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Abstract

The paper presents an efficient goal oriented algo-
rithm for symbolic propagation in Bayesian net-
works. The proposed algorithm performs sym-
bolic propagation using numerical methods. It
first takes advantage of the independence rela-
tionships among the variables and produce a re-
duced graph which contains only the relevant
nodes and parameters required to compute the
desired propagation. Then, the symbolic expres-
sion of the solution is obtained by performing
numerical propagations associated with specific
values of the symbolic parameters. These spe-
cific values are called the canonical components.
Substantial savings are obtained with this new
algorithm. Furthermore, the canonical compo-
nents allow us to obtain lower and upper bounds
for the symbolic expressions resulting from the
propagation. An example is used to illustrate
the proposed methodology.

Introduction
Bayesian networks are powerful tools both for graph-
ically representing the relationships among a set of
variables and for dealing with uncertainties in expert
systems. A key problem in Bayesian networks is evi-
dence propagation, that is, obtaining the posterior dis-
tributions of the variables when some evidence is ob-
served. Several efficient exact and approximate meth-
ods for propagation of evidence in Bayesian networks
have been proposed in recent years (see, for example,
Pearl 1988, Lauritzen and Spiegelhalter 1988, Henrion
1988, Shachter and Peot 1990, Fung and Chang 1990,
Poole 1993, Bouckaert, Castillo and Gutiérrez 1995).
However, these methods require that the joint proba-
bilities of the nodes be specified numerically, that is,
all the parameters must be assigned numeric values. In
practice, when exact numeric specification of these pa-
rameters may not be available, or sensitivity analysis is
desired, there is a need for symbolic methods which are
able to deal with the parameters themselves, without
assigning them numeric values. Symbolic propagation
leads to solutions which are expressed as functions of
the parameters in symbolic form.

Recently, two main approaches have been pro-
posed for symbolic inference in Bayesian networks.
The symbolic probabilistic inference algorithm (SPI)
(Shachter, D’Ambrosio and DelFabero 1990 and Li and
D’Ambrosio 1994) is a goal oriented method which
performs only those calculations that are required to
respond to queries. Symbolic expressions can be ob-
tained by postponing evaluation of expressions, main-
taining them in symbolic form. On the other hand,
Castillo, Gutiérrez and Hadi 1995, 1996a, 1996b, ex-
ploit the polynomial structure of the marginal and
conditional probabilities in Bayesian networks to ef-
ficiently perform symbolic propagation by calculating
the associated numerical coefficients using any stan-
dard numeric method for inference in Bayesian net-
works. As opposed to the SPI algorithm, this method
is not goal oriented, but allows us to obtain symbolic
expressions for all the nodes in the network. In this
paper we show that this algorithm is also suitable for
goal oriented problems. In this case, the performance
of the method can be improved by taking advantage
of the independence relationships among the variables
and produce a reduced graph which contains only the
nodes relevant to the desired propagation. Thus, only
those operations required to obtain the desired com-
putations are performed.

We start by introducing the necessary notation.
Then, an algorithm for efficient computation of the
desired conditional probabilities is presented and its
practical application is illustrated by an example. Fi-
nally, we show how to obtain lower and upper bounds
for the symbolic expressions solution of the given prob-
lem.

Notation

Let X = {X1, X2, . . . , Xn} be a set of n discrete vari-
ables, each can take values in the set {0, 1, . . . , ri}, the
possible states of the variable Xi. A Bayesian network
over X is a pair (D, P ), where the graph D is a directed
acyclic graph (DAG) with one node for each variable
in X and P = {P1(x1|π1), . . . , Pn(xn|πn)} is a set of n
conditional probabilities, one for each variable, where
Πi is the set of parents of node Xi. Using the chain
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rule, the joint probability density of X can be written
as:

P (x1, x2, . . . , xn) =
n∏

i=1

Pi(xi|πi). (1)

Some of the conditional probability distributions in
(1) can be specified numerically and others symbol-
ically, that is, Pi(xi|πi) can be a parametric family.
When Pi(xi|πi) is a parametric family, we refer to the
node Xi as a symbolic node. A convenient notation for
the parameters in this case is given by

θijπ = Pi(Xi = j|Πi = π), j ∈ {0, . . . , ri}, (2)

where π is any possible instantiation of the parents
of Xi. Thus, the first subscript in θijπ refers to the
node number, the second subscript refers to the state
of the node, and the remaining subscripts refer to the
parents’ instantiations. Since

∑ri

j=0 θijπ = 1, for all i
and π, any one of the parameters can be written as one
minus the sum of all others. For example, θiriπ is

θiriπ = 1−
ri−1∑
j=0

θijπ. (3)

If Xi has no parents, we use θij to denote Pi(Xi =
j), j ∈ {0, . . . , ri}, for simplicity.

Goal Oriented Algorithm
Suppose that we are interested in a given goal node
Xi, and that we want to obtain the conditional proba-
bilities P (Xi = j|E = e), where E is a set of evidential
nodes with known values E = e. Using the algebraic
characterization of the probabilities given by Castillo,
Gutiérrez and Hadi 1995, the unnormalized probabili-
ties P̂ (Xi = j|E = e) are polynomials of the form:

P̂ (Xi = j|E = e) =
∑

mr∈Mj

cjrmr = pj(Θ), (4)

where mj are monomials in the symbolic parameters,
Θ, contained in the probability distribution of the
Bayesian network.

For example, suppose we have a discrete Bayesian
network consisting
of five binary variables {X1, . . . , X5}, with values in
the set {0, 1}. The associated DAG is given in Figure
1. Table 1 gives the corresponding parameters, some
in numeric and others in symbolic form. Node X4 is
numeric because it contains only numeric parameters
and the other four nodes are symbolic because some of
their parameters are specified only symbolically.

For illustrative purposes, suppose that the target
node is X3 and that we have the evidence X2 = 1. We
wish to compute the conditional probabilities P (X3 =
j|X2 = 1), j = 0, 1. We shall show that

P (X3 = 0|X2 = 1) =
0.4θ10θ210 + 0.3θ301 − 0.3θ10θ301

0.3− 0.3θ10 + θ10θ210

(5)

Node Parameters

Xi Πi Xi = 0

X1 None θ10 = P (X1 = 0)
X2 X1 θ200 = P (X2 = 0|X1 = 0)

θ201 = P (X2 = 0|X1 = 1) = 0.7
X3 X1 θ300 = P (X3 = 0|X1 = 0) = 0.4

θ301 = P (X3 = 0|X1 = 1)
X4 X2, X3 θ4000 = P (X4 = 0|X2 = 0, X3 = 0) = 0.2

θ4001 = P (X4 = 0|X2 = 0, X3 = 1) = 0.4
θ4010 = P (X4 = 0|X2 = 1, X3 = 0) = 0.7
θ4011 = P (X4 = 0|X2 = 1, X3 = 1) = 0.8

X5 X3 θ500 = P (X5 = 0|X3 = 0)
θ501 = P (X5 = 0|X3 = 1)

Node Parameters

Xi Πi Xi = 1

X1 None θ11 = P (X1 = 1)
X2 X1 θ210 = P (X2 = 1|X1 = 0)

θ211 = P (X2 = 1|X1 = 1) = 0.3
X3 X1 θ310 = P (X3 = 1|X1 = 0) = 0.6

θ311 = P (X3 = 1|X1 = 1)
X4 X2, X3 θ4100 = P (X4 = 1|X2 = 0, X3 = 0) = 0.8

θ4101 = P (X4 = 1|X2 = 0, X3 = 1) = 0.6
θ4110 = P (X4 = 1|X2 = 1, X3 = 0) = 0.3
θ4111 = P (X4 = 1|X2 = 1, X3 = 1) = 0.2

X5 X3 θ510 = P (X5 = 1|X3 = 0)
θ511 = P (X5 = 1|X3 = 1)

Table 1: Numeric and symbolic conditional probabili-
ties.

and

P (X3 = 1|X2 = 1) =
0.3− 0.3θ10 + 0.6θ10θ210 − 0.3θ301 + 0.3θ10θ301

0.3− 0.3θ10 + θ10θ210
.

(6)
where the denominators are the corresponding normal-
izing constants.

Algorithm 1 gives the solution for this goal oriented
problem by calculating the coefficients cjr in (4) of
these polynomials. It is organized in four main parts:

• PART I : Identify all Relevant Nodes.
The conditional probability P (Xi = j|E = e) does

Figure 1: An example of a five-node Bayesian Network.
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not necessarily involve parameters associated with
all nodes. Thus, we identify the set of nodes which
are relevant to the calculation of P (Xi = j|E = e),
using either one of the two algorithms given in
Geiger, Verma, and Pearl 1990 and Shachter 1990.
Once this has been done we can remove the remain-
ing nodes from the graph and identify the associated
set of relevant parameters Θ.

• PART II : Identify Sufficient Parameters.
By considering the values of the evidence variables,
the set of parameters Θ can be further reduced by
identifying and eliminating the set of parameters
which are in contradiction with the evidence. These
parameters are eliminated using the following two
rules:

– Rule 1: Eliminate the parameters θjkπ if xj �= k
for every Xj ∈ E.

– Rule 2: Eliminate the parameters θjkπ if par-
ents’ instantiations π are incompatible with the
evidence.

• PART III : Identify Feasible Monomials.
Once the minimal sufficient subsets of parameters
has been identified, they are combined in monomi-
als by taking the Cartesian product of the minimal
sufficient subsets of parameters and eliminating the
set of all infeasible combinations of the parameters
using:

– Rule 3: Parameters associated with contradic-
tory conditioning instantiations cannot appear in
the same monomial.

• PART IV : Calculate Coefficients of all Poly-
nomials.
This part calculates the coefficients applying nu-
meric network inference methods to the reduced
graph obtained in Part I. If the parameters Θ are as-
signed numerical values, say θ, then pj(θ) can be ob-
tained using any numeric network inference method
to compute P (Xi = j|E = e,Θ = θ). Similarly, the
monomials mr take a numerical value, the product
of the parameters involved in mr. Thus, we have

P̂ (Xi = j|E = e,Θ = θ) =
∑

mr∈Mj

cjrmr = pj(θ).

(7)
Note that in (7) all the monomials mr, and the
unnormalized probability pj(θ) are known numbers,
and the only unknowns are the coefficients cjr. To
compute these coefficients, we need to construct a
set of independent equations each of the form in (7).
These equations can be obtained using sets of dis-
tinct instantiations Θ.

To illustrate the algorithm we use, in parallel, the
previous example.

Figure 2: (a) Augmented graph D∗ after adding a
dummy node Vi for every symbolic node Xi, and (b)
the reduced graph D′ sufficient to compute P (Xi =
j|E = e).

Algorithm 1 Goal Oriented Symbolic Propagation.

Input: A Bayesian network (D, P ), a target node Xi

and an evidential set E (possibly empty) with eviden-
tial values E = e.

Output: The probabilities P (Xi = j|E = e).

PART I:
• Step 1: Construct a DAG D∗ by augmenting D

with a dummy node Vj and adding a link Vj → Xj

for every node Xj in D. The node Vj represents the
parameters, Θj , of node Xj .

• Step 1 (example): We add to the initial graph in
Figure 1, the nodes V1, V2, V3, V4, and V5 The result-
ing graph in shown in Figure 2(a).
• Step 2: Identify the set V of dummy nodes in D∗

not d-separated from the goal node Xi by E. Ob-
tain a new graph D′ by removing from D those
nodes whose corresponding dummy nodes are not
contained in V with the exception of the target and
evidential nodes. Let Θ be the set of all the param-
eters associated with the symbolic nodes included in
the new graph and V .

• Step 2 (example): The set V of dummy nodes not
d-separated from the goal node X3 by the evidence
node E = {X2} is found to be V = {V1, V2, V3}.
Therefore, we remove X4 and X5 from the graph
obtaining the graph shown in Figure 2(b). Thus, the
set of all the parameters associated with symbolic
nodes of the new graph is

Θ = {Θ1,Θ2,Θ3} = {{θ10, θ11};
{θ200, θ210, θ201, θ211}; {θ300, θ310, θ301, θ311}}.

PART II:
• Step 3: If there is evidence, remove from Θ the

parameters θjkπ if xj �= k for Xj ∈ E (Rule 1).



• Step 3 (example): The set Θ contains the sym-
bolic parameters θ200 and θ201 that do not match
the evidence X2 = 1. Then, applying Rule 1 we
eliminate these parameters from Θ.
• Step 4: If there is evidence, remove from Θ the pa-

rameters θjkπ if the set of values of parents’ instan-
tiations π are incompatible with the evidence (Rule
2).
• Step 4 (example): Since the only evidential node

X2 has no sons in the new graph, no further reduc-
tion is possible. Thus, we get the minimum set of
sufficient parameters:
Θ = {{θ10, θ11}; {θ210, θ211}; {θ300, θ310, θ301, θ311}}.

PART III:
• Step 5: Obtain the set of monomials M by taking

the Cartesian product of the subsets of parameters
in Θ.
• Step 5 (example): The initial set of candidate

monomials is given by taking the Cartesian product
of the minimal sufficient subsets, that is,
M = {θ10, θ11}×{θ210, θ211}×{θ300, θ310, θ301, θ311}.
Thus, we obtain 16 different candidate monomials.
• Step 6: Using Rule 3, remove from M those mono-

mials which contain a set of incompatible parame-
ters.
• Step 6 (example): Some of the monomi-

als in M contain parameters with contradic-
tory instantiations of the parents. For exam-
ple, the monomial θ10θ210θ301 contains contra-
dictory instantiations of the parents because θ10

indicates that X1 = 0 whereas θ301 indicates
that X1 = 1. Thus, applying Rule 3, we
get the following set of feasible monomials M =
{θ10θ210θ300, θ10θ210θ310, θ11θ211θ301, θ11θ211θ311}.
• Step 7: If some of the parameters associated with

the symbolic nodes are specified numerically, then
remove these parameters from the resulting feasible
monomials because they are part of the numerical
coefficients.
• Step 7 (example): Some symbolic nodes involve

both numeric and symbolic parameters. Then, we
remove from the monomials in M the numerical pa-
rameters θ300, θ310 and θ211 obtaining the set of feasi-
ble monomials M = {θ10θ210, θ11θ301, θ11θ311}. Note
that, when removing these numeric parameters from
Θ, the monomials θ10θ210θ300 and θ10θ210θ310 be-
come θ10θ210. Thus, finally, we only have three dif-
ferent monomials associated with the probabilities
P (X3 = j|X2 = 1), j = 0, 1.

PART IV:
• Step 8: For each possible state j of node Xi,

j = 0, . . . , ri − 1, build the subset Mj by consid-
ering those monomials in M which does not contain
any parameter of the form θiqπ, with q �= j.

• Step 8 (example): The sets of monomials needed
to calculate P (X3 = 0|X2 = 1) and P (X3 =
1|X2 = 1) are M0 = {θ10θ210, θ11θ301} and M1 =
{θ10θ210, θ11θ311}, respectively. Then, using (4), we
have:

p0(Θ) = P̂ (X3 = 0|X2 = 1) =
c01m01 + c02m02 = c01θ10θ210 + c02θ11θ301.

(8)

p1(Θ) = P̂ (X3 = 1|X2 = 1) =
c11m11 + c12m12 = c11θ10θ210 + c12θ11θ311.

(9)

• Step 9: For each possible state j of node Xi, calcu-
late the coefficients cjr of the conditional probabili-
ties in (4), r = 0, . . . , nj , as follows:
1. Calculate nj different instantiations of Θ, C =
{θ1, . . . , θnj

} such that the canonical nj × nj ma-
trix Tj , whose rs-th element is the value of the
monomial mr obtained by replacing Θ by θs, is a
non-singular matrix.

2. Use any numeric network inference method to
compute the vector of numerical probabilities
pj = (pj(θ1), . . . , pj(θnj )) by propagating the evi-
dence E = e in the reduced graph D′ obtained in
Step 2.

3. Calculate the vector of coefficients cj =
(cj1, . . . , cjnj

) by solving the system of equations
Tjcj = pj . (10)

• Step 9 (example): Thus, taking appropriate com-
binations of extreme values for the symbolic param-
eters (canonical components), we can obtain the nu-
meric coefficients by propagating the evidence not
in the original graph D (Castillo, Gutiérrez and
Hadi 1996), but in the reduced graph D′, saving
a lot of computation time. We have the symbolic
parameters Θ = (θ10, θ11, θ200, θ210, θ301, θ311) con-
tained in D′, We take the canonical components θ1 =
(1, 0, 1, 0, 1, 0) and θ2 = (0, 1, 0, 1, 1, 0) and using any
(exact or approximate) numeric network inference
methods to calculate the coefficients of p0(Θ). We
obtain, p0(θ1) = 0.4 and p0(θ2) = 0.3. Note that, in
the above equation, the vector (p0(θ1), p0(θ2)) can be
calculated using any of the standard exact or approx-
imate numeric network inference methods, because
all the symbolic parameters have been assigned a
numerical value:

(p0(θ1), p0(θ2)) = (P (X3 = 0|X2 = 1,Θ = θ1),
P (X3 = 0|X2 = 1,Θ = θ2)).

Then, no symbolic operations are performed to ob-
tain the symbolic solution. Thus, (10) becomes(

c01

c02

)
=

(
1 0
0 1

) (
p0(θ1)
p0(θ2)

)
=

(
0.4
0.3

)
.

(11)
Similarly, taking the canonical components θ1 =
(1, 0, 1, 0, 1, 0) and θ2 = (0, 1, 0, 1, 0, 1), for the prob-
ability p1(Θ) we obtain(

c11

c12

)
=

(
0.6
0.3

)
. (12)



Then, by substituting in (8) and (9), we obtain the
unnormalized probabilities:

P̂ (X3 = 0|X2 = 1) = 0.4θ10θ210 + 0.3θ11θ301. (13)

P̂ (X3 = 1|X2 = 1) = 0.6θ10θ210 + 0.3θ11θ311. (14)
• Step 10: Calculate the unnormalized probabilities

pj(Θ), j = 0, . . . , ri and the conditional probabilities
P (Xi = j|E = e) = pj(Θ)/N , where

N =
ri∑

j=0

pj(Θ)

is the normalizing constant.
• Step 10 (example): Finally, normalizing (13) and

(14) we get the final polynomial expressions:
P (X3 = 0|X2 = 1) =

0.4θ10θ210 + 0.3θ11θ301

θ10θ210 + 0.3θ11θ301 + 0.3θ11θ311

(15)

and
P (X3 = 1|X1 = 1) =

0.6θ10θ210 + 0.3θ11θ311

θ10θ210 + 0.3θ11θ301 + 0.3θ11θ311
.

(16)

• Step 11: Use (3) to eliminate dependent parameters
and obtain the final expression for the conditional
probabilities.
• Step 11 (example): Now, we apply the relation-

ships among the parameters in (3) to simplify the
above expressions. In this case, we have: θ311 =
1−θ301 and θ11 = 1−θ10. Thus, we get Expressions
(5) and (6).
Equations (5) and (6) give the posterior distribution
of the goal node X3 given the evidence X2 = 1 in
symbolic form. Thus, P (X3 = j|X2 = 1), j = 0, 1
can be evaluated directly by plugging in (5) and (6)
any specific combination of values for the symbolic
parameters without the need to redo the propagation
from scratch for every given combination of values.

Remark: In some cases, it is possible to obtain a set of
canonical instantiations for the above algorithm that
leads to an identity matrix Tj . In those cases, the
coefficients of the symbolic expressions are directly ob-
tained from numeric network inferences, without the
extra effort of solving a system of linear equations.
This fact is illustrated in the following example.

Sensitivity Analysis
The lower and upper bound of the resulting symbolic
expressions are a useful information for performing sen-
sitivity analysis (Castillo, Gutiérrez and Hadi 1996a).
In this section we show how to obtain an interval,
(l, u) ⊂ [0, 1], that contains all the solutions of the
given problem, for any combination of numerical val-
ues for the symbolic parameters. These bounds of the
obtained ratios of polynomials as, for example (5) and
(6), are attained at one of the canonical components
(vertices of the feasible convex parameter set). We use
the following theorem given by Martos 1964.

θk P (X3 = j|X2 = 1, θk)
θ10 θ210 θ301 j = 0 j = 1
0 0 0 0.0 1.0
0 0 1 1.0 0.0
0 1 0 0.0 1.0
0 1 1 1.0 0.0
1 0 0 0.4 0.6
1 0 1 0.4 0.6
1 1 0 0.4 0.6
1 1 1 0.4 0.6

Table 2: Conditional probabilities for the canonical
cases associated with θ10, θ210, and θ301.

Theorem 1 If the linear fractional functional of a vec-
tor u,

c ∗ u− c0

d ∗ u− d0
, (17)

where c and d are vector coefficients and c0 and d0

are real constants, is defined in the convex polyhedron
Au ≤ a0,u ≥ 0, where A is a constant matrix and
a0 is a constant vector, and the denominator in (17)
does not vanish in the polyhedron, then the functional
reaches the maximum at least in one of the vertices of
the polyhedron.

In our case, u is the set of symbolic parameters
and the fractional functions (17) are the symbolic ex-
pressions associated with the probabilities, (5) and
(6). In this case, the convex polyhedron is defined
by u ≤ 1,u ≥ 0, that is, A is the identity matrix.
Then, using Theorem 1, we know that the lower and
upper bounds of the symbolic expressions associated
with the probabilities are attained at the vertices of
this polyhedron. In our case, the vertices of the poly-
hedron are given by all possible combinations of values
0 or 1 of the symbolic parameters, that is, by the com-
plete set of canonical components associated with the
set of free symbolic parameters appearing in the final
symbolic expressions.

As an example, Table 2 shows the canonical prob-
abilities associated with the symbolic expressions (5)
and (6) obtained for the conditional probabilities
P (X3 = j|X2 = 1). The minimum and maximum
of these probabilities is 0 and 1, respectively. There-
fore, the lower and upper bounds are trivial bounds in
this case. The same trivial bounds are obtained when
fixing the symbolic parameters θ10 or θ210 to a given
numeric parameter.

However, if we consider a numeric value for the sym-
bolic parameter θ301, for example θ301 = 0.5, we obtain
the canonical probabilities shown in Table 3. There-
fore, the lower and upper bounds for the probability
P (X3 = 0|X2 = 1) in this situation are (0.4, 0.5), and
for P (X3 = 1|X2 = 1) are (0.5, 0.6), both with a range
of 0.1.



θk P (X3 = j|X2 = 1, θk)
θ10 θ210 j = 0 j = 1
0 0 0.5 0.5
0 1 0.5 0.5
1 0 0.4 0.6
1 1 0.4 0.6

Table 3: Conditional probabilities for the canonical
cases associated with θ10 and θ210 for θ301 = 0.5.

If we instantiate another symbolic parameter, for ex-
ample θ10 = 0.1, the new range is lower than in the
previous case. We obtain the lower and upper bounds
(0.473, 0.5) for P (X3 = 0|X2 = 1), and (0.5, 0.537) for
P (X3 = 1|X2 = 1).

Conclusions and Recommendations
We have presented an efficient goal oriented algo-
rithm for symbolic propagation in Bayesian networks,
which allows dealing with symbolic or mixed cases of
symbolic-numeric parameters. The main advantage of
this algorithm is that uses numeric network inference
methods, which allow it to compete with an impres-
sive advantage with pure symbolic methods. First,
the initial graph is reduced to produce a new graph
which contains only the relevant nodes and parameters
required to compute the desired propagation. Next,
the relevant monomials in the symbolic parameters ap-
pearing in the target probabilities are identified. Then,
the symbolic expression of the solution is obtained
by performing numerical propagations associated with
specific numerical values (canonical components) of the
symbolic parameters. Furthermore, the canonical com-
ponents allow us to obtain lower and upper bounds for
the symbolic marginal or conditional probabilities. An
example is used to illustrate the proposed methodol-
ogy.
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