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ABSTRACT

In this paper we first analyze the problem of equivalence of differential, functional and
difference equations and give methods to move between them. We also introduce functional
networks, a powerful alternative to neural networks, which allow neural functions to be
different, multidimensional, multi-argument and constrained by link connections, and use
them for predicting values of magnitudes satisfying differential, functional and/or difference
equations, and for obtaining the difference and differential equation associated with a set of
data. The estimation of the differential or difference equation coefficients is done by simply
solving systems of linear equations, in the cases of equally or unequally spaced or missing
data points. Some examples of applications are given to illustrate the method.
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1 Introduction

In this paper we analyze the problem of equivalence of differential, functional and difference
equations and give methods to move between these representations. We motivate the paper
by giving the following illustrative example.

Consider the system in Figure 1 consisting of a mass m supported by two springs and a
viscous damper or dashpot (see Richart, Hall and Woods [15]). The spring constants k/2
are defined as the change in force per unit change in length of the spring. The force in the
dashpot is directly proportional with a constant m to velocity z′(t) and has a value computed
from the viscous coefficient.

The differential equation of motion of the system in Figure 1 may be obtained by making
use of the Newton’s second law and measuring displacement from the rest position. The
equilibrium of vertical forces at position z(t) leads to the differential equation

mz′′(t) + cz′(t) + kz(t) = f(t). (1)

As it will be shown in this paper, in the case of regular damping (c2 < 4km), the differ-
ential equation (1) is equivalent (in the sense of having the same solutions) to the functional
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Figure 1: One degree of freedom system with springs and viscous damping.

equation

z(t + u2) = α0(u1, u2)z(t) + α1(u1, u2)z(t + u1) + δ(t; u1, u2), (2)

where

α0(u1, u2) =
exp(au2)(cos(b u2) sen (b u1)− cos(b u1) sen (b u2))

sen (b u1)
,

α1(u1, u2) =
sen (b u2)exp(a(u2 − u1))

sen (b u1)
,

(3)

with a and b arbitrary constants, and δ(t; u1, u2) is a function associated with a particular
solution.

Similarly, the differential equation (1) is equivalent to the difference equation

z(t + 2u) = α0(u)z(t) + α1(u)z(t + u) + δ(t), (4)

where α0(u) and α1(u) are functions of u (constants if u is assumed constant) and function
δ(t) is associated with a particular solution.

The important thing here is that Equations (2) and (4) are exact in the sense that they
gives exact values of the solution at any point or the grid points (t, t+u, t+2u, . . . t+nu, . . .),
respectively.

Equation (2) can be represented by the network in Figure 2, where I is used to refer to
the identity function. Similarly, Equation (4) can be represented by the network in Figure
3.

Any reader, who is familiar with artificial neural networks can immediately think of one
of such networks to reproduce the two different, but equivalent, approaches to differential
Equation (1) of the problem above.
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Figure 2: Functional network associated with functional equation (2).

Artificial neural networks have been recognized as a powerful tool to learn and reproduce
systems in various fields of applications (see Kohonen (1984), McClelland and Rumelhart
(1989), Freeman and Skapura (1991), Hertz, Krogh and Palmer (1991), Freeman (1994),
Adeli and Hung (1996), etc.). Artificial neurons parallel the brain behavior and consist of
one or several layers of neurons connected by links. Each artificial neuron computes a scalar
output from a linear combination of inputs, using a given scalar function, which is assumed
the same for all neurons. The differences between two neurons are due to either the number
of input components or to their associated weights. Since the neural function is given, only

Figure 3: Functional network associated with difference equation (4).
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the structure (links) and the weights are learned using well known learning methods, as the
backpropagation method.

However, the networks in Figures 2 and 3 do not fit into the artificial neural paradigm.
Gómez-Nesterḱın (1997), Castillo (1997a,b), and Castillo, Cobo and Gómez-Nesterḱın

(1997)), have introduced functional networks as a powerful generalization of artificial neural
networks, which provide a new paradigm in which the above networks perfectly fit.

In this paper we use functional networks to approximate solutions of differential, func-
tional and difference equations and to obtain the differential equation associated with a set
of data.

In Section 2 we make an introduction to functional networks and show the main differences
between neural and functional networks.

In Section 3 we show the equivalence between differential, functional and difference equa-
tions. More precisely, in Subsection 3.1 we give methods for obtaining a functional equation
which is equivalent to a given differential equation, in Subsection 3.2 we give methods for
obtaining a difference equation which is equivalent to a given functional equation, and in
Subsection 3.3 we give methods for obtaining a differential equation which is equivalent to
a given difference equation, thus, closing the cycle.

In Section 4 we give several illustrative examples of how to use the previous results for
approximating differential, functional and difference equations by functional networks. The
cases of equally and unequally spaced data are analyzed. Finally, in Section 5 we give some
conclusions and recommendations.

2 Functional networks

In this section we make a short introduction to functional networks by: (a) describing its
main components, (b) discussing differences between neural and functional networks, and
(c) giving the steps to work with functional networks.

2.1 Components of a functional network

The main components of a functional network are:

1. A layer of input units. This layer contains the input information. In the network in
Figure 2, this input layer consists of the units z(t + u1), u1, u2, z(t) and t.

2. A set of intermediate layers. It is an optional layer. In Figure 2 there are two interme-
diate layers that contain units x1 to x5 and x6 to x8, respectively.

3. A layer of output units. This layer consists of the output units, which contain the
output information. In Figure 2 this output layer reduces to the unit z(t + u2).
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4. One or several layers of neurons. A neuron is a computing unit which evaluates a set
of input values and outputs one or several values. Neurons are represented by circles
with their names inside. In Figure 2 the neurons, from top to bottom and left to right,
are I, α, I, δ,×,×, I and +.

5. A set of directed links. They connect input, intermediate and output units with neurons.
They are represented by arrow, that indicate the information flow direction in the
network (see Figure 2).

2.2 Differences between neural and functional networks

The main differences between functional networks and neural networks are (see Figure 2):

1. In functional networks the neural functions have several arguments, while in neural
networks they have only one. See, for example, neurons denoted α and δ in Figure 2;
they have two and three input arguments, respectively.

2. In functional networks the neural functions can be multivariate, while in neural networks
they are univariate. See, for example, the bivariate neuron α in Figure 2.

3. In a given functional network the neural functions can be different, while in neural
networks they are identical. Neurons α, δ, I,× and + in Figure 2 are different.

4. In functional networks there are no weights, while in neural networks there are weights.

5. In functional networks the neuron outputs can be coincident, while in neural networks
neuron outputs are different. For example we could connect the neuron δ with node x3.
Note that this is not possible with standard neural networks.

6. In functional networks neural functions are learned, while in neural networks weights
are learned. For example, in the network in Figure 2 we learn neurons α and δ.

2.3 Working with functional networks

Next, we describe how functional networks can be used, describing step by step.

Step 1 (Statement of the problem): Understanding of the problem to be solved. This is a
crucial step.

Step 2 (Initial topology): Based on the knowledge of the problem, the topology of the initial
functional network is selected. For example, the vibrating functional (2) and difference (4)
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equations of the mass problem has led to the two functional networks in Figures 2 and 3,
respectively.

Step 3 (Simplification): In this step, the initial functional network is simplified using func-
tional equations. It must be noted that when there are coincident neural outputs, they must
coincide in values, and this leads to a functional equation which allows simplifying the initial
topology of the functional network. This is not the case of the functional networks in Figures
2 and 3. Thus, no simplification is possible here. For an illustration of this step, the reader
is referred to Castillo, Cobo, Gutiérrez and Pruneda (1998).

Step 4 (Uniqueness of representation): In this step, uniqueness conditions for the neural
functions to be unique must be found. For example, in the case of the network in Figure 2,
we can wonder about the existance of two sets of functions {α0, α1, δ} and {α∗0, α∗1, δ∗} such
that

z(t + u2) = α0(u1, u2)z(t) + α1(u1, u2)z(t + u1) + δ(t; u1, u2)
= α∗0(u1, u2)z(t) + α∗1(u1, u2)z(t + u1) + δ∗(t; u1, u2),

(5)

that is, about the existence of two different functional networks with the same structure
leading to the same outputs for the same inputs.

Step 5 (Data collection): For the learning to be possible we need some data. Consider, for
example, that we have available the data given in Table 2, corresponding to the vibrating
mass displacements z corresponding to different times t.

Step 6 (Approximating neural functions): The neural functions are approximated by a para-
metric family (normally a finite linear combination of basic functions). In Section 4 we give
some illustrative examples.

Step 7 (Learning): At this point, the neural functions are estimated (learned), by using some
minimization methods. In functional networks, this learning process consists of obtaining
the neural functions based on a set of data D = {(Ii, Oi)|i = 1, . . . , n} given in a previous
step, where Ii and Oi are the i-th inputs and outputs, respectively, and n is the sample size.

The learning process is based on minimizing the sum of squared errors of the actual and
the observed outputs for the given inputs

Q =
n∑

i=1

(Oi − F (Ii))
2 , (6)

where F is the compound function given the outputs, as a function of the inputs, for the
given network topology.
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t z t z t z t z t z
0.0 0.100 0.04 0.177 0.08 0.241 0.12 0.277 0.16 0.278
0.2 0.238 0.24 0.155 0.28 0.036 0.32 -0.113 0.36 -0.277
0.4 -0.441 0.44 -0.590 0.48 -0.708 0.52 -0.781 0.56 -0.800
0.6 -0.760 0.64 -0.660 0.68 -0.507 0.72 -0.31 0.76 -0.086
0.8 0.151 0.84 0.381 0.88 0.586 0.92 0.752 0.96 0.867
1.0 0.924 1.04 0.921 1.08 0.861 1.12 0.754 1.16 0.612
1.2 0.450 1.24 0.284 1.28 0.130 1.32 0.001 1.36 -0.093
1.4 -0.145 1.44 -0.156 1.48 -0.130 1.52 -0.074 1.56 -0.000
1.6 0.077 1.64 0.144 1.68 0.188 1.72 0.199 1.76 0.170
1.8 0.098 1.84 -0.012 1.88 -0.153 1.92 -0.313 1.96 -0.478
2.0 -0.632 2.04 -0.758 2.08 -0.843 2.12 -0.876 2.16 -0.850
2.2 -0.764 2.24 -0.623 2.28 -0.435 2.32 -0.214 2.36 0.023
2.4 0.258 2.44 0.474 2.48 0.654 2.52 0.786 2.56 0.861
2.6 0.876 2.64 0.833 2.68 0.740 2.72 0.608 2.76 0.452
2.8 0.287 2.84 0.130 2.88 -0.005 2.92 -0.107 2.96 -0.169
3.0 -0.189 3.04 -0.170 3.08 -0.119 3.12 -0.047 3.16 0.032
3.2 0.105 3.24 0.158 3.28 0.180 3.32 0.163 3.36 0.105
3.4 0.006 3.44 -0.126 3.48 -0.282 3.52 -0.446 3.56 -0.603
3.6 -0.737 3.64 -0.834 3.68 -0.880 3.72 -0.870 3.76 -0.799
3.8 -0.671 3.84 -0.494 3.88 -0.280 3.92 -0.045 3.96 0.194
4.0 0.417

Table 1: Observed displacements z of system in Figure 1 for different equally spaced times t.

In Section 4 we give several illustrative examples of the learning process.

Step 8 (Model validation): The test for quality and/or the cross validation of the model
is performed. Checking the obtained error is important to see whether or not the selected
family of approximating functions are adequate. A cross validation of the model is also
convenient.

Step 9 (Use of the model): If the validation process is satisfactory, the model is ready to
be used.
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3 Differential, functional and difference equations. The equiva-
lence problem

In this section we show the relations between differential and functional equations. To this
end we follow the process described in the following diagram

Differential⇒ Functional ⇒ Difference⇒ Differential.

3.1 From differential equations to functional equations

First we show that given a linear differential equation with constant coefficients we can
obtain an equivalent functional equation, in the sense of having the same sets of solutions.

The following theorem shows that if z(t) satisfies a linear differential equation with con-
stant coefficients it also satisfies a functional equation and, more important, gives a way for
obtaining a functional equation equivalent to a given differential equation.

Theorem 1 If z(t) satisfies a linear differential equation of order n with constant coeffi-
cients, then it also satisfies the functional equation

z(t + un) =
n−1∑
s=0

αs(u1, . . . , un)z(t + us) + δ(t; u1, . . . , un),∀t, u1, . . . , un, (7)

where

δ(t; u1, . . . , un) = h(t + un)−
n−1∑
s=0

αs(u1, . . . , un)h(t + us) (8)

and h(t) is a particular solution.

Proof: Since z(t) satisfies a linear differential equation of order n with constant coeffi-
cients, it must be of the form:

z(t) =
m∑

i=1

Pi(t) exp(wit) + h(t), (9)

where

Pi(t) =
ki−1∑
�=0

c�it
� (10)

is a polynomial of degree ki − 1 (where ki is the order of multiplicity of the associated
root of its characteristic equation), wi; i = 1, . . . , m are the roots (real or imaginary) of its
characteristic equation, and h(t) is a particular solution.
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Letting
z∗(t) = z(t)− h(t), (11)

Expressions (9) and (10) lead to

z∗(t) =
m∑

i=1

exp(wit)
ki−1∑
�=0

c�it
�, (12)

Using Lemma 2, in the appendix, we can write

Pi(t + u) =
ki∑

s=1

fis(t)gis(u),

and then

z∗(t + u) =
m∑

i=1
exp(wi(t + u))

ki−1∑
�=0

c�i(t + u)�

=
m∑

i=1

ki∑
s=1

[exp(wit)fis(t)] [exp(wiu)gis(u)]

=
n∑

j=1
f ∗j (t)g∗j (u),

(13)

where n =
m∑

i=1
ki, and f ∗j (t) and g∗j (u) are functions of the form exp(wit)fis(t) and exp(wiu)gis(u),

respectively.
Using (13) for u = 0, u1, . . . , un we get

z∗(t) =
n∑

j=1
f ∗j (t)g∗j (0)

z∗(t + u1) =
n∑

j=1
f ∗j (t)g∗j (u1)

. . . . . . . . .

z∗(t + un) =
n∑

j=1
f ∗j (t)g∗j (un),

(14)

that is, 


z∗(t)
z∗(t + u1)

. . .

z∗(t + un)


 = f ∗1 (t)




g∗1(0)
g∗1(u1)

. . .

g∗1(un)


 + . . . + f ∗n(t)




g∗n(0)
g∗n(u1)

. . .

g∗n(un)


 , (15)

which shows that the left hand side vector is a linear combination of the right hand side
vectors, and then

D =

∣∣∣∣∣∣∣∣∣

z∗(t) g∗1(0) . . . g∗n(0)
z∗(t + u1) g∗1(u1) . . . g∗n(u1)

. . . . . . . . . . . .

z∗(t + un) g∗1(un) . . . g∗n(un)

∣∣∣∣∣∣∣∣∣
= 0. (16)
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Calculating the determinant in (16) by its first column we get

D =
n∑

s=0

γs(u1, . . . , un)z∗(t + us) = 0, (17)

where u0 = 0. Without loss of generality, we can assume that γn(u1, . . . , un) �= 0, and then

z∗(t + un) = −
n−1∑
s=0

γs(u1, . . . , un)

γn(u1, . . . , un)
z∗(t + us) =

n−1∑
s=0

αs(u1, . . . , un)z∗(t + us), (18)

where αs(u1, . . . , un) =
−γs(u1, . . . , un)

γn(u1, . . . , un)
.

Finally, from (11) and (18) the value of z(t + un) becomes

z(t + un) =
n−1∑
s=0

αs(u1, . . . , un)z(t + us) + δ(t; u1, . . . , un). (19)

Example 1 (A simple example). Consider the differential equation

z′′(x) + (a + b)z′(x) + abz(x) = 0 (20)

with general solution
z(x) = c1 exp(−ax) + c2 exp(−bx). (21)

Writing (21) for x, x + u1 and x + u2 we get

z(x) = c1 exp(−ax) + c2 exp(−bx)
z(x + u1) = c1 exp(−a(x + u1)) + c2 exp(−b(x + u1))
z(x + u2) = c1 exp(−a(x + u2)) + c2 exp(−b(x + u2)),

(22)

and eliminating c1 and c2 we obtain

z(x + u2) = α0(u1, u2)z(x) + α1(u1, u2)z(x + u1) (23)

where

α0(u1, u2) =
exp(au1 + bu2)− exp(bu1 + au2)

exp((a + b)u2)(exp(au1)− exp(bu1))
,

α1(u1, u2) =
exp((a + b)u1)(exp(au2)− exp(bu2))

exp((a + b)u2)(exp(au1)− exp(bu1))
,

(24)

which is the functional equation equivalent to differential equation (20).
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Example 2 (The vibrating mass example). Consider again the vibrating mass given at
the introduction.

The general solution of Equation (1) is

z(t) = zh(t) + zp(t), (25)

where zh(t) is the general solution of the homogeneous equation and zp(t) is a particular
solution. Suppose (case of regular damping c2 < 4km) that the associated polynomial have
two complex roots a± bi, then

zh(t) = c1 exp(at) cos(bt) + c2 exp(at) sen (bt). (26)

Taking u1 and u2 arbitrary real numbers, we get

zh(t) = c1 exp(at) cos(bt) + c2 exp(at) sen (bt),
zh(t + u1) = c1 exp(a(t + u1)) cos(b(t + u1)) + c2 exp(a(t + u1)) sen (b(t + u1)),
zh(t + u2) = c1 exp(a(t + u2)) cos(b(t + u2)) + c2 exp(a(t + u2)) sen (b(t + u2)).

(27)

Eliminating c1 and c2 from (27), we obtain Equation (2) with (3). This proves the state-
ment made at the introduction of the paper.

3.2 From functional equations to difference equations

Secondly, we show that given a functional equation we can obtain an equivalent difference
equation, in the sense of having the same solutions at the grid points.

From Theorem 1 we immediately get the following corollary, which shows that if z(t)
satisfies a linear differential equation with constant coefficients it also satisfies a difference
equation and, more important, it gives a way of obtaining one from the other and vice versa.

Corollary 1 If z(t) satisfies a linear differential equation of order n with constant coeffi-
cients, then it satisfies the difference equation

z(t + nu) =
n−1∑
s=0

αs(u)z(t + su) + δ(t, u), (28)

where

δ(t, u) = h(t + nu)−
n−1∑
s=0

αs(u)h(t + su). (29)

Proof: Letting uj = ju; j = 1, . . . , n in (7) and (8), we get (28) and (29).
Since we use the functional equation (7) we show how to go from a functional equation

to a difference equation.
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Example 3 (The vibrating mass example). Consider again the vibrating mass example.
In the case of equally spaced data, making u1 = u and u2 = 2u, as indicated in the

introduction of the paper, we obtain Equation (4):

z(t + 2u) = α0(u)z(t) + α1(u)z(t + u) + δ(t), (30)

where from (3) we get
α0(u) = − exp(2au),
α1(u) = 2 cos(bu) exp(au).

(31)

3.3 From difference to differential equations

Third, we show that given a difference equation we can obtain an equivalent differential
equation, thas is, having the same solutions at the grid points. To this aim we need the
following lemma.

Lemma 1 The general solution of the linear difference equation

z(t + nu) =
n−1∑
s=0

asz(t + su) (32)

is

z(t) =
m∑

i=1

Qi(
t

u
)w

t
u
i , (33)

where Qi(t) and wi are the polynomials and their associated characteristic m different roots
of the solution

g(t) =
m∑

i=1

Qi(t)w
t
i . (34)

of the difference equation

g(t + n) =
n−1∑
s=0

asg(t + s). (35)

Proof: Assume that the solution of (35) is of the form (34). Letting

z(t) = g(
t

u
)⇔ g(t) = z(ut) (36)

and

t∗ =
t

u
, (37)
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(32) transforms to

g(t∗ + n) =
n−1∑
s=0

asg(t∗ + s), (38)

which is of the form (35) and has solution (34).
Thus, considering (36) and (37) we finally get (33).

The following Theorem 2 and Algorithm 1 solve our problem.

Theorem 2 For a differential equation with constant coefficients to have the same solution
as a difference equation, the characteristic equation of the differential equation must have as
roots the logarithms of the roots of the characteristic equation of the difference equation with
the same multiplicities.

Proof: Assume that we have a linear differential equation in z(t) with constant coeffi-
cients, i.e., with general solution

z(t) =
m∑

i=1

Pi(t) exp(wit) + h(t), (39)

where

Pi(t) =
ki−1∑
�=0

c�it
� (40)

is a polynomial of degree ki − 1 (where ki is the order of multiplicity of the associated
root of its characteristic equation), wi; i = 1, . . . , m are the roots (real or imaginary) of its
characteristic equation, and h(t) is a particular solution.

In order to have an equivalent difference equation both must have the same solution, so
we take Qi(t) = Pi(ut) and wi = exp(wiu), i = 1, . . . , m, since

z(t) =
m∑

i=1

Pi(t) exp(wit) + h(t) =
m∑

i=1

Qi(
t

u
)w

t
u
i + h(t). (41)

That is, the characteristic equation of the differential equation must have as roots the
logarithms of the roots of the difference equation with the same multiplicities.

This suggest the following algorithm for obtaining the equivalent differential equation
associated with a given difference or functional equation.

Algorithm 1 Obtaining a differential equation equivalent to a linear difference
equation with constant coefficients.
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• Input: A linear difference equation with constant coefficients:

z(t + nu) =
n−1∑
s=0

asz(t + su) + h(t). (42)

• Output: The equivalent differential equation.

1. Step 1: Find the roots wi : i = 1, . . . , m and their associated multiplicities ki of the
characteristic equation of (42):

pn −
n−1∑
s=0

asp
s = 0. (43)

2. Step 2: Obtain the characteristic equation of the equivalent linear differential equation,
using as roots the logarithms of the above roots divided by u and the same multiplicities:

m∏
i=1

(q − 1

u
log(wi))

ki = 0. (44)

3. Step 3: Expand the characteristic equation and calculate the corresponding coefficients
bs; s = 1, . . . , n− 1:

m∏
i=1

(q − 1

u
log(wi))

ki = qn +
n−1∑
s=0

bsq
s = 0. (45)

4. Step 4: Return the equivalent differential equation:

z(n) +
n−1∑
s=0

bsz
(s) = h(t). (46)

Example 4 If we consider the difference equation

f(x + 3) = 3f(x + 2)− 3f(x + 1) + f(x).

Its characteristic equation
r3 − 3r2 + 3r − 1 = 0,

has the root w1 = 1 with multiplicity k1 = 3.
According to (44), the characteristic equation of the equivalent differential equation is

(q − log 1)3 = q3 = 0.

Thus, the equivalent differential equation becomes

f ′′′(x) = 0.
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Remark 1 It is well known that there are polynomials in which the roots are quite sensitive
to small changes in the coefficients (see Atkinson (1989)). This represents an important
problem in the process of finding a differential equation using a set of observed data, because
the coefficients of the difference equation (28) are approximated, so the wi roots in Algorithm
1 can content small errors leading to significant errors in the differential equation. In order
to avoid this problem, it is necessary to analyze the stability of the difference equation.

Suppose that C(p) = 0 is the characteristic equation of (42) and wi, i = 1, . . . , m are the
associated roots with multiplicities ki, respectively. We define a perturbation C(p) + εD(p),
where D(p) is a polynomial with degree(D) ≤ degree(C), then to estimate the modified roots
we use

wi(ε) ≈ wi + γiε
1/ki , (47)

where

γki
i =

−ki!C(wi)

D(ki)(wi)
. (48)

Example 5 Consider again the difference equation in Example 4. A small perturbation of
value 0.01 in the f(x) coefficient, leads to a stability coefficient γ1 = 0.107722+0.18658i and
to the equation

0.00996273f(x) + 0.0149362f ′(x)− 0.00995033f ′′(x) + f ′′′(x) = 0.

The new characteristic equation, instead of a real multiple solution of multiplicity three,
has two complex roots. In other words, the new functional form (with sines and cosines) of
the solution has nothing to do with the old solution (with polynomial functions).

4 Approximations using functional networks

In this section we use functional networks to approximate functional and difference equations.
We consider two cases: (a) equally space data, and (b) unequally spaced data.

4.1 Equally spaced data

We start by analyzing the case with equally spaced data, as those in Table 1.
In the case of equally spaced data (constant u), we use Equation (4), where α0(u) and

α1(u) for constant u are constants, and function δ(t) can be approximated by a linear com-
bination of a set of linearly independent functions {φi(t)|i = 1, . . . , m}.

If z(tj) for j = 0, . . . , n are the observed data for equally spaced times tj, according to
Corollary 1, the solution of a differential equation of order k with constant coefficients in
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zj+k

zj

j

zj+k+2

zj+k-1

f

g

+

g(j) =
k+m∑
i=k+1

ciφi−k
j

f(zj , . . . , zj+k−1) =
k∑
i=1

cizj+i−1

z(t) can be approximated using the model

zj+k =
k∑

i=1

cizj+i−1 +
k+m∑

i=k+1

ciφ
j
i−k; j = 0, . . . , n− k. (49)

where u = tj+1 − tj for j = 0, . . . , n − 1, zj = z(t0 + ju), φj
i = φi(t0 + ju) and c1, . . . , ck+m

are constant coefficients.
The functional network associated with (49) is given in Figure 4.

Figure 4: Functional network associated with Equation (49).

The error ej+k at the point tj+k = t0 + (j + k)u using this approximation becomes

ej+k = zj+k −
k∑

i=1

cizj+i−1 −
k+m∑

i=k+1

ciφ
j
i−k; j = 0, . . . , n− k. (50)

Thus, the parameters c1, . . . , ck+m can be estimated by minimizing

Q =
n−k∑
j=0

e2
j+k =

n−k∑
j=0


zj+k −

k∑
i=1

cizj+i−1 −
k+m∑

i=k+1

ciφ
j
i−k




2

. (51)

The minimum is obtained for

−1

2

∂Q

∂cr

=
n−k∑
j=0


zj+k −

k∑
i=1

cizj+i−1 −
k+m∑

i=k+1

ciφ
j
i−k


 zj+r−1 = 0; r = 1, . . . , k

−1

2

∂Q

∂cr

=
n−k∑
j=0


zj+k −

k∑
i=1

cizj+i−1 −
k+m∑

i=k+1

ciφ
j
i−k


 φj

r−k = 0; r = k + 1, . . . , k + m

(52)
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This leads to the system of linear equations with k + m unknowns

Ac = b⇔




A11 | A12

−− + −−
A21 | A22







c1

−−
c2


 =




b1

−−
b2


 (53)

From (52) we can write the expressions for each element ars of A and br of b:

ars =
n−k∑
j=0

zj+s−1zj+r−1 if r = 1, . . . , k; s = 1, . . . , k

ars =
n−k∑
j=0

φj
s−kzj+r−1 if r = 1, . . . , k; s = k + 1, . . . , k + m

ars =
n−k∑
j=0

zj+s−1φ
j
r−k if r = k + 1, . . . , k + m; s = 1, . . . , k

ars =
n−k∑
j=0

φj
s−kφ

j
r−k if r = k + 1, . . . , k + m; s = k + 1, . . . , k + m

br =
n−k∑
j=0

zj+kzj+r−1 if r = 1, . . . , k

br =
n−k∑
j=0

zj+kφ
j
r−k if r = k + 1, . . . , k + m

(54)

Finally, from (53) we get
c = A−1b, (55)

which gives the solution.

Figure 5: Observed data z for the displacement of system in Figure 1.

Returning to the system in Figure 1, if we use the functions

{φ1(t), φ2(t), φ3(t), φ4(t), φ5(t)} = {1, sen (t), cos(t), sen (2t), cos(2t)}.
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t z t z t z t z t z
0.000 0.100 0.001 0.102 0.009 0.119 0.028 0.155 0.040 0.177
0.258 0.105 0.308 -0.067 0.321 -0.117 0.327 -0.140 0.331 -0.155
0.413 -0.491 0.494 -0.739 0.534 -0.794 0.561 -0.800 0.588 -0.777
0.639 -0.664 0.640 -0.661 0.660 -0.588 0.666 -0.565 0.695 -0.436
0.741 -0.195 0.781 0.038 0.781 0.039 0.784 0.056 0.813 0.230
0.831 0.333 1.050 0.915 1.100 0.826 1.110 0.786 1.200 0.459
1.220 0.377 1.370 -0.109 1.450 -0.154 1.580 0.036 1.580 0.048
1.590 0.054 1.610 0.094 1.610 0.097 1.620 0.110 1.660 0.166
1.780 0.135 1.790 0.125 1.820 0.057 1.820 0.052 1.890 -0.188
1.950 -0.437 1.960 -0.487 1.970 -0.520 1.980 -0.542 2.040 -0.747
2.120 -0.876 2.140 -0.871 2.220 -0.707 2.230 -0.646 2.330 -0.178
2.340 -0.099 2.410 0.315 2.420 0.385 2.430 0.434 2.450 0.517
2.490 0.682 2.600 0.877 2.610 0.867 2.670 0.767 2.710 0.640
2.740 0.545 2.760 0.432 2.820 0.223 2.830 0.164 2.840 0.115
3.000 -0.189 3.001 -0.189 3.040 -0.173 3.090 -0.109 3.110 -0.066
3.110 -0.065 3.200 0.103 3.220 0.136 3.260 0.173 3.310 0.172
3.310 0.169 3.340 0.133 3.420 -0.047 3.480 -0.300 3.500 -0.345
3.520 -0.437 3.520 -0.453 3.630 -0.817 3.690 -0.884 3.700 -0.883
3.750 -0.823 3.750 -0.821 3.770 -0.769 3.770 -0.758 3.780 -0.750
3.850 -0.454 3.880 -0.294 3.940 0.057 3.950 0.127 3.970 0.238

Table 2: Observed displacements z of system in Figure 1 for different random times t.
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and the equally spaced observed displacements for different times shown in Table 1 or Figure
5, we get:

A =




24.4 23.6 −3.67 5.08 3.56 −4.46 −1.63
23.6 24.4 −3.58 4.8 3.52 −4.12 −2.1
−3.67 −3.58 99. 41.7 −19.1 13.8 11.9
5.08 4.8 41.7 43.5 6.91 −6.85 −20.1
3.56 3.52 −19.1 6.91 55.5 21.6 −12.2
−4.46 −4.12 13.8 −6.85 21.6 50.4 6.18
−1.63 −2.1 11.9 −20.1 −12.2 6.18 48.6




; b =




21.3
23.7
−3.34
4.35
3.25
−3.52
−2.62




, (56)

which leads to

c =




−1.0130
1.9442
−0.0214
0.0335
−0.0155
0.0154
0.0091




. (57)

Finally, using (49) with the values in (57) we can predict displacements which are visually
indistinguishable from those in Figure 6. In fact, we get a maximum absolute prediction error
of 0.0334 and a medium absolute prediction error of 0.0132.

To test the possibility of overfitting, we have obtained the RMSE (root mean squared
error) for the training data and a set of 1000 test data points, obtaining the following results

RMSEtraining = 0.018; RMSEtesting = 0.042,

which shows that the error increase is not very high.

4.2 Unequally spaced data

Table 2 shows 100 observed displacements of the system in Figure 1 for random times. In this
section we use the expression (2) to predict the behavior of the system using these observed
displacements and two different models approximating the functions α0, α1 and δ involved
in it. Note that this approach is also valid for the case of missing data.

Model 1:
Suppose that functions α0, α1 and δ are approximated by

α0(u1, u2) = a1 + a2u1 + a3u2 (58)
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α1(u1, u2) = b1 + b2u1 + b3u2 (59)

δ(t, u1, u2) = c1 + c2 sen (t) + c3 cos(t) + c4 sen (2t) + c5 cos(2t), (60)

where ai, bi and ci are parameters to be estimated. To this aim, we define the function

F (a,b, c) =
100∑
i=3

(z∗(ti)− z(ti))
2 , (61)

where z∗(ti) is the predicted displacement for time ti using expression (2). The minimum of
this function is attained at:

a1 = 1.603; a2 = −23.663; a3 = 15.514;
b1 = −0.591; b2 = 26.331; b3 = −18.058;
c1 = −0.007; c2 = 0.030; c3 = −0.013;
c4 = 0.014; c5 = −0.015.

Using these parameters, the medium absolute prediction error is E = 0.064. Figure 6
shows the observed and predicted displacements of the system in Figure 1.

Figure 6: Observed and predicted displacements.

To test the possibility of overfitting, we have obtained the RMSE (root mean squared
error) for the training data and a set of 1000 test data points, obtaining the following results

RMSEtraining = 0.11; RMSEtesting = 0.15,
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which shows that the error increase is small.
Model 2:

Suppose that functions α0, α1 and δ are approximated by

α0(u1, u2) = a1 + a2u1 + a3u2 (62)

α1(u1, u2) = b1 + b2u1 + b3u2 (63)

δ(t, u1, u2) = c1(u1, u2) + c2(u1, u2) sen (t) + c3(u1, u2) cos(t) + (64)

c4(u1, u2) sen (2t) + c5(u1, u2) cos(2t), (65)

where, ci(u1, u2) = ci1 + ci2u1 + ci3u2, for i = 1, . . . , 5, and ai, bi and cij are parameters to be
estimated. To this purpose, we define the function

F (a,b, c) =
100∑
i=3

(z∗(ti)− z(ti))
2 , (66)

where z∗(ti) is the predicted displacement for time ti using expression (2). The minimum of
this function is attained for:

a1 = 1.749; a2 = −27.282; a3 = 16.893;
b1 = −0.694; b2 = 30.703; b3 = −20.628;
c11 = 0.042; c12 = 1.706; c13 = −1.999;
c14 = −0.077; c15 = −2.620; c21 = 3.415;
c22 = 0.006; c23 = 0.302; c24 = −0.717;
c25 = −0.049; c31 = −0.189; c32 = 1.196;
c33 = 0.014; c34 = −1.870; c35 = 0.929.

Using these parameters, the medium absolute prediction error is E = 0.060. This shows
that it is not worthwhile including non-constant ci(u1, u2); i = 1, 2, 3, 4, 5 functions.

5 Conclusions and Recommendations

The equivalence of differential, functional and difference equations has been analyzed for the
case of linear differential equations with constant coefficients and some methods to find them
have been given. Appart from critical cases, they allow obtaining good approximations to
the exact difference and the differential equations associated with a set of data. If the data
points are equally spaced, the problem leads to a linear system of equations. If the data
are unequally spaced or there are missing data, the corresponding set becomes non-linear.
Functional networks have been shown to be the natural solving tools for this kind of problems.
Several examples of applications have shown its power. Though this methodology has been
applied to one-dimensional problems, it can be extended to multidimensional problems, but
its validity need to be proved.
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6 Appendix

In this appendix we give the lemma used in Section 3.

Lemma 2 Every polynomial of degree n in t and u can be written as a sum with n + 1
summands with two factors each, one a function of t and one a function of u:

Pn(u, t) =
n+1∑
i=1

fi(t)gi(u). (67)

Proof: Given the polynomial of degree n, we group its monomials using the following rules:

Rule 1: If α ≤ β, the monomial in uαtβ is included in the 2α + 1 summand.

Rule 2: If α > β, the monomial in uαtβ is included in the 2β + 2 summand.

Note that the summand number is determined by min(α, β).
Since all monomials in the 2α + 1 summand have the common factor uα, they can be

written as uαf2α+1(t). Similarly, since all monomials in the 2β + 2 summand have the
common factor tβ, they can be written as f2β+2(u)tβ.

Since we are dealing with polynomials of degree n, for all monomials whose summand
number is assigned by Rule 1 we have α ≤ n/2, because if α > n/2, then β < α and then
we must use Rule 2 instead of Rule 1. Thus,

α ≤ n/2⇒ 2α + 1 ≤ n + 1,

which implies that the summand number obtained by Rule 1 cannot be greater than n + 1.
Similarly, any monomial whose summand number is assigned by Rule 2, must satisfy

β < n/2, because if β ≥ n/2, then α ≤ β and then we must use Rule 1 instead of Rule 2.
Then, we have

β < n/2⇒ 2β + 2 < n + 2⇒ 2β + 2 ≤ n + 1,

which implies that the summand number obtained by Rule 2 cannot be greater than n + 1.
Thus, we have

Pn(x, t) =
�n/2�∑
α=0

uαf2α+1(t) +
�(n−1)/2�∑

β=0

f2β+2(u)tβ, (68)

where �x� is the maximum integer less than or equal to x.
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