propagation method to compute the corresponding vector pj.
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M0 M1

θ200θ3000 θ210θ3001

θ200θ3100 θ210θ3101

Table 5: Required monomials to determine the indicated probabilities.

3. Compute cj = T−1
j pj.

Note that the matrix Tj in Step 3 is not unique. One can take advantage of this fact
and choose the values of Θ which produce a simple matrix Tj . The use of the extreme
values 0 or 1 for the parameters in Θ usually produces a simple form of Tj . In this case the
matrix Tj contains the so called canonical components. Algorithm 4, including this process
of constructing Tj , is illustrated using the network in Example 1 and Case 2: Evidence
X1 = 0.

• Step 1: In Section 4.3 we applied Algorithm 3 and found the minimal set of feasible
polynomials needed to calculate P (X3|X1 = 0). These monomials are shown in Table
5.

• Step 2: Table 5 also shows the subsets of monomials M0, M1, needed to calculate
P (X3 = 0|X1 = 0), and P (X3 = 1|X1 = 0), respectively.

• Step 3: For j = 0 we need to construct T0 using

p0(Θ) = c01m01 + c02m02

= c01θ200θ3000 + c02θ200θ3100. (8)

Since we have two coefficients, we need two independent equations which are obtained
by specifying two distinct sets of values of the parameters

Θ = {θ200, θ210, θ3000, θ3100, θ3001, θ3101}.

A simple way of selecting values of Θ is as follows. To obtain the i-th set θi we set all
the parameters in m0i equal to one and all other free parameters equal to zero. Thus,
the first set is obtained by setting (θ200, θ3000) = (1, 1) and all other free parameters
equal to zero. The second set is obtained by setting (θ200, θ3100) = (1, 1) and all other
free parameters equal to zero. This yields the two sets:

θ1 = (1, 0, 1, 0, 1, 0)
θ2 = (1, 0, 0, 1, 1, 0).

Note that both cases are obtained by setting the free parameter θ3101 equal to zero
(using Equation (3)). Thus, the two equations are:

p0(θ1) = c01 × 1 × 1 + c02 × 1 × 0 = c01,

p0(θ2) = c01 × 1 × 0 + c02 × 1 × 1 = c02.
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This implies that

T1 =
(

1 0
0 1

)
,

and the coefficients are given by

c0 = T−1
1 p0 = p0,

where

c0 = p0 =
(

p0(θ1)
p0(θ2)

)
=

(
1
1

)
. (9)

Note that p0(θ1) and p0(θ2) are obtained by performing two numerical propagations,
one using Θ = θ1 and the other using Θ = θ2.

We repeat this process for j = 1. The polynomial equation is

p1(Θ) = c11m11 + c12m12

= c11θ210θ3001 + c12θ210θ3101. (10)

We need two sets of values of Θ. The first set is obtained by setting (θ210, θ3001) = (1, 1)
and all other free parameters equal to zero. The second set is obtained by setting
(θ210, θ3101) = (1, 1) and all other free parameters equal to zero. This yields the two
sets:

θ1 = (0, 1, 1, 0, 1, 0)
θ2 = (0, 1, 1, 0, 0, 1)

and the two equations are:

p1(θ1) = c11 × 1 × 1 + c12 × 1 × 0 = c11

p1(θ2) = c11 × 1 × 0 + c12 × 1 × 1 = c12,

which implies that

T1 =
(

1 0
0 1

)
.

We use a numerical propagation method to compute p1(θ1) and p1(θ2) and obtain the
coefficients.

c1 =
(

p1(θ1)
p1(θ2)

)
=

(
1
1

)
, (11)

and Algorithm 4 concludes.

Note that the conditional probabilities can be obtained by substituting the values of the
coefficients in the corresponding equation. For example, for j = 0, we obtain the conditional
probability by substituting the values in (9) in (8):

P (X3 = 0|X1 = 0) ∝ θ200θ3000 + θ200θ3100,
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which agrees with the probability P (X3 = 0|X1 = 0) in Table 2 which were obtained by
symbolic propagation (note that θ3101 = 1 − θ3000).

It is interesting to note here that all coefficients cij in (9) and (11) are found to be 1.
This is, in fact, not a coincidence in this case because it can be easily shown that if all the
nodes of a network are chance nodes (as is the case here), then all coefficients are equal to
1 and there no need to execute Algorithm 4 in this case.

4.5 The Proposed Algorithm

Algorithm 4 gives the polynomial coefficients required to compute the unnormalized proba-
bilities given in (6). The required conditional probabilities P (Xi = j|E) can then be obtained
by normalizing the unnormalized probabilities. We, therefore, propose the following algo-
rithm for computing P (Xi = j|E). This algorithm is obtained by combining Algorithms 1-4
with the final normalizing step.

Algorithm 5 (Computes P (Xi|E))

• Input: A Bayesian network (D, P ), a target node Xi and an evidential set E (possibly
empty).

• Output: The probabilities P (Xi|E).

• Step 1: Construct a DAG D′ by augmenting D with a dummy node Vi and adding a
link Vi → Xi for every chance node Xi in D. The node Vi represents the parameters,
Θi, of node Xi.

• Step 2: Identify the set V of dummy nodes in D′ not d-separated from Y by E, and let
Θ be the set of all the parameters associated with the dummy nodes Vi that are included
in V .

• Step 3: If there is evidence, remove from Θ the parameters θijπ if xi 6= j for Xi ∈ E
(Rule 1).

• Step 4: If there is evidence, remove from Θ the parameters θijπ if the set of values of
parents’ instantiations π are incompatible with the evidence (Rule 2).

• Step 5: Obtain the set of monomials M by taking the cartesian product of the subsets
of parameters in Θ.

• Step 6: Using Rule 3, remove from M those monomials which contain a set of in-
compatible parameters.

• Step 7: For each possible state j of node Xi: j = 0, . . . , (ri − 1). Build the subset Mj

by considering those monomials in M containing some parameter of the form θijπ, for
some π. Note that this process divide the set M in ri − 1 different sets of monomials.

• Step 8: For each possible state j of node Xi, calculate the coefficients cjk, k =
1, . . . , nj, as follows:

1. Construct the nj × nj nonsingular matrix Tj such that Tjcj = pj.
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2. Use any numeric propagation method to compute the corresponding vector pj.

3. Compute cj = T−1
j pj.

• Step 9: Calculate the unnormalized probabilities pj(Θ), j = 0, . . . , ri − 1 and the
conditional probabilities P (Xi = j|E) = pj(Θ)/N , where

N =
ri−1∑

j=0
pj(Θ)

is the normalizing constant.

5 An Illustrative Example

To illustrate the proposed Algorithm 5 we use the following example. Suppose we have
a discrete Bayesian network consisting of seven variables X = {X1, X2, . . . , X7} with the
corresponding DAG D as given in Figure 4. The structure of D implies that the joint
probability of the set of nodes can be written as:

P (X) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3)P (X5|X3)P (X6|X4)P (X7|X4). (12)

For simplicity, but without loss of generality, assume that all nodes represent binary variables
with values in the set {0, 1}. This and the structure of the network in Figure 4 imply that
the joint probability distribution of the seven variables depends on 30 parameters. However,
only 15 of the parameters are free (because the probabilities in each conditional distribution
must add up to unity). These 15 parameters are given in Table 6. Note that six of the free
parameters (those associated with nodes X2 and X4) are assigned fixed numerical values
and the remaining nine are given symbolically. Thus, the chance nodes in this case are
{X1, X3, X5, X6, X7}.

X1

X2 X3

X5X4

X6 X7

Figure 4: An example of a six-node Bayesian Network.

For illustrative purposes, suppose now that the target node is X7 and that we wish to
compute the conditional probabilities P (X7|X1 = 1). Then, using Algorithm 5, we do the
following:
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Node Parameters
Xi Parents Xi = 0 Xi = 1
X1 None θ10 = P (X1 = 0) θ11 = P (X1 = 1)
X2 X1 θ200 = P (X2 = 0|X1 = 0) = 0.2 θ210 = P (X2 = 1|X1 = 0) = 0.8

θ201 = P (X2 = 0|X1 = 1) = 0.5 θ211 = P (X2 = 1|X1 = 1) = 0.5
X3 X1 θ300 = P (X3 = 0|X1 = 0) θ310 = P (X3 = 1|X1 = 0)

θ301 = P (X3 = 0|X1 = 1) θ311 = P (X3 = 1|X1 = 1)
X4 X2,X3 θ4000 = P (X4 = 0|X2 = 0, X3 = 0) = 0.1 θ4100 = P (X4 = 1|X2 = 0, X3 = 0) = 0.9

θ4001 = P (X4 = 0|X2 = 0, X3 = 1) = 0.2 θ4101 = P (X4 = 1|X2 = 0, X3 = 1) = 0.8
θ4010 = P (X4 = 0|X2 = 1, X3 = 0) = 0.3 θ4110 = P (X4 = 1|X2 = 1, X3 = 0) = 0.7
θ4011 = P (X4 = 0|X2 = 1, X3 = 1) = 0.4 θ4111 = P (X4 = 1|X2 = 1, X3 = 1) = 0.6

X5 X3 θ500 = P (X5 = 0|X3 = 0) θ510 = P (X5 = 1|X3 = 0)
θ501 = P (X5 = 0|X3 = 1) θ511 = P (X5 = 1|X3 = 1)

X6 X4 θ600 = P (X6 = 0|X4 = 0) θ610 = P (X6 = 1|X4 = 0)
θ601 = P (X6 = 0|X4 = 1) θ611 = P (X6 = 1|X4 = 1)

X7 X4 θ700 = P (X7 = 0|X4 = 0) θ710 = P (X7 = 1|X4 = 0)
θ701 = P (X7 = 0|X4 = 1) θ711 = P (X7 = 1|X4 = 1)

Table 6: Numeric and symbolic conditional probability tables associated with the network in Figure 4.

• Step 1: We need to add to the initial graph D shown in Figure 4 the nodes V1, V3, V5,
V6, V7, whose corresponding parameters sets are:

NodeV1 : Θ1 = {θ10, θ11},
Node V3 : Θ3 = {θ300, θ301, θ310, θ311},

Node V5 : Θ5 = {θ500, θ501, θ510, θ511},

Node V6 : Θ6 = {θ600, θ601, θ610, θ611},

Node V7 : Θ7 = {θ700, θ701, θ710, θ711}.

The result in shown in Figure 5.

X1

X2 X3

X5X4

X6 X7

V1

Θ1

V3

V6
V7

V5

Θ3

Θ5

Θ6
Θ7

Figure 5: Augmented graph after adding a dummy node Vi for every chance node Xi.
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M0 M1

θ301θ700 θ301θ710

θ301θ701 θ301θ711

θ311θ700 θ311θ710

θ311θ701 θ311θ711

Table 7: Required monomials to determine the indicated probabilities.

• Step 2: The set V of dummy nodes not d-separated from X7 by X1 is found to be
V = {V3, V7}. Thus, the set of all parameters associated with the dummy nodes that
are included in V is

Θ = {{θ300, θ301, θ310, θ311}; {θ700, θ701, θ710, θ711}}.

Note that at this step we have reduced the number of parameters from 18 to 8 (or the
number of free parameters from 9 to 4).

• Step 3: The set Θ does not contain parameters associated with the evidential node
X1. Thus, no reduction is possible applying Rule 1.

• Step 4: Since θ300 and θ310 are not compatible with the evidence, we can remove from
Θ these parameters obtaining the minimum set of sufficient parameters:

Θ = {{θ301, θ311}; {θ700, θ701, θ710, θ711}}.

• Step 5: The initial set of candidate monomials is given by taking the cartesian product
of the minimal sufficient subsets, that is, M = {θ301, θ311}∗{θ700, θ701, θ710, θ711}. Thus,
the candidate monomials are shown in Table 7.

• Step 6: The parents of nodes X3 and X7 do not have common elements, hence all
monomials shown in Table 7 are feasible monomials.

• Step 7: The sets of monomials M0 and M1 needed to calculate P (X7 = 0|X1 = 1)
and P (X7 = 1|X1 = 1), respectively, are shown in the Table 7.

• Step 8: For j = 0 we have the following polynomial equation:

p0(Θ) = c01m01 + c02m02 + c03m03 + c04m04

= c01θ301θ700 + c02θ301θ701 + c03θ311θ700 + c04θ311θ701. (13)

Thus, taking the canonical components

{θ1, θ2, θ3, θ4} = {(1, 0, 1, 0, 1, 0), (1, 0, 0, 1, 1,0), (0, 1, 1, 0, 1, 0), (0, 1, 0, 1, 1, 0)},

for the set of sufficient parameters Θ = {θ301, θ311, θ700, θ701, θ710, θ711}, we get the
following system of equations:
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X7 = 0
(θ301, θ311, θ700, θ701, θ710, θ711) p0(θ) monomials Coefficients

(1,0,1,0,1,0) 0.15 θ301θ700 c01 = 0.15
(1,0,0,1,1,0) 0.85 θ301θ701 c02 = 0.85
(0,1,1,0,1,0) 0.35 θ311θ700 c03 = 0.35
(0,1,0,1,1,0) 0.65 θ311θ701 c04 = 0.65

X7 = 1
(θ301, θ311, θ700, θ701, θ710, θ711) p1(θ) monomials Coefficients

(1,0,1,0,1,0) 0.15 θ301θ710 c11 = 0.15
(1,0,0,1,1,0) 0.85 θ301θ711 c12 = 0.85
(0,1,1,0,1,0) 0.35 θ301θ710 c13 = 0.35
(0,1,0,1,1,0) 0.65 θ311θ711 c14 = 0.65

Table 8: Monomial coefficients and their corresponding values of pj(θ).

c0 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







p0(θ1)
p0(θ2)
p0(θ3)
p0(θ4)




=




0.15
0.85
0.35
0.65




. (14)

Similarly, for j = 1 we get

c1 =




p1(θ1)
p1(θ2)
p1(θ3)
p1(θ4)




=




0.15
0.85
0.35
0.65




. (15)

Table 8 shows the results of calculating the numerical probabilities needed in above
expressions.

• Step 9: Finally, combining (13) and (14) we get the final polynomial expressions.

P (X7 = 0|X1 = 1) ∝ 0.15θ301θ700 + 0.85θ301θ701 + 0.35θ311θ700 + 0.65θ311θ701. (16)

Similarly, for X7 = 1 we get

P (X7 = 1|X1 = 1) ∝ 0.15θ301θ710 + 0.85θ301θ711 + 0.35θ311θ710 + 0.65θ311θ711. (17)

Now, we can apply the relationships among the parameters in (3) to simplify above
expressions. In this case, we consider: θ311 = 1 − θ301. Thus, we get:

P (X7 = 0|X1 = 1) ∝ 0.15θ301θ700 + 0.85θ301θ701 + (1 − θ301)(0.35θ700 + 0.65θ701)
= 0.35θ700 − 0.2θ301θ700 + 0.65θ701 + 0.2θ301θ701.

(18)
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Similarly,

P (X7 = 1|X1 = 1) ∝ 1 − 0.35θ700 + 0.2θ301θ700 − 0.65θ701 − 0.2θ301θ701. (19)

Finally, adding the unnormalized probabilities in (18) and (19) we get the normalizing
constant. In this case, the normalizing constant is 1. Thus, the probabilities P (X7 =
j|X1 = 1) are given in (18) and (19).

6 Lower and Upper Bounds for Probabilities

The symbolic expressions of conditional probabilities obtained by Algorithm 5 can also be
used to obtain lower and upper bounds for the marginal probabilities. These bounds can
provide valuable information for performing sensitivity analysis of a Bayesian network. To
compute these bounds, we first need the following result.

Theorem 3 (Bela Martos, 1964) If the linear fractional functional of a vector u,

c ∗ u − c0

d ∗ u − d0
, (20)

where c and d are vector coefficients and c0 and d0 are real constants, is defined in the convex
polyhedral Au ≤ a0, u ≥ 0, where A is a constant matrix and a0 is a constant vector, and
the denominator in (20) does not vanish in the polyhedral, then the functional reaches the
maximum at least in one of the vertices of the polyhedron.

It can be seen from Theorem 3 that lower and upper bounds are attained at one of the
canonical components (vertices of the feasible convex parameter set). Thus, from Theorem
3, the lower and upper bounds for the ratio of polynomial probabilities P (Xi = j|E) are
given by the minimum and maximum, respectively, of the numerical values attained by
this probability over all the possible canonical components associated with the parameters
contained in Θ, i.e. for all possible combinations of extreme values of the parameters (the
vertices of the parameters set). As an example we compute the lower and upper bounds
associated with all the variables in the Bayesian network in Section 5, first for the case of no
evidence and second for the case of evidence X2 = 0. For comparison purposes, we reduce
the number of symbolic parameters from 9 to 5 (by replacing the parameters of variable
X3 and X6 by numeric values, that is, θ300 = 0.3, θ301 = 0.4, θ600 = 0.5, θ601 = 0.3), and
then compute the bounds and compare them with those obtained in the 9-parameter cases.
Tables 9 and 10 show the lower and upper bounds for the four different cases.

Several remarks can be made here:

1. The range (the difference between lower and upper bounds) of probabilities is non-
decreasing in the number of symbolic parameters. For example, the ranges for the
5-parameter case are no larger than those for the 9-parameter case (e.g., in Table 10,
the range of X6 reduces from 1 to 0.004). These results are expected, because less
symbolic parameters means less uncertainty.

21



Case 1: 9 parameters Case 2: 5 parameters
Node State Lower Upper Range Lower Upper Range
X1 0 0.000 1.000 1.000 0.000 1.000 1.000

1 0.000 1.000 1.000 0.000 1.000 1.000
X2 0 0.200 0.500 0.300 0.200 0.500 0.300

1 0.500 0.800 0.300 0.500 0.800 0.300
X3 0 0.000 1.000 1.000 0.300 0.400 0.100

1 0.000 1.000 1.000 0.600 0.700 0.100
X4 0 0.150 0.380 0.230 0.270 0.320 0.050

1 0.620 0.850 0.230 0.680 0.730 0.050
X5 0 0.000 1.000 1.000 0.000 1.000 1.000

1 0.000 1.000 1.000 0.000 1.000 1.000
X6 0 0.000 1.000 1.000 0.354 0.364 0.010

1 0.000 1.000 1.000 0.636 0.646 0.010
X7 0 0.000 1.000 1.000 0.000 1.000 1.000

1 0.000 1.000 1.000 0.000 1.000 1.000

Table 9: Lower and upper bounds for the initial marginal probabilities (no evidence).

2. By comparison with the bounds in Table 9, we see that the ranges in Table 10 are
generally smaller than those in Table 9. Again, these results are expected because
more evidence means less uncertainty.

7 Conclusions

The symbolic structure of prior and posterior probabilities of Bayesian networks are char-
acterized as either polynomials or ratios of two polynomial functions of the parameters,
respectively. Not all terms in the polynomials, however, are relevant to the computations
of the probabilities of a target node. We present methods for identifying the set of relevant
parameters. This leads to substantial computational savings. In addition, an important
advantage of the proposed method is that it can be performed using the currently available
numeric propagation methods, thus making both symbolic computations and sensitivity
analysis feasible even for large networks.
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(DGICYT) (project PB94-1056), for support of this work.

22



Case 1: 9 parameters Case 2: 5 parameters
Node State Lower Upper Range Lower Upper Range
X1 0 0.000 1.000 1.000 0.000 1.000 1.000

1 0.000 1.000 1.000 0.000 1.000 1.000
X2 0 1.000 1.000 0.000 1.000 1.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000
X3 0 0.000 1.000 1.000 0.300 0.400 0.100

1 0.000 1.000 1.000 0.600 0.700 0.100
X4 0 0.100 0.300 0.200 0.220 0.240 0.020

1 0.700 0.900 0.200 0.760 0.780 0.020
X5 0 0.000 1.000 1.000 0.000 1.000 1.000

1 0.000 1.000 1.000 0.000 1.000 1.000
X6 0 0.000 1.000 1.000 0.344 0.348 0.004

1 0.000 1.000 1.000 0.652 0.656 0.004
X7 0 0.000 1.000 1.000 0.000 1.000 1.000

1 0.000 1.000 1.000 0.000 1.000 1.000

Table 10: Lower and upper bounds for the conditional probabilities P (Xi|X2 = 0).
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