
x1

x2

x3

x4

x5

x6

f1(x1,x2)

f2(x2,x3)

f3(x4,x5)

(a)

f1

x1

x2

x6

f2

x4

f3

x3

(b)

x5

Nonlinear Time Series Modeling and

Prediction Using Functional Networks.

Extracting Information Masked by Chaos

E. Castillo and J.M. Gutiérrez
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In functional networks, the topology of the network is a

graphical representation of the properties we may know

about the dynamics of the system.

The threshold-like nerual sigmoidal functions may be inap-

propriate to model the actual dynamics of non-linear time

series. Therefore, in functional networks they are replaced

by functions from appropriate families for each specific

problem.

Fig. 1. (a) Functional network with three input, two intermediate, and one output
storing units and three neuron, or processing, units; (b) equivalent parallel printed
circuit board.
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An interesting family of functional network architectures

is the so called separable functional networks, which has

associated a functional expression which combines the sep-

arate effects of input variables. For the case of two inputs,

x and y, and one output, z, we have:

z = F (x, y) =
n∑

i=1
fi(x)gi(y). (1)

Fig. 2. Separable functional network architecture with two inputs and one output.

For illustrative purposes, we start by considering the sim-

plest architecture from this family, which neglects double

interactions by separating the contributions of each of the

inputs in the form

z = F (x, y) = f (x) + g(y). (2)

Uniqueness of representation !!!
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F (x, y) = f1(x) + g2(y) = f ∗
1 (x) + g∗2(y). (3)

Theorem 1 All solutions of equation ∑n
i=1 fi(x)gi(y) =

0 can be written in the form f (x) = A ϕ(x), g(y) =

B ψ(y), where A and B are constant matrices (of
dimensions n × r and n × n − r, respectively) with
AT B = 0, and ϕ(x) = (ϕ1(x), ..., ϕr(x)) and ψ(y) =

(ψr+1(y), ..., ψn(y)) are two arbitrary systems of mu-
tually linearly independent functions, and r is an in-
teger between 0 and n.


 f1(x) − f ∗

1 (x)

1


 =


 c1

1





 1

g2(y) − g∗2(y)


 =


 1

c2




where

( c1 1 )


 1

c2


 = 0 ⇔ c1 = −c2 = c. (4)

Finally, we get the constraints:

f ∗
1 (x) = f1(x) − c, g∗2(y) = g2(y) + c, (5)

where c is an arbitrary constant.

It is necessary to give an initial value ! for one of the

functions in order to eliminate the arbitrariness associated

with constant c.
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When the data is given in the form of a time series {xk}
consisting of n points, we use an embedding of the time

series in an appropriate delayed-coordinates space to train

the functional network.

{(x0i, x1i, x2i); i = 3, . . . , n}

where: x0i = xi, x1i = xi−1, and x2i = xi−2.

Then we can approximate the functions f and g in (2) by

considering a linear combination of known functions from

a given family (in this paper we shall consider polynomials

or Fourier expansions):

f̂ (x) =
m1∑

j=1
a1jφ1j(x), ĝ(x) =

m2∑

j=1
a2jφ2j(x),

where the coefficients akj are the parameters of the func-

tional network, i.e., they play the role of the weights on a

neural network. Then, the error can be measured by

ei = x0i − f̂ (x1i) − ĝ(x2i); i = 1, . . . , n. (6)

Thus, to find the optimum coefficients we minimize the

sum of square errors

Q =
n∑

i=1
e2

i =
n∑

i=1


x0i −

2∑

k=1

mk∑

j=1
akjφkj(xki)




2

. (7)

f̂ (u0) ≡
m1∑

j=1
a1jφ1j(u0) = v0, (8)

where u0 and v0 are given constants.
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


∂Qλ

∂a1r
= −2

n∑

i=1


x0i −

2∑

k=1

mk∑

j=1
akjφkj(xki)


 φ1r(x1i) + λφ1r(u0) = 0,

r = 1, . . . , m1,

∂Qλ

∂a2r
= −2

n∑

i=1


x0i −

2∑

k=1

mk∑

j=1
akjφkj(xki)


 φ2r(x2i) = 0, r = 1, . . . , m2,

∂Qλ

∂λ
=

m1∑

j=1
a1jφ1j(u0) − v0 = 0.

(9)

Inferring Nonlinear Models From Time Series

As a first example, we consider the Hénon map:

xn = 1 + yn−1 − ax2
n−1, yn = 0.3xn−1, (10)

or, using delayed coordinates, as

xn = 1 − ax2
n−1 + 0.3xn−2. (11)

The Holmes map is a cubic 2D map that can be written

as:

xn = 2.76 xn−1 − x3
n−1 − 0.2 xn−2, (12)

whereas the Lozi map involves non-differentiable functions

which make difficult the modeling of the associated time

series. This map is given by:

xn = 1 − 1.7 |xn−1| + 0.5 xn−2. (13)
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Fig. 3. (a) Time series of a chaotic orbit of the Hénon map. (b) Phase space of
the first embedding of the system showing the quadratic relationship between the
variables.

Fig. 4. (a) Time series of a chaotic orbit of the Holmes map. (b) Phase space of the
first embedding of the system showing the cubic relationship between the variables.
The initial conditions are x0 = 0.1 and x1 = 0.3.
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Fig. 5. (a) Time series of a chaotic orbit of the Lozi map. (b) Phase space of the
first embedding of the system showing the non-differentiable relationship between
the variables. The initial conditions are x0 = 0.5 and x1 = 0.7.

RMSE Training Data RMSE Test Data

Network Par. Henon Holmes Lozi Henon Holmes Lozi

m=4 16 0.0058 0.0099 0.038 0.0064 0.026 0.039

m=5 20 7.8 10−4 0.0023 0.028 7.9 10−4 0.0061 0.028

m=6 24 4.5 10−5 3.8 10−4 0.021 9.3 10−5 9.9 10−4 0.025

m=7 28 6.7 10−6 8.3 10−5 0.016 2.2 10−5 4.1 10−4 0.02
Table 1
Performance of several Fourier functional networks for the Hénon, Holmes and Lozi
time series. The number of parameters and the RMS errors obtained in each case
are shown.
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Extracting Information Masked by Chaos

Fig. 6. Scheme for secure communications based on chaos synchronization.

Fig. 7. Binary message “110010110111...” where each bit is represented by 20 con-
secutive sequence points.
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Fig. 8. Unmasking a digital signal transmission: (a) the original binary mn-message
where each bit is represented by 20 points of the series mn; (b) actual chaotic
transmitted signal (message + chaotic signals); (c) reconstructed message obtained
from the exact polynomial functional network in (1); (d) low-pass filtered signal of
rn. Finally, (e) shows both the original and recovered messages.
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Fig. 9. Unmasking a digital signal transmission: (a) reconstructed message obtained
from the Fourier approximate functional network with m = 7. (b) Low-pass filtered
received and original messages.
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