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DIFFERENCES BETWEEN
NEURAL AND FUNCTIONAL NETWORKS
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DIFFERENCES BETWEEN
NEURAL AND FUNCTIONAL NETWORKS

The main differences are:

1. In functional networks, neuron functions are
multivariate, while in neural networks they are
univariate.

2. In functional networks, the neuron functions can
be different, while in neural networks they are
identical.

3. In functional networks there are no weights,
while in neural networks there are weights.

4. In functional networks the outputs can be
coincident, while in neural networks outputs
cannot be coincident.

5. In functional networks neural functions are
learned, while in neural networks weights are
learned.
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FUNCTIONAL UNITS AND CELLS

Definition 1 (Functional Unit) Let X = {Xi|i ∈
I} be a set of nodes. A functional unit (also called
a neuron) U over X, is a triplet < Y, f,Z >, where
Y, Z ⊂ X; Y 6= ∅, Z 6= ∅, Y ∩ Z = ∅ are subsets of
X and f : Y → Z is a given function. We say that
Y , Z and f are the set of input and output nodes,
and the processing function of the functional unit U ,
respectively.

Functional units can be reduced to simpler func-
tional units called cells.

Definition 2 (Functional cell) A functional unit
U =< Y, f, Z > such that |Z| = 1, where |Z| is
the cardinal of Z (single node output), is called a
functional cell.

It is clear that a functional unit < Y, f,Z > can
be reduced to the set {< Y, fi, Zi > |i ∈ IZ} of
cells by considering the |IZ| components fi of the
corresponding function f .
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FORMAL DEFINITION OF
A FUNCTIONAL NETWORK

Definition 3 (Functional Network) A functional
network is a pair < X, Γ >, where X is a set of
nodes and Γ = {Uj =< Yj, fj, Zj > |j ∈ J } is a set
of functional units over X, which satisfies the fol-
lowing condition: Every node Xi ∈ X must be either
an input or an output node of at least one functional
unit in Γ, i.e.,

∀Xi ∈ X, ∃j ∈ J such that Xi ∈ Yj or Xi ∈ Zj
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An example of functional network showing the set
of nodes (printed circuit board) and five functional
units (electronic components).
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INPUT, OUTPUT AND
INTERMEDIATE NODES

Definition 4 (Input Node of a Functional Network)
A node is said to be an input node of a functional
network < X,Γ >, if it is the input node of at least
one functional unit in Γ and is not the output of any
functional unit in Γ.

Definition 5 (Output Node of a Functional Net-
work) A node is said to be an output node of a func-
tional network < X, Γ >, if it is the output node of
at least one functional unit in Γ and is not the input
of any functional unit in Γ.

Definition 6 (Intermediate Node of a Functional
Network) A node is said to be an intermediate node
of a functional network < X, Γ >, if it is the input
node of at least one functional unit in Γ and, at the
same time, is the output node of at least one func-
tional unit in Γ.
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ELEMENTS OF A
FUNCTIONAL NETWORK

1. Several layers of storing units.

(a) A layer of input units. This first layer contains
the input information.

(b) A set of intermediate layers of storing units.
They are not neurons but units storing inter-
mediate information. This set is optional and
allows connecting more than one neuron out-
put to the same unit.

(c) A layer of output units. This last layer con-
tains the output information.

2. One or more layers of neurons or comput-
ing units. A neuron is a computing unit which
evaluates a set of input values and returns a set
of output values to the next layer of units.

3. A set of directed links. They connect the in-
put or intermediate layers to neurons, and neu-
rons to intermediate or output units.
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NEURAL NETWORK AND
EQUIVALENT FUNCTIONAL NETWORK
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SIMPLIFYING
FUNCTIONAL NETWORKS

Given a functional network, an interesting problem
consists of determining whether or not there exists
another functional network giving the same output
for any given input. This leads to the concept of
equivalent functional networks.

Definition 7 (Equivalent networks). Two func-
tional networks are said to be equivalent if they have
the same input and output layers and they give the
same output for any given input.

The practical importance of the concept of equiva-
lent functional networks is that we can define equiv-
alent classes of functional networks, that is, sets of
equivalent functional networks, and then choose the
simplest in each class to be used in applications.
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SIMPLIFYING ONE-LAYER
FUNCTIONAL NETWORKS
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SIMPLIFYING ONE-LAYER
FUNCTIONAL NETWORKS (ALGORITHM)

Input: A functional network N =< X, Γ >.

Output: The simplified network.

• Step 1: For each output node Zi in N connected
to more than one neuron do:

– Step 1.1: Obtain the intersection set Yi of all
input nodes connected to Zi.

– Step 1.2: Replace all implied cells by the sin-
gle cell < Yi, hi, Zi >.

• Step 2: Repeat Step 1 until no change.
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THE ASSOCIATIVITY
FUNCTIONAL NETWORK
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THE ASSOCIATIVITY
FUNCTIONAL EQUATION

Theorem 1 The general solution continuous and
invertible in both variables on a real rectangle of the
functional equation

F (F (x, y), z) = F (x, F (y, z)), (1)

is
F (x, y) = f−1[f(x) + f(y)], (2)

where f is an arbitrary continuous and strictly
monotonic function, which can be replaced only by
cf(x), where c is an arbitrary constant.

Replacing (2) in (1), we can see that the two sides
of (1) can be written as

f−1[f(x) + f(y) + f(z)], (3)

and then, the functional network (a) in the Figure is
equivalent to the functional network (b), where only
a one-argument function f need to be learned.
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THE ASSOCIATIVITY
FUNCTIONAL EQUATION

The Figure shows a network able to reproduce any
associative operation (see Equation (2)).

x
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+ uf-1

f

f
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f(y)

f(x)+f(y)

f-1[f(x)+f(y)]

Three conclusions can be derived:

1. No other functional forms for F satisfy equation
(1). So, no other F neurons can be used.

2. The functional structure of the solution is (2),
where f is determined up to a constant.

3. The functional equation (1) reduces the initial
degrees of freedom of F (., .) from a two-argument
to a single-argument function f .

Finally, from (2) we get

z = F (x, y) ⇔ f(z) = f(x) + f(y), (4)

an interesting relation to be exploited for learning
f(x).
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THE TRANSFORMATION
FUNCTIONAL NETWORK
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THE TRANSFORMATION
FUNCTIONAL EQUATION

Theorem 2 (Transformation equation)
The general solution continuous and invertible in
both variables on a real rectangle of the functional
equation

S[S(x, y), z] = S[x,N(y, z)], (5)

is
S(x, y) = k−1[k(x) + n(y)];
N(x, y) = n−1[n(x) + n(y)], (6)

where k and n are arbitrary continuous and strictly
monotonic functions, which can be replaced only by

k∗(x) = k[(x − a)/c]
n∗(x) = cn(x),

where a and c are arbitrary constants.
The two sides of (5) can be written as

k−1[k(x) + n(y) + n(z)], (7)

Expression (7) shows that the functional networks in
Figures (a) and (b) are equivalent.
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THE TRANSITIVITY
FUNCTIONAL NETWORK
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Theorem 3 The general continuous and invertible
solution of the functional equation

S(x, y) = S[S(x, z), S(y, z)], (8)

is
S(x, y) = f−1[f(x) − f(y)] (9)

where f is an arbitrary continuous and strictly
monotonic function which can be replaced only by
g(x) = cf(x), with c arbitrary.
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THE BISYMMETRY
FUNCTIONAL NETWORK
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THE BISYMMETRY
FUNCTIONAL NETWORK

Theorem 4 The general solution continuous and
invertible in both variables on a real rectangle of the
functional equation

S[S(x, y), S(u, z)] = S[S(x, u), S(y, z)]

is
S(x, y) = g−1[Ag(x) + Bg(y) + C],

where g is an arbitrary continuous and strictly
monotonic function that can be replaced only by
g1(x) = cg(x) + d, where c and d and A, B and C
are arbitrary constants.
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THE GENERALIZED BISYMMETRY
FUNCTIONAL NETWORK

K

F

x

y

u

v

w

G(x,y)

M(x,u)

N(y,v)

H(u,v)

F[G(x,y),H(u,v)]

K[M(x,u),N(y,v)]

x

y

u

v

w

p(x)

q(y)

r(u)

s(v)

k[p(x)+q(y)+r(u)+s(v)]

(b)

(a)

G

M

N

H

F[G(x,y),H(u,v)]=K[M(x,u),N(y,v)]

p

q

r

s

k o +

20



AAAI 1998 WORKSHOPS: "Functional Networks"

THE GENERALIZED BISYMMETRY
FUNCTIONAL EQUATION

Theorem 5 The general solution continuous on a
real rectangle of the functional equation

F [G(x, y),H(u, v)] = K[M (x, u), N(y, v)] (10)

with G invertible in both variables, F and M in-
vertible in the first variable for a fixed value of the
second variable and H, K and N invertible in the
second variable for a fixed value of the first, is

F (x, y) = k[f (x) + g(y)], G(x, y) = f−1[p(x) + q(y)],
K(x, y) = k[l(x) + m(y)], H(x, y) = g−1[r(x) + s(y)],
M (x, y) = l−1[p(x) + r(y)], N (x, y) = m−1[q(x) + s(y)],

where f, g, k, l, m, p, q and s are arbitrary continuous
and strictly monotonic functions and r is an arbi-
trary continuous function. The lower case functions
are not uniquely determined.
The two sides of (10) can be written as

k[p(x) + q(y) + r(u) + s(v)], (11)

which proves the equivalence of the two functional
networks in the previous Figure.
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THE GENERALIZED BISYMMETRY
FUNCTIONAL NETWORK

The Figure below shows how the network (b) can be
replaced by three simpler neurons.
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THE GENERALIZED BISYMMETRY
FUNCTIONAL EQUATION (UNIQUENESS)

The lower case functions in the solution are not
uniquely determined. This implies that there are
many different functional networks which are equiv-
alent. In fact, Castillo and Ruiz-Cobo, 1992,
page 86, show that if there are two sets of
fi, gi, ki,i ,mi, pi, qi, si; i = 1, 2 such that the solution
holds for both sets, then they must be connected by
the relations :
l2(x) = cl1(x) + a + e − d ; f2(x) = cf1(x) + a
k2(x) = k1(x−a−b

c
) ; g2(x) = cg1(x) + b

m2(x) = cm1(x) + b + d − e ; q2(x) = cq1(x) + d
p2(x) = cp1(x) + a − d ; r2(x) = cr1(x) + e
s2(x) = cs1(x) + b − e

,

where a, b, c, d and e are arbitrary constants.
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UNIQUENESS OF REPRESENTATION
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Theorem 6 If F (x, y) can be written as:

F (x, y) = f−1
3 [f1(x) + f2(y)] = g−1

3 [g1(x) + g2(y)]

where the functions fi, gi (i=1,2,3) are continuous
and strictly monotonic functions, then

g−1
3 (x) = f−1

3 (x−a−b
c

),
g1(x) = cf1(x) + a,
g2(y) = cf2(y) + b,

where a, b and c 6= 0 are arbitrary constants.

Constants a, b and c are not identifiable. Any set of
values of (a, b, c) leads to the same F (x, y).

24



AAAI 1998 WORKSHOPS: "Functional Networks"

ILL-DESIGNED
FUNCTIONAL NETWORKS
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Some initial functional networks show a false depen-
dence of the output units from some input units.
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ILL-DESIGNED
FUNCTIONAL NETWORKS

Theorem 7 The general solution continuous on a
real rectangle of the functional equation

G(x, y) = K[M (x, z), N(y, z)], (12)

with N invertible in the first argument for any value
of the second, M invertible in both arguments, K
invertible in the first argument for some fixed value
of the second and G invertible in the second for a
fixed value of the first, is

G(x, y) = f−1[p(x) + q(y)] , K(x, y) = f−1[l(x) + n(y)]
M (x, y) = l−1[p(x) + r(y)] , N (x, y) = n−1[q(x) − r(y)]

where f, l, n, p, q and r are arbitrary continuous and
strictly monotonic functions which are determined
up to the following relations

f2(x) = c1f1(x) + a1 + b1 ; p2(x) = c1p1(x) + a1

q2(x) = c1q1(x) + b1 ; l2(x) = c1l1(x) + a4

n2(x) = c1n1(x) + b1 + a1 − a4 ; r2(x) = c1r1(x) + a4 − a1

where the a’s and b’s are arbitrary constants.

It is clear that the output w does not depend on the
input z.
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INDEPENDENT
MULTIPLE OUTPUT NETWORKS
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An independent multiple output network with its
corresponding equivalent simplified network. Differ-
ent dashed lines are for different outputs.
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INDEPENDENT
MULTIPLE OUTPUT NETWORKS

The compatibility conditions are the following (one
per output unit):

F1[G1(x, y),H1(u, v)] = K1[M1(x, u), N1(y, v)]
F2[G2(x, y),H2(u, v)] = K2[M2(x, u), N2(y, v)]
F3[G3(x, y),H3(u, v)] = K3[M3(x, u), N3(y, v)].

Note that this is equivalent to three functional net-
works, because in the resulting systems of functional
equations associated with the network, all the in-
volved functions are different.

As we shall see, other networks exist in which this
does not occur and the same functions appear in
several places.
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DEPENDENT
MULTIPLE OUTPUT NETWORKS I
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DEPENDENT
MULTIPLE OUTPUT NETWORKS II

The functional network in the above Figure leads to
the following system of functional equations:

F1[G1(x, y), H1(u, v)] = J [M1(x, u), N1(y, v)]
F2[G1(x, y), H1(u, v)] = K1[M2(x, u), N2(y, v)]
L[G2(x, y),H2(u, v)] = K2[M2(x, u), N2(y, v)]

Taking into account that the resulting functional
equations are of the form (10), we have

F1(x, y) = k1[f1(x) + g1(y)]; G1(x, y) = f−1
1 [p1(x) + q1(y)],

J(x, y) = k1[l1(x) + m1(y)]; H1(x, y) = g−1
1 [r1(x) + s1(y)],

M1(x, y) = l−1
1 [p1(x) + r1(y)]; N1(x, y) = m−1

1 [q1(x) + s1(y)]

F2(x, y) = k2[f2(x) + g2(y)]; G1(x, y) = f−1
2 [p2(x) + q2(y)],

K1(x, y) = k2[l2(x) + m2(y)]; H1(x, y) = g−1
2 [r2(x) + s2(y)],

M2(x, y) = l−1
2 [p2(x) + r2(y)]; N2(x, y) = m−1

2 [q2(x) + s2(y)]

K2(x, y) = k3[f3(x) + g3(y)]; M2(x, y) = f−1
3 [p3(x) + q3(y)],

L(x, y) = k3[l3(x) + m3(y)]; N2(x, y) = g−1
3 [r3(x) + s3(y)],

G2(x, y) = l−1
3 [p3(x) + r3(y)]; H2(x, y) = m−1

3 [q3(x) + s3(y)]
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DEPENDENT
MULTIPLE OUTPUT NETWORKS III

Since two different expressions exist for G1, H1, M2
and N2, they must coincide, that is:

f−1
1 [p1(x) + q1(y)] = f−1

2 [p2(x) + q2(y)]
g−1

1 [r1(x) + s1(y)] = g−1
2 [r2(x) + s2(y)]

l−1
2 [p2(x) + r2(y)] = f−1

3 [p3(x) + q3(y)]
m−1

2 [q2(x) + s2(y)] = g−1
3 [r3(x) + s3(y)]

(13)

and taking into account the general solution of equa-
tions of the form (12) we get:

p3(x) = c1c3p1(x) + c3a1 + a3;
q3(x) = c2c3r1(x) + c3a2 + b3;
r3(x) = c1c4q1(x) + c4b1 + a4;
s3(x) = c2c4s1(x) + c4b2 + b4;

(14)

which finally leads to

a = k1[p1(x) + q1(y) + r1(u) + s1(v)]
b = k2[p1(x) + q1(y) + r1(u) + s1(v)]
c = k3[p1(x) + q1(y) + r1(u) + s1(v)],

(15)

and proves the equivalence of the two nets in the
Figure.
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DEPENDENT
MULTIPLE OUTPUT NETWORKS IV

F

H

G

L

K

x

y

u

J

b

c

a

G2(x,u)

F1(x,y)

x

u

y

H1(y,u)

J1[F1(x,y), u]

K1[x, H1(y,u)]

K2[x, H1(y,u)]

L1[G2(x,u), y]

L2[G2(x,u), y]

J2[F1(x,y), u]

J1[F1(x,y), u] = K1[x, H1(y,u)]
K2[x, H1(y,u)] = L1[G2(x,u), y]
L2[G2(x,u), y] = J2[F1(x,y), u]

(b)

(a)

g

q

px

y

u

+

a

p(x)+q(y)+g(u)

k1[p(x)+q(y)+g(u)]

c
k3[p(x)+q(y)+g(u)]

b
k2[p(x)+q(y)+g(u)]

k

J1[F1(x, y), u] = K1[x,H1(y, u)]
K2[x,H1(y, u)] = L1[G2(x, u), y]
L2[G2(x, u), y] = J2[F1(x, y), u]
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DEPENDENT
MULTIPLE OUTPUT NETWORKS V

Since they are generalized associativity equations:

J1(x, y) = k1[f1(x) + g1(y)]; F1(x, y) = f−1
1 [p1(x) + q1(y)],

K1(x, y) = k1[p1(x) + n1(y)]; H1(x, y) = n−1
1 [q1(x) + g1(y)],

L1(x, y) = k2[f2(x) + g2(y)]; G2(x, y) = f−1
2 [p2(x) + q2(y)],

K2(x, y) = k2[p2(x) + n2(y)]; H1(x, y) = n−1
2 [g2(x) + q2(y)],

L2(x, y) = k3[f3(x) + g3(y)]; G2(x, y) = f−1
3 [q3(x) + p3(y)],

J2(x, y) = k3[n3(x) + p3(y)]; F1(x, y) = n−1
3 [q3(x) + g3(y)],

Coincidence of F1,H1 and G2 leads to:

f−1
1 [p1(x) + q1(y)] = n−1

3 [q3(x) + g3(y)]
n−1

1 [q1(x) + g1(y)] = n−1
2 [g2(x) + q2(y)]

f−1
2 [p2(x) + q2(y)] = f−1

3 [q3(x) + p3(y)]

which implies:

g2(x) = c2q1(x) + a2; g3(x) = c1q1(x) + b1;

p2(x) =
c1p1(x) + a1 − a3

c3
; p3(x) = c3c2g1(x) + c3b2 + b3;

q2(x) = c2g1(x) + b2; q3(x) = c1p1(x) + a1.

and
a = k1[p1(x) + q1(y) + g1(u)]
b = k2[p1(x) + q1(y) + g1(u)]
c = k3[p1(x) + q1(y) + g1(u)],
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EXACT LEARNING: CLONING

We want to reproduce the associative operation

x ⊕ y = h(x, y) = xy. (16)

Any associative operation ⊕ can be written as:

x ⊕ y = f−1[f(x) + f(y)], (17)

where f(x) is an invertible function. Learning the
operation ⊕ means identifying f . To this end, we
can add one more functional unit to the functional
net above to get the functional net in the Figure,
where h(x, y) = xy.

x

y

z

f

f

f-1o +

x

y

z

f

f

f-1o +

h

(a)

(b)
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EXACT LEARNING ALGORITHM

This forces the function f to satisfy the equation

f−1[f(x) + f(y)] = xy ⇔ f(xy) = f(x) + f(y),

which is a Cauchy equation with solution

f(x) = c log x ⇔ f−1(x) = exp


x

c


 , c ∈ IR.

ALGORITHM

Input: A functional net N1 to be cloned.

Output: A clone N2 of the net N1.

• Step 1: Select a family N of functional nets with
the same input and output nodes as N1.

• Step 2: Connect the functional N1 to the family
N .

• Step 3: Learn the implied unknown functions in
N by solving the corresponding functional equa-
tions.

• Step 4: Disconnect N1 to recover the desired
member N2 of the original family N .
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LEARNING FUNCTIONAL NETWORKS

Learning the neuron function

F (x, y) = f−1
3 [f1(x) + f2(y)]

is equivalent to learning f1(x), f2(x) and f3(x) or
f−1

3 (x).

To learn, we use some data consisting of triplets
{(x1j, x2j, x3j)|x3j = F (x1j, x2j); j = 1, . . . , n}.

The following estimation methods can be used:

1. Linear Method: It is called linear because the
associated optimization function leads to a sys-
tem of linear equations in the parameter esti-
mates. One shortcoming of this method is that it
is necessary to invert the f3(x) function to obtain
the output values.

2. Non-Linear Method: It leads to a function
which is non-linear in the parameters. A clear
advantage of this method with respect to the lin-
ear method is that the f3(x) function need not be
inverted to obtain the output values.
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LEARNING FUNCTIONAL NETWORKS
LINEAR ESTIMATION METHOD

We approximate fs(x); s = 1, 2, 3 by

f̂s(x) =
ms∑

i=1
asiφsi(x); s = 1, 2;

f̂3(x) = − m3∑

i=1
a3iφ3i(x)

where the {φsi(x); i = 1, . . . , ms; s = 1, 2, 3} are sets
of given linearly independent functions.

Since we must have

f3(x3j) = f1(x1j) + f2(x2j); j = 1, . . . , n,

the error can be measured by

ej = f̂3(x3j) − f̂1(x1j) − f̂2(x2j); j = 1, . . . , n. (18)

Thus, we minimize the sum of square errors

Q =
n∑

j=1
e2

j =
n∑

j=1




3∑

s=1

ms∑

i=1
asiφsi(xsj)




2
(19)

subject to

f̂k(x0) ≡
mk∑

i=1
akiφki(x0) = αk; k = 1, 2, 3, (20)

where αk and x0 are constants, necessary to have
uniqueness of solution.
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LEARNING FUNCTIONAL NETWORKS
LINEAR ESTIMATION METHOD

Using the Lagrange multipliers we define the auxil-
iary function

Qλ =
n∑

j=1




3∑

s=1

ms∑

i=1
asiφsi(xsj)




2
+

3∑

k=1
λk




mk∑

i=1
akiφki(x0) − αk


 .

The minimum corresponds to
∂Qλ

∂atr
= 2

n∑

j=1




3∑

s=1

ms∑

i=1
asiφsi(xsj)


 φtr(xjt) + λtφtr(x0) = 0

∂Qλ

∂λt
=

mt∑

i=1
atiφti(x0) − αt = 0;

which is valid for t = 1, 2, 3.

An interesting simplification consists of assuming
f3(x) = x, which implies an error

ej = x3j − f̂1(x1j) − f̂2(x2j); j = 1, . . . , n. (21)

Note that in order to get a linear system of equations
we measure the error in (18) in terms of the trans-
formed variable f3(x). This is the price we need to
pay for linearity.

On the contrary, with the error in (21), we measure
the errors in the variable scale.
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LEARNING FUNCTIONAL NETWORKS
NON-LINEAR ESTIMATION METHOD

We approximate fs(x); s = 1, 2 by

f̂s(x) =
ms∑

i=1
asiφsi(x); s = 1, 2;

and f−1
3 (x) by

f̂−1
3 (x) =

m3∑

k=1
a3kφ3k(x),

where the {φsi(x); i = 1, . . . , ms; s = 1, 2, 3} are sets
of given linearly independent functions.
We must have

x3j = f−1
3 (f1(x1j) + f2(x2j)) ; j = 1, . . . , n,

thus, the error can be measured by

ej = x3j − f̂−1
3

(

f̂1(x1j) + f̂2(x2j)
)

; j = 1, . . . , n. (22)

Thus, we minimize the sum of square errors

Q =
n∑

j=1
e2

j =
n∑

j=1


x3j −

m3∑

k=1
a3kφ3k




2∑

s=1

ms∑

i=1
asiφsi(xsj)







2
,

(23)
subject to

f̂k(x0) ≡
mk∑

i=1
akiφki(x0) = αk; k = 1, 2, 3, (24)

where αk and x0 are constants, necessary to have
uniqueness of solution.
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LEARNING FUNCTIONAL NETWORKS
NON-LINEAR ESTIMATION METHOD

Thus, we minimize the sum of square errors

Q =
n∑

j=1
e2

j =
n∑

j=1


x3j −

m3∑

k=1
a3kφ3k




2∑

s=1

ms∑

i=1
asiφsi(xsj)







2
,

(25)
subject to

f̂k(x0) ≡
mk∑

i=1
akiφki(x0) = αk; k = 1, 2, 3, (26)

where αk and x0 are constants, necessary to have
uniqueness of solution.

One way of considering this constraint consists of
solving (24) in their first coefficients and replace
them in (23), that is,

ak1 =
αk −

mk∑

i=2
akiφki(x0)

φk1(x0)
; k = 1, 2, 3. (27)

Note that in this case we always measure the errors
in the variable scale.
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LEARNING
FUNCTIONAL NETWORKS (EXAMPLE)

Consider the data

xj1 xj2 xj3 xj1 xj2 xj3

0.890 0.462 1.172 0.935 0.21 1.065
0.695 0.313 0.755 0.861 0.741 1.296
0.069 0.083 0.085 0.026 0.256 0.228
0.167 0.006 0.034 0.888 0.939 1.451
0.701 0.529 0.916

and assume that for s = 1, 2, 3:

(φs1(x), . . . , φs4(x)) = (1, x, x2, log(1 + x))

and
(α1, α2, α3) = (1, log 2, −1).

Then, minimizing we obtain

a11 = 0; a12 = 0; a13 = 1; a14 = 0;
a21 = 0; a22 = 0; a23 = 0; a24 = 1;
a31 = 0; a32 = 1; a33 = 0; a34 = 0,

which was due to the fact that the data in the above
Table was simulated from

xj1 ⊕ xj2 = x2
j1 + log(1 + xj2) = xj3; j = 1, . . . , n
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EXAMPLE OF LEARNING
FUNCTIONAL NETWORKS

To illustrate the unidentifiability of the constants a, b
and c, we consider the same case above but using

(α1, α2, α3) = (1, 1, 1).

Then, the a coefficients become

a11 = −3.33; a12 = 0.0; a13 = 4.3; a14 = 0.0;
a21 = −2.0; a22 = 0.0; a23 = 0.0; a24 = 4.3;
a31 = 5.33; a32 = −4.3; a33 = 0.0; a34 = 0.0,

which shows that both solutions are related by

g−1
3 (x) = f−1

3 (x−a−b
c

),
g1(x) = cf1(x) + a,
g2(y) = cf2(y) + b,

with a = −3.3, b = −2 and c = 4.3.
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EXAMPLE OF LEARNING
FUNCTIONAL NETWORKS

x y u v w x y u v w
0.987 0.977 3.63 13.4 6.97 0.548 0.682 2.28 5.82 2.76
0.831 0.341 2.1 6.95 2.58 0.777 0.0759 1.68 5.06 2.19
0.547 0.00965 1.31 3.02 1.73 0.53 0.401 1.77 4.41 1.99
0.247 0.435 1.61 2.94 1.55 0.524 0.715 2.32 5.78 2.82
0.773 0.205 1.82 5.62 2.26 0.113 0.929 2.55 4.2 2.66
0.764 0.0629 1.65 4.89 2.16 0.693 0.52 2.16 6.35 2.62
0.777 0.0862 1.69 5.11 2.19 0.145 0.838 2.33 3.98 2.33
0.946 0.745 3. 11. 4.49 0.369 0.762 2.28 4.87 2.58
0.399 0.736 2.25 4.96 2.56 0.839 0.361 2.14 7.16 2.64
0.152 0.301 1.37 2.15 1.27 0.315 0.646 2.01 4.06 2.08

These data are simulated with:

u = x2 + exp(y); v = (exp(x) + y)2 ; w = exp
(
x + y2)

.

x

y

u

v

w

g

h

f

h

f

g

f[g(x)+h(y)]

h[f(x)+g(y)]

g[h(x)+f(y)]

f o +

g o +

h o +

f(x) = x, g(x) = x2 and h(x) = exp(x)
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EXAMPLE OF LEARNING
FUNCTIONAL NETWORKS

To estimate the functions f, g and h, we use

f̂(x) = a1 + a2x + a3x
2 + a4 exp(x)

ĝ(x) = b1 + b2x + b3x
2 + b4 exp(x)

ĥ(x) = c1 + c2x + c3x
2 + c4 exp(x)

Minimizing the sum of squares we get

a1 = 0.0126, a2 = 1.002, a3 = 0.0035, a4 = −0.0014
b1 = −0.0013, b2 = 0.0019, b3 = 1.0139, b4 = −0.0051
c1 = 0.1434, c2 = 0.095, c3 = 0.1610, c4 = 0.8476

With the aim of validating the model, a different
sample of size m = 1000 has been used and the val-
ues of the variables u, v and w have been predicted
from the values of the x and y variables using the
estimated model. The following mean errors have
been obtained:

e1 = 1
m

m∑

i=1
|f̂(ĝ(xi) + ĥ(yi)) − ui| = 0.00397426,

e2 = 1
m

m∑

i=1
|ĝ(ĥ(xi) + f̂(yi)) − vi| = 0.00800446,

e3 = 1
m

m∑

i=1
|ĥ(f̂(xi) + ĝ(yi)) − wi| = 0.00986862,

which show that the predictions are excellent.
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THE HENON SERIES EXAMPLE

The Hénon’s time series with starting values 0.3638
and 0.5630 is (see Figure):

xn = 1.0 − 1.4x2
n−1 + 0.3xn−2. (28)

To reproduce these series, we use the model:

xn = f−1
3 [f1(xn−1) + f2(xn−2)] , (29)

with the set {φs1(x), . . . , φs6(x)}; s = 1, 2, 3:

{1, log(2 + x), . . . , log(6 + x)}. (30)

To be fair, we have not used the exact functions x
or x2.
We get RMSE = 0.00074 and MaxErr = 0.00252,
much better than Stern values (0.00471 and 0.0187,
respectively).
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THE HENON SERIES EXAMPLE

The Table below also shows the root mean squared
error (RMSE) and the single largest prediction error
on the 100 training samples and the 5000 testing ex-
amples, where the number t after the word Network
refers to the number of functions used in the set (30).
For t = 6 we used the preceding set of functions, for
t = 5 we removed the last function log(6 + x), and
for t = 7 we added the function log(7 + x).
We have evaluated the model with the following
5000 terms, and obtained RMSE = 0.00083 and
MaxErr = 0.00314. These values are consistent
with the errors on the training data. Thus, over-
fitting was not a problem even though we used 18
parameters. Again the results are much better than
those given by Stern.

Stern’s Network 5 Network 6 Network 7
Parameters 29 15 18 21
Train. RMSE 0.00471 0.0045 0.00074 0.00065
Test RMSE 0.00549 0.0045 0.00083 0.00072
Train. MaxErr 0.0187 0.0177 0.00252 0.00204
Test MaxErr 0.0218 0.0189 0.00314 0.00269
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THE AR(2) SERIES EXAMPLE

A set of 100 data points for each of 4 time series
AR(2) models of the following form (see Figures)

xn = α1xn−1 + α2xn−2 + εn (31)

are analyzed, where εn are i.i.d. normal deviates
with standard deviation σe and coefficients α1 and
α2 given in the Table below.

Training set RMSE Test set RMSE
α1 α2 σe NN FN NN FN

0.70 -0.49 0.7695 0.571 0.867 1.018 0.898
0.90 -0.81 0.5088 0.422 0.527 0.625 0.513
0.90 -0.97 0.2163 0.177 0.424 0.295 0.234
1.4 -0.99 0.1002 0.084 0.096 0.133 0.102

The Table below shows a summary of the main re-
sults obtained for the neural network proposed by
Stern, and the functional network associated with
the model

xn = f1(xn−1) + f2(xn−2) + εn, (32)

where the f1 and f2 functions have been approxi-
mated by the set φ = {1, x}.
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THE AR(2) SERIES EXAMPLE

xn = 0.70xn−1 − 0.49xn−2 + N (0.0, 0.76952).

xn = 0.90xn−1 − 0.81xn−2 + N (0.0, 0.50882).

xn = 0.90xn−1 − 0.97xn−2 + N (0.0, 0.21632).

xn = 1.40xn−1 − 0.99xn−2 + N (0.0, 0.10022).
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THE AR(2) SERIES EXAMPLE

Note that the associative functional network is only
adequate for the case α1 = α2 = 1.

To test the quality, a simulated series of 5000 data
points have been used with the results in the Table.

There is some evidence of overfitting to the training
sample for the Stern neural network because the fit-
ted RMSE is smaller than the standard deviations
of the stochastic disturbance used to generate the
time series and much larger for the test series (see
Table). However, the results for the functional net-
work do not show this problem of overfitting (the
RMSEs are larger or similar to the standard devi-
ations (see Table)) and, in addition, it gives much
better predictions (smaller RMSE for the test sam-
ple).
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THE SPANISH DATA EXAMPLE

As a final example we use real data from Alegre,
Arcarons, Bolancé and D́ıaz, 1995.

Year Stock index Price index % of savings
1964 103.55 112.67 23.18
1965 108.64 123.22 22.35
1966 111.62 129.71 22.54
1967 111.86 138.22 21.89
1968 146.29 142.19 22.54
1969 215.14 147.07 24.37
1970 192.36 157.03 24.37
1971 220.88 172.18 24.36
1972 291.74 184.81 24.59
1973 328.94 211.06 24.99
1974 294.47 248.80 24.32
1975 306.28 283.85 23.29
1976 218.80 340.00 21.30
1977 147.23 429.79 20.75
1978 131.58 501.01 21.72
1979 109.98 578.82 20.40
1980 116.60 667.03 19.40
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THE SPANISH DATA EXAMPLE

To reproduce these series, we use the model:

st = f1(mt) + f2(ct); f3(x) = x, (33)

where st is the percentage of savings, mt is the gen-
eral Madrid stock index, and ct is the consumer price
index.

We selected the set of functions for s = 1, 2:

{φs1(x), φs2(x), φs3(x), φs4(x)} = {1, x, log(x), x2}.

The resulting approximating functions are:

f1(x) = 1.09 − 0.089x + 13.33 log x + 0.00011x2

f2(x) = 54.76 + 0.11x − 20.72 log x − 0.000064x2,

leading to a root mean squared error (RMSE) of
0.523661 and a largest prediction error of 1.019.
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THE SPANISH DATA EXAMPLE

The Figure shows the observed (continuous line) and
the estimated values (dashed line) of the percentage
of savings.

The results are good even though the selected func-
tional network is simple.
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LEARNING THE ASSOCIATIVITY
FUNCTIONAL NETWORK

Learning the neuron function

F (x, y) = f−1[f(x) + f(y)]

is equivalent to learning f(x).

We can approximate f(x) by

f̂(x) =
m∑

i=1
aiφi(x) (34)

where the {φi(x); i = 1, . . . , m} are given linearly in-
dependent functions, capable of approximating f(x)
to the desired accuracy.

To estimate {ai; i = 1, . . . , m}, we use some data
consisting of triplets {(xj1, xj2, yj)|yj = F (xj1, xj2) =
xj1 ⊕ xj2; j = 1, . . . , n}.

We must have

f(yj) = f(xj1) + f(xj2); j = 1, . . . , n (35)

thus, the error can be measured by

ej = f̂(xj1) + f̂(xj2) − f̂(yj); j = 1, . . . , n. (36)
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LEARNING THE ASSOCIATIVITY
FUNCTIONAL NETWORK

Thus, we minimize the sum of squared errors

Q =
n∑

j=1
e2
j =

n∑

j=1




m∑

i=1
ai [φi(xj1) + φi(xj2) − φi(yj)]




2

subject to

f(x0) ≡
m∑

i=1
aiφi(x0) = α,

where α is an arbitrary but given real constant,
which is necessary to identify c.
Using the Lagrange multipliers we build

Qλ =
n∑

j=1




m∑

i=1
aibij




2
+ λ




m∑

i=1
aiφi(x0) − α


 (37)

where
bij = φi(xj1) + φi(xj2) − φi(yj). (38)

The minimum corresponds to
∂Qλ

∂ar
= 2

n∑

j=1




m∑

i=1
aibij


 brj + λφr(x0) = 0; ∀r

∂Qλ

∂λ
=

m∑

i=1
aiφi(x0) − α = 0,
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THE ASSOCIATIVE OPERATION
EXAMPLE

To learn an associative operation of two real num-
bers, in the interval (0, 5), we can take pairs of num-
bers in that interval and their operated values as
triplets

{(xj1, xj2, yj)|yj = F (xj1, xj2) = xj1 ⊕ xj2; ∀j}.

We can do this deterministically or we can simulate
a set of triplets. Assume that we simulate 10 of these
triplets and obtain the values:

x1 x2 y x1 x2 y
0.433 0.842 1.275 2.263 1.634 3.897
1.111 2.066 3.177 3.071 1.147 4.218
1.928 2.381 4.309 2.292 2.113 4.405
0.691 4.527 5.218 2.747 2.210 4.957
2.801 3.658 6.459 3.050 3.951 7.001

Since we know that the operation is associative, we
have:

f(x ⊕ y) = f(x) + f(y).
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THE ASSOCIATIVE OPERATION
EXAMPLE

Using the set {φi(x); i = 1, . . . , m} of functions:

{1, log(x + 1), log(x + 2), log(x + 3), log(x + 4)},

with m = 5, where we have removed the function x,
because we know it is the exact solution (the sum
operation), and solve the linear system of equations
(51), we obtain

(a1, a2, a3, a4, a5, λ)
= (−55.3, −21.8, 200.4, −468.4, 311.1,−0.0002).

To check the quality of the approximation, we have
simulated 1000 pairs of random numbers in the in-
terval (0, 3), calculated their exact and approximate
values, and obtained the resulting RMSE (root mean
squared error) for the cases of the preceding set of
functions φi(x) and the two sets obtained by se-
quentially adding the new functions log(x + 5) and
log(x + 6).

Number of functions (m) 5 6 7
RMSE 0.0476 0.0177 0.0021
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APPLICATIONS TO REGRESSION

Regression models reproduced by this network:

1. Linear Regression Models: They are of the
type

z =
m∑

i=1
fi(x) + ε, (39)

where the fi functions are to be estimated.

2. Non-Linear Regression Models: of the type

z = h[
m∑

i=1
fi(x)] + ε, (40)

where the fi and h functions are to be estimated.

3. Other Non-Linear Regression Models: For
example,

z = [
m∑

i=1
aix

αi
i ]β + ε, (41)

where the functions aix
αi
i ; i = 1, . . . , m and uβ are

estimated.
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APPROXIMATE LEARNING I

Assume now that instead of knowing the h function,
we have a set of available data (triplets):

D = {(xt, yt, (x ⊕ y)t)|t ∈ T }.

Then, we can approximate the f function by

f̂(x) =
k∑

i=0
cix

i.

Since we have

f−1[f(x) + f(y)] = x ⊕ y ⇔ f(x ⊕ y) = f(x) + f(y),

to estimate {ci|i = 0, . . . , k}, we can minimize, with
respect to ci, the sum of squared errors

Q = ∑

t∈T
e2
t = ∑

t∈T
(f((x ⊕ y)t) − f(xt) − f(yt))

2

= ∑

t∈T
k∑

i=0

(
ci(x ⊕ y)i

t − cix
i
t − ciy

i
t

)2
,

where et is the error for the data point t. From this
minimization process, we obtain the ci values, that
is, an estimate of the f function.
Since in this case, the estimated function f̂ does not
reproduce exactly the ⊕ operation, we say that we
have an approximate learning.
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APPROXIMATE LEARNING II

The approximate learning process consists of select-
ing the “best” function gi in a given class C, using
D = {(x(t)

input, x
(t)
output)|t ∈ T }.

To this end, a measure d(D;Di(gi)) is selected to
measure the discrepancy between the observed data
D and the functional net values Di(gi). Since the
aim of the estimation process consists of obtaining
the optimal function gi, we minimize the discrepancy
with respect to gi ∈ C, i.e.,

min
gi∈C

d(D;Di(gi)).

As one example, we can use

d(D; Di(gi)) = ∑

t∈T
‖fci(x

(t)
input) − x

(t)
output‖2, (42)

where ‖ . ‖ is a norm in IK|Xoutput| and fci is the pro-
cessing function of the compact form of the func-
tional net associated with gi.

Note that some of the neural functions gi can be
known, and then, the learning can be partial.
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THE ITERATOR EXAMPLE I

Consider the function

f(x) = log(1 + exp(x)). (43)

and assume that we are interested in calculating its
n-th f -iterate F (x, n) = f (n)(x).
It is well known that F (x, n) can be written as

f (n)(x) = F (x, n) = g−1[g(x) + n] (44)

for some g(.), and then

f(x) = g−1[g(x) + 1]. (45)
To this end we can use the functional network in the
Figure.

x

n

f(n)(x)

g

I

g-1+

f f f. . .x f(n)(x)

(a)

(b)

f(x) f(2)(x) f(n-1)(x)
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THE ITERATOR EXAMPLE II

To estimate g we have the data pairs in Table,

xt yt xt yt xt yt

0.681 1.091 0.919 1.255 0.612 1.045
0.156 0.774 0.728 1.122 0.140 0.766
0.167 0.780 0.888 1.233 0.968 1.290
0.444 0.940 0.925 1.259 0.787 1.162
0.126 0.758 0.493 0.969 0.175 0.785
0.579 1.024 0.519 0.986 0.061 0.724
0.883 1.229 0.436 0.935

where yt = f(xt), and from (45) we consider that

g(yt) = g(xt) + 1;∀t = 1, . . . , 20, (46)

and make g(x) = 4∑
i=1

cix
i, that is, we approximate

g(x) by a fourth degree polynomial.
Coefficient c0 has no influence and can be assumed
to be zero.
The error in each data point is

et = g(yt) − g(xt) − 1 =
k∑

i=0
ci(yi

t − xi
t) − 1 (47)
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THE ITERATOR EXAMPLE III

Thus, to estimate c1, . . . , c4, we minimize

Q =
20∑

t=1
(

k∑

i=0
ci(yi

t − xi
t) − 1)2. (48)

The resulting polynomial approximation is

ĝ(x) = 0.992x + 0.536x2 + 0.106x3 + 0.0844x4 (49)

The Figure shows the exact (continuous lines)
and approximate (dashed lines) f -iterates of orders
2, 4, 8, 16 and 32:

f̂ (n)(x) = ĝ−1[ĝ(x) + n]. (50)
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THE BEAM EXAMPLE I

Castillo (1996) shows how the the usual mathemat-
ical model in terms of differential equations:

q′(x) = p(x)
m′(x) = q(x)

w′(x) =
m(x)
EI

z′(x) = w(x),

(51)

can be written in terms of functional equations:

q(x + u) = q(x) + A(x, u)
m(x + u) = m(x) + uq(x) + B(x, u)
w(x + u) = w(x) + 1

EI

[

m(x)u + q(x)u2

2 + C(x, u)
]

z(x + u) = z(x) + w(x)u+
1

EI

[

m(x)u2

2 + q(x)u3

6 + D(x, u)
]

where

A(x, u) =
x+u∫

x
p(s)ds

B(x, u) =
x+u∫

x
(x + u − s)p(s)ds

C(x, u) =
x+u∫

x
B(x, s − x)ds

D(x, u) =
x+u∫

x
C(x, s − x)ds

(52)
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THE BEAM EXAMPLE II

Alternatively, from (51) we have.

EIz(iv)(x) = p(x). (53)

To obtain an equivalent functional equation in z(x),
we can write z(x + u) for three different values of u
and eliminate w(x), m(x) and q(x). For example, for
u, 2u, 3u and 4u, we get:

z(x + 4u) = 4z(x + u) − 6z(x + 2u) + 4z(x + 3u)
−z(x) + (−4D(x, u) + 6D(x, 2u)
−4D(x, 3u) + D(x, 4u))/EI,

which is equivalent to (53). Similarly:

w(x + 3u) = w(x) − 3w(x + u) + 3w(x + 2u)

+
[3C(x, u) − 3C(x, 2u) + C(x, 3u)]

(EI)

m(x + 2u) = 2m(x + u) − m(x) − B(x, u)
q(x + u) = q(x) + A(x, u),

which can be interpreted as finite difference equa-
tions. In this case, they give the exact solution at
the interpolating points.
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THE BEAM EXAMPLE III

q(x) F

G

H

m(x)

w(x)

z(x)

x

q(x+u)

m(x+u)

w(x+u)

z(x+u)

x+u

R

S

q(x + u) = q(x) + A(x, u)
m(x + u) = m(x) + uq(x) + B(x, u)
w(x + u) = w(x) + 1

EI

[

m(x)u + q(x)u2

2 + C(x, u)
]

z(x + u) = z(x) + w(x)u+
1

EI

[

m(x)u2

2 + q(x)u3

6 + D(x, u)
]

,

We use the approximation:

A(x, u) = a0 + a1x + a2x
2 + a3x

3 + a4x
4

B(x, u) = b0 + b1x + b2x
2 + b3x

3 + b4x
4

C(x, u) = c0 + c1x + c2x
2 + c3x

3 + c4x
4

D(x, u) = d0 + d1x + d2x
2 + d3x

3 + d4x
4
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THE BEAM EXAMPLE IV

The vectors (q(x), m(x), w(x), z(x), x) measured in
a real clamped at both ends beam corresponding to
a load p(x) = −1 − exp(−x), which is unknown to
the analyst are:

q(x) m(x) w(x) z(x) x
0.878 -0.14 0. 0. 0
0.779 -0.0989 -59.6 -1.58 0.05
0.683 -0.0623 -99.7 -5.63 0.1
0.589 -0.0305 -123. -11.3 0.15
0.497 -0.00339 -131. -17.7 0.2
. . . . . . . . . . . . . . .

-0.754 -0.13 0.00 0.0 1.0

To estimate the 20 parameters we minimize

Q = ∑
x
(F (q(x), x) − q(x + u))2 +

∑
x
(G(m(x), q(x), x) − m(x + u))2 +

∑
x
(H(w(x), m(x), q(x), x) − w(x + u))2 +

∑
x
(R(z(x), w(x), q(x), x) − z(x + u))2 .

with respect to a0, . . . , b0, . . . , c0, . . . , d0, . . ..
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THE BEAM EXAMPLE V

Measured vectors of the beam and the predictions
using the model above. Vectors are predicted based
on the previous observed vectors.
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THE BEAM EXAMPLE VI

Measured deflection of the beam and the prediction
using the model above. Vectors are predicted based
on the left most observed vectors.
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THE BEAM EXAMPLE VII

As a second alternative we take
(−4D(x, u) + 6D(x, 2u) − 4D(x, 3u) + D(x, 4u))/EI

= c0 + c1x + c2x
2 + c3x

3 + c4x
4

which corresponds to the functional network in the
lower right corner of the Figure.

F

x

q(x) q(x+u) G

m(x)

x

m(x+u) m(x+2u)

H

w(x)

x

w(x+u)

w(x+2u)

w(x+3u)

z(x)

R

z(x+u)

x

z(x+2u)

z(x+3u)

z(x+4u)

For estimating the parameters we minimize

Q = ∑
x
[z(x + 4u)

−4z(x + u) + 6z(x + 2u) − 4z(x + 3u) + z(x)
−c0 − c1x − c2x

2 − c3x
3 − c4x

4
]2

,

with respect to {c0, c1, c2, c3, c4}.
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SIMULATING NORMAL VARIABLES

If X and Y are two variables U(0, 1), then,

U = (−2 log X)
1
2sin(2πY )

V = (−2 log X)
1
2cos(2πY )

(54)

are normal N(0, 1) and independent. Thus, the func-
tional net in the Figure allows obtaining the values
u and v of two independent N(0, 1).

f2

f1x

y

u

v

The functional net is invertible, because

x = g1(u, v) = e−u2+v2
2

y = g2(u, v) = 1
2πarctg(u

v)

and its jacobian J satisfies:

J =
1
2π

∣∣∣∣∣∣∣∣∣∣∣

v
u2+v2 −ue−u2+v2

2

−u
u2+v2 −ve−u2+v2

2

∣∣∣∣∣∣∣∣∣∣∣

=
1
2π

e−u2+v2
2 6= 0 ; ∀ u, v
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THE LORENZ ATTRACTOR I

The Lorenz Attractor has differential equations:

ẋ = a(y − x)
ẏ = x(c − z) − y
ż = xy − bz,

(55)

or difference equations:

xt+∆ = a∆(yt − xt) + xt

yt+∆ = ∆xt(c − zt) + yt(1 − ∆)
zt+∆ = ∆xtyt + zt(1 − b∆),

(56)

where ∆ is the step size.
We use the functional network in Figure, where





xt+∆ = g1[f1(xt), f2(yt)]
yt+∆ = g2[f3(yt), f4(xt), f5(zt)]
zt+∆ = g3[f6(zt), f7(xt), f8(yt)],

(57)

and f1, . . . , f8 and g1, . . . , g3 are to be estimated.
We have approximated the fi, gi functions by:

f̂i(x) = a0i + a1ix; i = 1, . . . , 8
ĝ1(x, y) = b0 + b1x + b2y + b3xy,
ĝi(x, y, z) = c0i + c1ix + c2iy + c3iz + c4ixy + c5ixz

+c6iyz; i = 1, 2
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THE LORENZ ATTRACTOR II

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
1

x t

y t

z t

g
2

y t+∆

g
3 z t+∆

g
1

x t+∆

and used a randomly generated set of data
{(xt, yt, zt, xt+∆, yt+∆, zt+∆)|t = 1, . . . , 50}.
To estimate the polynomial coefficients we mini-
mized the discrepancy measure

Q = 50∑
t=1

(xt+∆ − ĝ1(f̂1(xt), f̂2(yt)))2

+ 50∑
t=1

(yt+∆ − ĝ2(f̂3(xt), f̂4(yt), f̂5(zt)))2

+ 50∑
t=1

(zt+∆ − ĝ3(f̂6(xt), f̂7(yt), f̂8(zt)))2

(58)

To validate the estimation, we simulated 1000 more
data points and calculated the mean error Q/1000,
obtaining a value of 0.000077, which shows the high
quality of the fit.

72



AAAI 1998 WORKSHOPS: "Functional Networks"

IMPLEMENTING
FUNCTIONAL NETWORKS

The implementation of functional networks reduces
to:

1. Selecting the set of basic functions
φsi(x); i = 1, . . . ,m; s = 1, . . . , r.

2. Building the matrix of the linear system of
equations.

3. Solving the system of linear equations: Any
of the well known and efficient methods can be
used to this end.

4. Calculate the value Q of the error function.

5. Check the quality of the approximation: If
the error Q is large start again.

6. Build the neural functions: Based on the re-
sulting functions φsi(x).

7. Use the model.
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STEPS FOR WORKING WITH
FUNCTIONAL NETWORKS

1. Understanding of the problem to be solved:
This is a crucial step.

2. Selecting the topology of the initial func-
tional network: Based on the knowledge of the
problem.

3. Simplifying the initial functional network
using functional equations: Functional equa-
tions allow simplifying networks.

4. Obtaining the required data to learn the
functional network: Data must be collected to
learn the neural functions.

5. Estimating or learning the neural func-
tions: The minimization methods allow estimat-
ing the neural functions.

6. Cross validation of the model: A cross vali-
dation of the model is convenient.

7. Use of the model: If the validation process is
satisfactory, the model is ready to be used.

74


