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ABSTRACT

In this paper we show how Bayesian network models can be used to perform a sen-
sitivity analysis using symbolic, as opposed to numeric, computations. An example
of damage assessment of concrete structures of buildings is used for illustrative pur-
poses. Initially, normal or Gaussian Bayesian network models are described together
with an algorithm for numerical propagation of uncertainty in an incremental form.
Next, the algorithm is implemented symbolically, in Mathematica code, and applied
to answer some queries related to the damage assessment of concrete structures of
buildings. Finally, the conditional means and variances of the of nodes given the
evidence are shown to be rational functions of the parameters, thus, discovering its
parametric structure, which can be efficiently used in sensitivity analysis.

Key Words: Expert systems, Multivariate normal distribution, Symbolic computa-
tions.

1 Introduction

In recent years much attention has been focussed on the use of probabilistic mod-
els in expert systems. Today, probabilistic models, especially those associated with
Bayesian networks, are gaining more and more popularity as a formalism for han-
dling uncertainty. The increasing number of applications in the last few years also
show that this formalism has practical value (an ever growing list of applications in
several disciplines: Medicine, Engineering, etc., is available by anonymous FTP from:
research.microsoft.com:/pub/dtg/bn-apps.ps).

One of the key problems in Bayesian networks is evidence propagation, which con-
sists of updating the the posterior probabilities of a set of variables of interest when-
ever a new evidence becomes available. There exist several well known algorithms for
the exact and approximate propagation of evidence in Bayesian networks1−6. How-
ever, from a practical point of view, most of these methods are restrictive because they
require all variables to be discrete, while many examples arising in practice involve
continuous variables.
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On the other hand, propagation algorithms require that the joint probabilities
of the nodes be specified numerically, that is, all the parameters must be assigned
numeric values. In practice, exact numeric specification of these parameters may not
be available or it may happens that the subject matter specialists can specify only
ranges of values for the parameters rather than their exact values. In such cases, there
is a need for symbolic methods which are able to deal with the parameters themselves,
without assigning them values. Symbolic propagation leads to probabilities which are
expressed as functions of the parameters instead of real numbers. Thus, the answers
to specific queries can then be obtained by plugging the values of the parameters
in the solution, without need to redo the propagation. The real practical use of this
approach is the possibility of performing a sensitivity analysis of the parameter values
without the need of redoing the computations. Symbolic propagation algorithms have
been recently introduced to propagate evidence in discrete7−10 and continuous11−12

Bayesian networks.
The main contribution of this paper consists of presenting a conceptually simple

and efficient algorithm for numeric and symbolic propagation in Gaussian Bayesian
networks, discovering the algebraic structure of marginal and conditional probabilities
and showing how it can be applied to the damage assessment of reinforced concrete
structures of buildings. For the numerical case, we introduce an incremental linear-
time algorithm to update probabilities when single pieces of evidence are observed.
The capabilities of this method for symbolic computation are also analyzed, showing
that the same algorithm can easily be adapted using any standard program with sym-
bolic capabilities. As an illustrative practical example, we use the damage assessment
of reinforced concrete structures of buildings.

The paper is organized as follows. In Section 2, we introduce a model to assess
the damage of reinforced concrete structures of buildings. Section 3 introduces the
Gaussian Bayesian network as a model for continuous random variables. In Sections
4 and 5 a method for both numeric and symbolic propagation is presented and certain
questions regarding the assessment of the damage of reinforced concrete structures of
buildings are answered. In Section 6 we discuss the algebraic structure of probabilities
of single nodes or sets of nodes. Finally, in Section 7 we give some conclusions.

2 Damage Assessment of Buildings

Assessment of the damage of existing buildings is a necessary task to make appropriate
strengthening or maintenance plans. Due to the complexity and the uncertainty
associated with the lack of knowledge of existing buildings, making such assessment
is difficult. In a recent work13, Liu and Li proposed a model to build an expert system
for the assessment of the damage of reinforced concrete structures of buildings. In
this paper, we use a slightly modified version of this model, for illustrative purposes.

The model formulation process usually starts with the selection or specification
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Variable Description

Goal X1 Damage assessment

Unobservable X2 Cracking state
X3 Cracking state in shear domain
X4 Steel corrosion
X5 Cracking state in flexure domain
X6 Shrinkage cracking
X7 Worst cracking state in flexure domain
X8 Corrosion state

Observable X9 Weakness of the beam
X10 Deflection of the beam
X11 Position of the worst shear crack
X12 Breadth of the worst shear crack
X13 Position of the worst flexure crack
X14 Breadth of the worst flexure crack
X15 Length of the worst flexure cracks
X16 Cover
X17 Structure age
X18 Humidity
X19 PH value in the air
X20 Content of chlorine in the air
X21 Shear cracks state
X22 Flexure cracks state
X23 Shrinkage
X24 Corrosion

Table 1: Definitions of the variables related to damage assessment of reinforced concrete structures.

of a set of variables of interest. This specification is dictated by the subject matter
specialists. In our example, the goal variable (the damage of a reinforced concrete
beam) is denoted by X1. Another 16 variables (X9, X10, . . . , X24) have been identified
as the main variables influencing the damage of reinforced concrete structures. In
addition, the model is built with seven intermediate unobservable conceptual variables
(X2, X3, . . . , X8) which define some partial states of the structure. Table 1 shows the
list of variables and their physical meanings. The variables are measured using a
scale that is directly related to the goal variable, that is, the higher the value of the
variable the more the possibility of damage.

The next step in model formulation is the identification of the dependency struc-
ture among the selected variables. In our example, there exist the following cause-
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effect relationships. The goal variable, X1, depends primarily on three factors, X9, the
weakness of the beam available in the form of a damage factor, X10, the deflection of
the beam, and X2, its cracking state. The cracking state, X2, in turn is characterized
by four variables: X3, the cracking state in the shear domain; X6, the evaluation of
the shrinkage cracking; X4, the evaluation of the steel corrosion; and X5, the cracking
state in the flexure domain. Shrinkage cracking, X6, depends on shrinkage, X23, and
the corrosion state, X8. Steel corrosion, X4, is influenced by X8, X24, and X5. The
cracking state in the shear domain, X3, depends on X11, the position of the worst
shear crack; X12, the breadth of the worst shear crack, X21, the shear cracks state,
and X8. The cracking state in the flexure domain, X5 is determined by X13, the posi-
tion of the worst flexure crack, the worst cracking state in the flexure domain without
considering the position, X22, the flexure cracks state, and X7, the worst cracking
state in the flexure domain. The variable X7 is a function of X14, the breadth of the
worst flexure crack, X15, the length of the worst flexure crack, X16, the cover, X17

the structure age, and X8, the corrosion state. Node X8 is determined by X18, the
humidity, X19, the PH value in the air, and X20, the content of chlorine in the air.

These cause-effect relationships among the variables are depicted in Figure 1. Each
node in this diagram represents a variable. The relationships are represented by links
(a directed line emanating from one node and pointing to another). For example,
there are three arrows emanating from the nodes X9, X10, and X2 and pointing to X1

indicating that X1 has three direct causes. The numbers indicated on the links will
be explained later.

It is important to notice that the subject matter specialists can develop different
dependence structures associated with the same practical problem. Moreover, it is a
hard task to develop a consistent and non-redundant probabilistic network. Castillo,
Gutiérrez and Hadi14 have study this problem from a practical viewpoint and describe
the steps to be followed in order to generate cause-effect diagrams like the one in
Figure 1.

3 Gaussian Bayesian Networks

Let X = {X1, X2, . . . , Xn} be a set of n continuous variables and let D be a directed
acyclic graph (DAG) with one node for each variable in X (see, for example, Figure
1). The words node and variable are used synonymously. Every link Xi → Xj in the
graph indicates a direct dependency between the variables Xi and Xj. The node Xi

is called a parent of Xj and Xj is a child of Xi. The set of all parents of a node Xi is
denoted as Πi. For example, in Figure 1, the nodes X2, X9, and X10 are the parents
of X1, Π1 = {X2, X9, X10}, and X1 is a child of each of X2, X9, and X10. Bayesian
network models exploit the topology of a DAG D to define a joint probability density
(JPD) consistent with the dependency structure encoded in the graph15−16.
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Figure 1: A graph representing the damage assessment of reinforced concrete structure. Shaded
nodes represent unobservable (auxiliary) variables.
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Assume that the JPD of X is normal N(µ, Σ), that is,

f(x) = (2π)−n/2|Σ|−1/2 exp
{
−1/2(x− µ)T Σ−1(x− µ)

}
, (1)

where x is a realization of the random variable X, µ is the n-dimensional mean vector,
Σ is the n× n covariance matrix, |Σ| is the determinant of Σ, and µT denotes the
transpose of µ. Sometimes it is convenient to refer to the precision matrix W = Σ−1.

Any multivariate normal JPD function f(x) can be written as a product of con-
ditional probability densities (CPDs) as follows17:

f(x1, . . . , xn) =
n∏

i=1

fi(xi|x1, . . . , xi−1), (2)

where

fi(xi|x1, . . . , xi−1) ∼ N


mi +

i−1∑
j=1

βij(xj −mj),
1

vi


 , (3)

where mi is the unconditional mean of Xi, vi is the conditional variance of Xi, given
values for X1, . . . , Xi−1, and βij is the regression coefficient of Xj when Xi is regressed
on x1, . . . , xi−1.

Gaussian Bayesian networks18 are introduced as special cases of multivariate nor-
mal distributions in which the CPDs in (3) are defined according to a DAG. More
formally, a Gaussian Bayesian network is a pair (D, P ), where

• D is a DAG containing the set of nodes {X1, . . . , Xn}.

• P is a collection of parameters m = (m1, . . . , mn), v = (v1, . . . , vn), and {βij|j <
i}, as shown in (3).

• The JPD function of (X1, . . . , Xn) is given by (2) where βij = 0 if and only if
there is no link from Xj to Xi.

Note that in a Gaussian Bayesian network, βij = 0 in (3) implies that Xj is not a
parent of Xi. This property represents the relationship between the graphical and
the probabilistic structure.

Alternatively, we can define the JPD function by giving its mean vector and its
covariance matrix. The covariance matrix is symmetric and positive definite. The vi

are positive, and the remaining parameters in (3), βij and mj, are arbitrary constants.
Shachter and Kenley 18 describe the general transformation from v and {βij|j < i}

to the precision matrix W of the normal distribution. They use the following recursive
formula in which W(i) denotes the i × i upper left submatrix of W and βi denotes
the column vector {βij|j < i}:

W(i + 1) =




W(i) +
βi+1β

T
i+1

vi+1

−βi+1

vi+1

−βT
i+1

vi+1

1

vi+1


 , (4)
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with W(1) = 1/v1.
Thus, we can consider the DAG in Figure 1 as the network structure of a Gaussian

Bayesian network. Then, the next step in Bayesian network formulation is to define
a JPD function from (2). For illustrative purposes, we take the value zero for the
initial mean of all variables and apply the above method to build the precision matrix
W. The coefficients βij in (3) are shown in Figure 2 and the conditional variances
are given by:

vi =

{
10−4, if Xi is unobservable.
1, otherwise.

Figure 2: The network in Figure 1 with the coefficient βij written near the link between Xi and Xj .

4 Numeric Propagation of Uncertainty

In this section we give an algorithm for calculating the updating the probability
distributions of the nodes in the network when some evidence is known. The main
result is given in the following theorem (see, for example, Anderson19).

THEOREM 1 Suppose that an n-dimensional vector X has a multivariate normal
distribution N(µ, Σ) with density as in (1). Consider a partition of X in two sub-
vectors Y ∼ N(µy, Σy) and Z ∼ N(µz, Σz). Let Σyz be the covariance matrix of
(Y,Z). Then, we have

E[Y|Z = z] = µy + ΣyzΣ
−1
z (z− µz) (5)
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and
V ar[Y|Z = z] = Σy −ΣyzΣ

−1
z ΣT

yz. (6)

Let E ⊂ X be a set of evidential variables whose values are known to be e.
Theorem 1 suggests an obvious procedure to obtain the mean and variances of any
single node given E = e (this fact will be used in Section 5 to deal with symbolic
propagation). However, it is more convenient to use an incremental method that
allows obtaining the conditional distribution of any subset of variables Y ⊂ X as
follows. At a given step, replacing z in (5) and (6) by e, we obtain the mean and
covariance matrix of the updated distribution of the non-evidential nodes with a
minimum of calculations. It is important to point out that we get the joint distribution
of the remaining nodes, which is normal, and then we can answer questions involving
the joint distribution of nodes instead of the usual information that refers only to
individual nodes.

Note also that if we consider only one evidential node in this step (taking elements
one by one from e), we need not calculate the inverse of a matrix because it degen-
erates to a scalar. In this case µy and Σyz are column vectors, and Σz is a scalar.
Then, the number of calculations needed to update the probability distribution of
the non-evidential variables, given a single piece of evidence, is linear in the number
of variables in X. Thus, this algorithm provides a simple and efficient method for
evidence propagation in Gaussian Bayesian networks.

Due to the simplicity of this incremental algorithm, the implementation of this
propagation method in the inference engine in an expert system is an easy task.
Figure 3 shows the pseudocode to implement this algorithm. The algorithm give the
JPD of the non-evidential nodes Y given the evidence E = e.

To illustrate the performance of this algorithm we apply it to the damage assess-
ment model introduced in Section 2. We assume that the engineer examines a given
concrete beam and obtain the values x9, x10, . . . , x24 corresponding to the observable
variables X9, X10, . . . , X24. Our aim is to answer certain queries prompted by the
engineer about the damage of the beam (the goal variable, X1). For the sake of
simplicity, we consider xi = 1, i = 9, . . . , 24, indicating increasing damage of the
beam. In the next example, we show the mean and covariance matrix when applying
the incremental algorithm considering the evidences x9 = 1, . . . , x24 = 1. In the last
step of the algorithm, that is, when all evidential variables have been considered, the
updated normal distributions for the remaining nodes (unobservable and goal nodes,
Y = (X8, . . . , X1)), has the following mean and variance matrices:

E(Y|E = e) = (2.100, 2.440, 1.550, 3.108, 3.104, 2.550, 5.156, 11.712),
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Y ← X

µ← E[X]

Σ ← V ar[X]

For i← 1 to the number of elements in E, do:

z← the ith element of e

Y ← Y \ Z

µ← µy + ΣyzΣ
−1
z (z− µz)

Σ ← Σy −ΣyzΣ
−1
z ΣT

yz

f(y|e = e) ∼ N(µ, Σ)

Figure 3: Incremental algorithm for updating the joint probability of the non-evidential nodes Y

given the evidence E = e.

V ar(Y |E = e) =




X8 . . . X4 X3 X2 X1

0.00010 . . . 0.00006 0.00005 0.00010 0.00019
0.00004 . . . 0.00006 0.00002 0.00009 0.00018
0.00005 . . . 0.00003 0.00003 0.00010 0.00020
0.00003 . . . 0.00009 0.00001 0.00014 0.00028
0.00006 . . . 0.00018 0.00003 0.00017 0.00033
0.00005 . . . 0.00003 0.00012 0.00010 0.00020
0.00010 . . . 0.00017 0.00010 0.00035 0.00070
0.00019 . . . 0.00033 0.00020 0.00070 1.00100




.

Note that, in this case, all elements in the covariance matrix but Σ1 1 are close to
zero indicating that the mean values are quasi-exact estimates for X2, . . . , X8 and a
good estimation for X1.

4.1 Answering Queries

The above results can be used to assess the damage (the goal variable X1) in each of
the following hypothetical situations:

Q1: Before Observing Evidence. Initially, we are given the initial mean and
covariance matrix introduced in Section 3, without any evidence (i.e., without
knowledge of the values x9, x10, . . . , x24).

A1: Table 2 shows the probabilities of the damage X1 of a given beam for various
types of evidence ranging from no knowledge at all to the knowledge of all the
observed values x9, x10, . . . , x24. Thus, the initial mean and variance of X1 are 0
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Known Damage of the beam
Step Variables Mean Variance

0 None 0.000 11.561
1 X9 = 1.0 0.700 11.071
2 X10 = 1.0 1.400 10.581
3 X11 = 1.0 1.900 10.331
4 X12 = 1.0 2.400 10.081
5 X13 = 1.0 3.450 8.979
6 X14 = 1.0 3.870 8.802
7 X15 = 1.0 4.290 8.627
8 X16 = 1.0 4.710 8.449
9 X17 = 1.0 5.130 8.273
10 X18 = 1.0 6.474 6.467
11 X19 = 1.0 7.818 4.660
12 X20 = 1.0 9.162 2.854
13 X21 = 1.0 9.662 2.604
14 X22 = 1.0 10.712 1.501
15 X23 = 1.0 11.212 1.251
16 X24 = 1.0 11.712 1.001

Table 2: Conditional means and variances of the damage, X1, at the different steps of the incremental
algorithm. The ith step corresponds the accumulated evidence of the first i evidential variables.

and 11.561, respectively. Other values in Table 2 are explained and interpreted
below.

Q2: Observing Some Evidence. Suppose that we observe the value of only one
key variable X9, the weakness of the beam, and it turned out to be X9 = 1.0,
an indication that the beam is weak.

A2: Propagating uncertainty with the evidence X9 = 1.0 gives: E(X1|X9 = 1) =
0.70 and V ar(X1|X9 = 1) = 11.071. Note that after observing the evidence x9,
the mean has increased from 0 to 0.7 and the variance of X1 has decreased from
11.561 to 11.071.

Q3: Observing Multiple Evidence. Now, suppose that we have the data for
all the observable variables as given in Table 2, but the data are measured
sequentially.

A3: The answer is given in Table 2, where the probabilities in the ith row is com-
puted using the incremental algorithm in the order given in the table, that is,
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they are based on accumulated evidence. For example, as can be seen in the last
row of the table, when all the evidences are considered, E(X1|X9 = 1, . . . , X24 =
1) = 11.712 and V ar(X1|X9 = 1, . . . , X24 = 1) = 1.001, an indication that the
building is seriously damaged. Figure 4 shows several of the updated normal
conditional distributions of node X1, when a new evidence is considered. The
figure shows the increasing damage of the beam at different steps, which is
indicated by increasing conditional means and decreasing conditional variances.

Figure 4: Conditional distributions of node X1 at various steps of the incremental algorithm. The
number on each curve indicate the step number of the incremental algorithm given in Table 2.

It can be seen from the above examples that any query posed by the engineer can
be answered simply by propagating evidence using the incremental algorithm. An
advantage of the incremental inference algorithm is that we may be able to make a
decision concerning the state of damage of a given building immediately after observ-
ing only a subset of the variables.

Another important advantage is that, at each step, one can choose the variable for
which the evidence should be obtained next in an optimal way; that is, one can use
(5) and (6) to choose the variable which will provide the most valuable information
about the goal variable. For example, suppose at a given step we can obtain the
evidence for one of several variables, which variable should we choose? The answer
is the one which is expected to change the conditional mean of the goal variable the
most. From equation (5), the change is given by ΣyxΣ

−1
z (z − µz). Thus, one can

calculate the associated changes in the conditional means of the candidate variables
then select the variable with the largest change.
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5 Symbolic Computations

Dealing with symbolic computations is the same as dealing with numeric values with
the only difference being that all the required operations must be performed by a
program with symbolic manipulation capabilities. The resulting symbolic expres-
sions provide a useful information both for directly obtaining numerical solutions for
different combinations of parameter values and for performing sensitivity analysis.
Symbolic computations, however, are intrinsically slow and require more memory.

Consider the damage assessment Bayesian network with the joint probability given
in Section 3. Suppose we are interested in the influence that the deflection of the beam,
X10, has on its damage assessment, X1. Then, we can consider X10 as a symbolic node
modifying the initial mean and covariance matrices. Let E(X10) = m, V ar(X10) = v,
and Cov(X1, X10) = c.

We use Mathematica20 for the symbolic implementation of the propagation algo-
rithm. The resulting code is shown in Figure 5. The program calculates the means
and variances of all nodes given the evidence in the evidence list.

Table 3 shows the symbolic results obtained from the propagation of evidence in
the damage assessment Bayesian network. This table shows the initial probability
of X1, and the same probability after each one of the evidences, X9 = 1, X10 =
1, X11 = x11, X12 = 1, X13 = x13, X14 = 1, is sequentially known. Note that some
of the evidences have been given in a symbolic form. An examination of the results
in Table 3 shows that the conditional means and variances are rational expressions,
that is, quotients of polynomials in the parameters. Note that the polynomials are
first degree in m, v, x11 and x13, that is, in the mean and variance parameters, and in
the evidence variables, and second degree in c, the covariance parameter. Note also
the common denominator for the rational functions giving the conditional mean and
the conditional variance. The fact that the mean and variances of the conditional
probability distributions of the nodes are rational functions with polynomials of the
indicated degrees is proven in Section 6.

Note that the values in Table 2 are a special case of the one in this example. They
can be obtained by setting m = 0, v = 1 and c = 0.7 and considering the evidence
values x11 = 1, x13 = 1. Thus the means and variances in Table 2 can actually be
obtained from Table 3 by replacing the parameters by their values. For example, for
the case of the evidence X9 = 1, X10 = 1, X11 = x11, the conditional mean of X1,
(c − cm + 0.7v + 0.5vx11)/v, takes the value 1.9 which is the same result shown in
Table 2. Similarly, the conditional variance of X1 is (−c2 + 10.821v)/v = 10.331 as
shown in Table 2.
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(* ‘Mean’ and ‘Variance’ are given in Section 3 *)

(* Evidence order *)

Evidence=Range[9,24]; EviValue=Table[1,{15}];

(* Conditional Probabilities *)

For[k=0,k<=Length[Evidence],k++,

For[i=1,i<=Length[Mean],i++,

If[MemberQ[Take[Evidence,k],i],

condmean=x[i];

condvar=0,

meany=Mean[[i]];

meanz=Table[{Mean[[Evidence[[j]]]]},{j,1,k}];
vary=Var[[i]][[i]];

If[k==0,

condmean=Together[meany];

condvar=Together[vary],

varz=Table[Table[

Var[[Evidence[[t]],Evidence[[j]]]],

{t,1,k}],{j,1,k}];
covaryz=Table[{Var[[Evidence[[t]]]][[i]]},{t,1,k}];
zaux=Table[{EviValue[[t]]},{t,1,k}];
aux=Inverse[varz];

condmean=meany+Transpose[covaryz].aux.(zaux-meanz);

condvar=vary-Transpose[covaryz].aux.covaryz;

]

];

Print["Evidential nodes =",k," Node =",i];

Print["Mean =",Together[condmean],

"Var =",Together[condvar]];

]

]

Figure 5: A Mathematica program for symbolic propagation of evidence in a Bayesian network.
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Known Damage of the beam X1

Variables Conditional Mean Conditional Var.

None 0 11.561

X9 = 1.0 0.7 11.071

X10 = 1.0
c− cm + 0.7v

v

−c2 + 11.071v

v

X11 = x11
c− cm + 0.7v + 0.5vx11

v

−c2 + 10.821v

v

X12 = 1.0
c− cm + 1.2v + 0.5vx11

v

−c2 + 10.571v

v

X13 = x13
c− cm + 1.2v + 0.5vx11 + 1.05vx13

v

−c2 + 9.469v

v

X14 = 1.0
c− cm + 1.62v + 0.5vx11 + 1.05vx13

v

−c2 + 9.292v

v

Table 3: Conditional means and variances of X1, initially and after cumulative evidence.
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6 Algebraic Structure of Probabilities

In this section we discuss the algebraic structure of probabilities of single nodes or
sets of nodes. We have the following theorem.

THEOREM 2 The conditional probability distribution of any variable Xi in a Gaus-
sian Bayesian network given any set of other variables in the network is normal with
mean and variance which are rational functions, that is, quotients of polynomials, of
the evidence variables and the mean and variance or covariance parameters of the
initial normal JPD function. The polynomials involved are at the most of degree one
in the conditioning variables and in the mean and variance parameters and are of
degree two in the covariance parameters. Finally, the polynomial in the denominator
is the same for all nodes and for the conditional mean and variance.

Proof. The proof of the theorem is based on Theorem 1. From (5) we know that
the conditional expectation is the sum of µy and ΣyzΣ

−1
z (Z − µz). The last sum-

mand is a rational function because we can write it as the quotient of the polyno-
mials Σyzadj(Σz)(Z − µz) and |Σz|, where adj(Σz) is the adjoint matrix of Σz.
This implies a rational form of the sum with polynomial denominator |Σz|. Note
also that each parameter appears only in one of the three factors of the product
Σyzadj(Σz)(Z− µz), which implies linearity in each parameter.

Similarly, from (6) we know that the conditional expectation is the sum of Σy and
−ΣyzΣ

−1
z ΣT

yz. The last summand is a rational function because we can write it as the

quotient of the polynomials −Σyzadj(Σz)Σ
T
yz and |Σz|. This implies a rational form

of the sum with polynomial denominator |Σz|. Note also that all parameters except
those in Σyz appear only in one of the factors of the product −Σyzadj(Σz)Σ

T
yz, which

implies linearity in those parameters. On the contrary, the parameters in Σyz appear
in two factors and hence they can generate second degree terms in the polynomials.

Finally, we mention that the denominator polynomial can be a second degree in
the covariance parameters because of the symmetry of the variance-covariance matrix.

Note that because the denominator polynomial is identical for all possible condi-
tional probabilities with the same evidence, for implementation purposes, it is more
convenient to calculate and store all the numerator polynomials for each node and
calculate and store the common denominator polynomial separately.

The analysis of the parametric structure of the probabilities in discrete Bayesian
networks have shown to be very useful to obtain symbolic results from numeric
procedures7−8. Analogous results could be obtained for the continuous case using
the result given by Theorem 2.
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7 Conclusions

Gaussian Bayesian network models have been demonstrated to be useful models to
reproduce Engineering problems where dependencies among variables are important
factors to be considered. When variables are continuous but limited in range, we can
perform a change of variable to transform the new range to the whole real line or
choose adequate variances for the values outside the range to have associated small
probability. Gaussian Bayesian network models are also very useful to perform a sen-
sitivity analysis using symbolic computations. The conditional means and variances
of the nodes given the evidence are shown to be rational functions of the parameters.
This parametric structure can be efficiently used in any sensitivity analysis.
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