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AREA OF A RECTANGLE

Assume that the expression giving the area
of a rectangle is unknown, but we know that
it is a function f(b, h) of the base and the
height of the rectangle:

Area = f(b, h)

Is it possible to obtain this expression using
some rectangle properties and functional
equations?

The answer is “YES”
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AREA OF A RECTANGLE

According to the Figure, we have

f(b, h1 + h2) = f(b, h1) + f(b, h2)
f(b1 + b2, h) = f(b1, h) + f(b2, h).

The solution of this system of functional equations
is:

f(b, h) = cbh,

where c is an arbitrary non-negative constant.
This proves that the area of a rectangle is not the
well known “base × height”, but “a constant × its
base × its height”. The constant takes care of the
units we use for base, height and area.
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AREA OF A TRAPEZOID
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AREA OF A TRAPEZOID

SYSTEM OF EQUATIONS

f(b1 + b′1, b2 + b′2, h) = f(b1, b2, h) + f(b′1, b′2, h)
f(b, b, h1 + h2) = f(b, b, h1) + f(b, b, h2)
f(b1, b2, h) = f(b2, b1, h)

SOLUTION

The general solution of this system of func-
tional equations is:

Area = f(b1, b2, h) = c(b1 + b2)h,

where c is a positive arbitrary constant,
which considers the measurement units used
for the bases b1 and b2, the height h, and the
area.
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SIMPLE INTEREST

Let f(x, t) be the interest we get from the bank when
we deposit an amount x during a time period t.
In the case of the simple interest, we have the fol-
lowing assumptions:

1 At the end of the time period t, we receive the
same interest in the following two cases:

(a) We deposit the amount x + y in one account.
(b) We deposit the amount x in one account, and

the amount y in another account.

f(x + y, t) = f(x, t) + f(y, t).

x

y
t

t

t

x+y
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SIMPLE INTEREST

2 At the end of the time period t + u, you receive
the same interest in the following two cases:

(a) You deposit the amount x during a period of
duration t + u, or

(b) You deposit the amount x first during a period
of duration t and later for a period of duration
u.

f(x, t + u) = f(x, t) + f(x, u).

t+u
x

t u

xx

SYSTEM OF EQUATIONS

f(x, t + u) = f(x, t) + f(x, u)
f(x, t + u) = f(x, t) + f(x, u)



 x, y, t, u ∈ IR+

SOLUTION

f(x, t) = cxt,

where c is an arbitrary non-negative constant.
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A COMPARISON OF TWO SOLUTIONS

AREA OF A RECTANGLE

f(b, h1 + h2) = f(b, h1) + f(b, h2)
f(b1 + b2, h) = f(b1, h) + f(b2, h).

Solution

f(b, h) = cbh

SIMPLE INTEREST

f(x, t + u) = f(x, t) + f(x, u)
f(x, t + u) = f(x, t) + f(x, u)




x, y, t, u ∈ IR+

Solution

f(x, t) = cxt
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DEFINITIONS OF
FUNCTIONAL EQUATION

Definition 1 A functional equation is an equation
in which the unknowns are functions. We exclude
differential and integral equations.

EXAMPLES

CAUCHY’S FUNCTIONAL EQUATION

f(x + y) = f(x) + f(y)

Solution

f(x) = cx,

where c is an arbitrary constant.

PEXIDER’S FUNCTIONAL EQUATION

f(x + y) = g(x) + h(y)

Solution

f(x) = cx + a + b
g(x) = cx + a
h(x) = cx + b
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ASSOCIATIVITY FUNCTIONAL EQUATION

ASSOCIATIVITY EQUATION

F [F(x, y), z] = F [x, F (y, z)]

Solution

F(x, y) = f−1[f(x) + f(y)]

The case of the sum

f(x) = x

F (x, y) = x + y

The case of the product

f(x) = log(x)
F (x, y) = exp[log(x) + log(y)] = xy

9



Introduction to Functional Equations

Universidad
de Cantabria

SUMS OF PRODUCTS EQUATION

All solutions of the functional equation
n∑

k=1
fk(x)gk(y) = 0 (1)

can be written in the form:



f1(x)
f2(x)
. . .
fn(x)




=




a11 a12 . . . a1r

a21 a22 . . . a2r

. . . . . . . . . . . .
an1 an2 . . . anr







ϕ1(x)
ϕ2(x)
. . .
ϕr(x)







g1(y)
g2(y)
. . .
gn(y)




=




b1r+1 b1r+2 . . . b1n

b2r+1 b2r+2 . . . b2n

. . . . . . . . . . . .
bnr+1 bnr+2 . . . bnn







ψr+1(y)
ψr+2(y)

. . .
ψn(y)




(2)
where {ϕ1(x), ϕ2(x), . . . , ϕr(x)}, on one hand, and
{ψr+1(x), ψr+2(x), . . . , ψn(x)}, on the other hand, are
arbitrary systems of functions which are mutually
linearly independent, 0 < r < n is an integer, and
the constants aij and bij satisfy




a11 a21 . . . an1

a12 a22 . . . an2
. . . . . . . . . . . .
a1r a2r . . . anr







b1r+1 b1r+2 . . . b1n

b2r+1 b2r+2 . . . b2n

. . . . . . . . . . . .
bnr+1 bnr+2 . . . bnn




= 0
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NORMAL CONDITIONALS

Consider a two-dimensional random variable (X, Y )
with joint, marginal and conditionals densities
f(X,Y )(x, y), g(x), h(y), fX|Y (x|y) and fY |X(y|x), re-
spectively. Then we have

f(X,Y )(x, y) = fX|Y (x|y)h(y) = fY |X(y|x)g(x)

If we assume normal conditionals we have

fY |X(y|x) ∝
exp



−1

2

[
y−a(x)

b(x)

]2



b(x)

fX|Y (x|y) ∝
exp



−1

2

[
x−d(y)

c(y)

]2



c(y)

Taking logarithms and letting

u(x) = log[g(x)/b(x)]; v(y) = log[h(y)/c(y)]

we get

[2u(x)b2(x) − a2(x)]c2(y) − y2c2(y)
+x2b2(x) + b2(x)[d2(y) − 2v(y)c2(y)]
+2a(x)yc2(y) − 2xb2(x)d(y) = 0,

which is a functional equations of the form
n∑

k=1
fk(x)gk(y) = 0.
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NORMAL CONDITIONALS

Solution




2u(x)b2(x) − a2(x)
b2(x)

1
x2b2(x)
2a(x)
xb2(x)




=




a11 a12 a13
1 0 0

a31 a32 a33

0 0 1
a51 a52 a53
0 1 0







b2(x)
xb2(x)
x2b2(x)




and



c2(y)
d2(y) − 2v(y)c2(y)

−y2c2(y)
1

yc2(y)
−2d(y)




=




1 0 0
b24 b25 b26

0 0 −1
b44 b45 b46
0 1 0
b64 b65 b66







c2(y)
yc2(y)
y2c2(y)




where




a11 1 a31 0 a51 0
a12 0 a32 0 a52 1
a13 0 a33 1 a53 0







1 0 0
b24 b25 b26
0 0 −1
b44 b45 b46
0 1 0
b64 b65 b66




= 0
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NORMAL CONDITIONALS

Solution

a(x) = −(A+Bx+Cx2)
(D+2Ex+Fx2)

d(y) = −(H+By+Ey2)
(J+2Cy+Fy2)

b2(x) = 1
(D+2Ex+Fx2)

c2(y) = 1
(J+2Cy+Fy2)

f(x, y) = 1√
2π

exp{−G
2 }×

× exp
{

−1
2[2Hx + 2Ay + Jx2 + Dy2 + 2Bxy]

}

× exp
{

−1
2[2Cx2y + 2Exy2 + Fx2y2]

}

where the constant must satisfy one of the
following two conditions:

• Normal Model:

F = E = C = 0; D > 0; J > 0; B2 < DJ

• Non-Normal Model:

F > 0; FD > E2; JF > C2
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NORMAL CONDITIONALS

Normal Model

• Regression lines are straight lines.

• Marginal distributions are normal.

• Mode is in the intersection of regression
lines.
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NORMAL CONDITIONALS

Non-Normal Model

• Regression lines are not straight lines.

• Marginal distributions are not normal.

• Mode is in the intersection of regression
lines
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NORMAL CONDITIONALS

Non-Normal Model
Two Modes

• Regression lines are not straight lines.

• Marginal distributions are not normal.

• Modes are in the intersection of regres-
sion lines
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COVER WITH
POLYNOMIAL CROSS SECTIONS

We look for the most general surface of the
form Z = z(x, y) such that all of its cross-
sections or intersections with planes parallel
to the coordinate planes are of the form

z(x, y) = a(y)x2 + b(y)x + c(y)
z(x, y) = d(x)y2 + e(x)y + f(x),

(3)

where a(y), b(y) and c(y), on one hand, and
d(x), e(x) and f(x), on the other, are the co-
efficients of the two polynomials intersection
curves associated with planes Y = y and
X = x, respectively.
The equations state that we obtain sec-
ond degree polynomials when we intersect
planes X = constant and Y = constant.

¿From (3) we get

a(y)x2+b(y)x+c(y)−d(x)y2−e(x)y−f(x) = 0,

which is of the form n∑

k=1
fk(x)gk(y) = 0.
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COVER WITH
POLYNOMIAL CROSS SECTIONS

SOLUTION



x2

x
1

d(x)
e(x)
f(x)




=




1 0 0
0 1 0
0 0 1

a41 a42 a43
a51 a52 a53
a61 a62 a63







x2

x
1







a(y)
b(y)
c(y)
−y2

−y
−1




=




b14 b15 b16
b24 b25 b26
b34 b35 b36

−1 0 0
0 −1 0
0 0 −1







y2

y
1




where




1 0 0 a41 a51 a61

0 1 0 a42 a52 a62
0 0 1 a43 a53 a63







b14 b15 b16
b24 b25 b26
b34 b35 b36
−1 0 0
0 −1 0
0 0 −1




= 0
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COVER WITH
POLYNOMIAL CROSS SECTIONS

SOLUTION

a(y) = A + By + Cy2 ; b(y) = D + Ey + Fy2

c(y) = G + Hy + Iy2 ; d(x) = I + Fx + Cx2

e(x) = H + Ex + Bx2 ; f(x) = G + Dx + Ax2

z(x, y) = Cx2y2 + Bx2y + Fxy2

+Ax2 + Exy + Iy2 + Dx + Hy + G,

where A, B,C,D, E,F, G,H and I are arbitrary con-
stants.
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SYNTHESIS OF JUDGEMENTS

Suppose that we have n quantifiable judge-
ments x1, . . . , xn which we want to synthesize
into a consensus judgement f(x1, . . . , xn).
We make the following assumptions:

1. Separability: The function f is separa-
ble:

f(x1, . . . , xn) = g1(x1)∆g2(x2)∆ . . . ∆gn(xn).

where ∆ is an associative, commutative
and cancelative operation.

2. Equality : All members in the jury have
the same weight in the final decision.

3. Unanimity : When the judges coincide
in the same result x, the consensus deci-
sion must be the same x:

f(x, . . . , x) = x
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SYNTHESIS OF JUDGEMENTS

The associativity assumption implies:

y1∆y2 = ϕ−1[ϕ(y1) + ϕ(y2)],

that is,

f(x1, . . . , xn) = ϕ−1{
n∑

i=1
ϕ[gi(xi)]}

Because of equality, all gi must coincide:

f(x1, . . . , xn) = ϕ−1{
n∑

i=1
ϕ[g(xi)]}

¿From unanimity we get

f(x, . . . , x) = x ⇒ g(x) = ϕ−1[
ϕ(x)

n
]

and, finally we obtain:

f(x1, x2, . . . , xn) = ϕ−1{
n∑

i=1
ϕ(xi)

n
}

where ϕ is an arbitrary invertible function.

PARTICULAR CASES

• The arithmetic mean: ϕ(x) = x.

• The geometric mean: ϕ(x) = log x.

• The Lp mean: ϕ(x) = xp.
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THE BEAM EQUATION

CLASSICAL APPROACH

Differential equations

The equilibrium equations are stated for differential
pieces.

q(x)

m(x+dx)

q(x+dx)

m(x)

p(x)

dx
The equilibrium of vertical forces leads to

q(x + dx) = q(x) + p(x)dx ⇒ q′(x) = p(x), (4)

where q(x) and p(x) are the shear and the load at
the point x, respectively, and the equilibrium of mo-
ments

m(x + dx) = m(x) + q(x)dx + p(x)dxdx/2 (5)

which implies
m′(x) = q(x), (6)

where m(x) is the bending moment at x.
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THE BEAM EQUATION

Using the well known strength of materials
relation

m(x) = EIz′′(x), (7)
where z(x) is the deflection of the beam and
from (4), (6) and (7) we get the well known
differential equation

EIz(iv)(x) = p(x). (8)

Letting w(x) = z′(x) be the rotation of the
beam at point x, from Equations (4), (6)
and (7) we get the system of differential
equations

q′(x) = p(x)
m′(x) = q(x)

w′(x) = m(x)
EI

z′(x) = w(x),

(9)

which is the usual mathematical model in
terms of differential equations.
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THE BEAM EQUATION

NEW APPROACH

Functional equations

In the new approach, the equilibrium is an-
alyzed for discrete pieces.

m(x+u)

q(x+u)q(x)

m(x)
p(x)

u

The equilibrium of vertical forces leads to

q(x + u) = q(x) + A(x, u), (10)

where
A(x, u) =

x+u∫

x
p(s)ds. (11)

The equilibrium of moments gives

m(x + u) = m(x) + uq(x) + B(x, u), (12)

where

B(x, u) =
x+u∫

x
(x + u − s)p(s)ds. (13)
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THE BEAM EQUATION

Using Equation (7) we get

w(x + u) = w(x) + 1
EI

x+u∫
x

m(s)ds

= w(x) + 1
EI

[
m(x)u + q(x)u2

2 + C(x, u)
]
.

(14)

In addition we have

z(x + u) = z(x) +
x+u∫
x

w(s)ds

= z(x) + w(x)u + 1
EI

[
m(x)u2

2 + q(x)u3

6 + D(x, u)
]
.

(15)
Thus, we get the system of functional equations

q(x + u) = q(x) + A(x, u)
m(x + u) = m(x) + uq(x) + B(x, u)
w(x + u) = w(x) + 1

EI

[
m(x)u + q(x)u2

2 + C(x, u)
]

z(x + u) = z(x) + w(x)u + 1
EI

[
m(x)u2

2 + q(x)u3

6 + D(x, u)
]

(16)
where

A(x, u) =
x+u∫
x

p(s)ds

B(x, u) =
x+u∫
x

(x + u − s)p(s)ds

C(x, u) =
x+u∫
x

B(x, s − x)ds

D(x, u) =
x+u∫
x

C(x, s − x)ds

(17)

Equation (16) is equivalent to the system of functional equations (9).
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CAUCHY’S EQUATIONS

Theorem 1 If the equation

f(x + y) = f(x) + f(y) ; x, y ∈ R (18)

is satisfied for all real x, y, and if the func-
tion f(x) is (a) continuous at a point, or (b)
nonnegative for small x, or (c) bounded in
an interval or (d) integrable or (e) measur-
able, then

f(x) = cx , x ∈ R (19)

where c is an arbitrary constant.

Theorem 2 The most general solutions,
which are continuous-at-a-point, of the
functional equation

f(xy) = f(x) + f(y) x, y ∈ T (20)

are

f(x) =





c log(x) if T = R++
c log(|x|) if T = R − {0}

0 if T = R
(21)
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CAUCHY’S EQUATIONS

Theorem 3 The most general solutions of the func-
tional equation

f(x + y) = f(x)f(y) ; x, y ∈ R or x, y ∈ R++ (22)

which are continuous-at-a-point are

f(x) = exp(cx) and f(x) = 0. (23)

Theorem 4 The most general solutions, which are
continuous-at-a-point, of the functional equation

f(xy) = f(x)f(y) x, y ∈ T (24)
are

f(x) = 1

f(x) =




|x|c x 6= 0
0 x = 0

f(x) =




|x|csgn(x) x 6= 0
0 x = 0





if T = R

f(x) = |x|c
f(x) = |x|csgn(x)





if T = R − {0}

f(x) = xc if T = R++

(25)

where c is an arbitrary real number, together with

f(x) = 0 ; f(x) =




0 |x| 6= 1
x |x| = 1 ; f(x) =





0 |x| 6= 1
1 |x| = 1

which are common to the three domains.
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PEXIDER’S EQUATIONS

Theorem 5 (Pexider’s main equation)The most
general system of solutions of

f(x+y) = g(x)+h(y) ; x, y ∈ R or [a, b] with a, b ∈ R
(26)

with f : (a) continuous at a point, or (b) non-
negative for small x, or (c) bounded in an interval,
is

f(x) = Ax+B+C ; g(x) = Ax+B ; h(x) = Ax+C
(27)

where A, B and C are arbitrary constants.

Theorem 6 The most general system of solutions of

f(xy) = g(x) + h(y); x, y ∈ R or R++ or R − {0}
(28)

with f continuous at a point is

f(x) = A log(BCx)
g(x) = A log(Bx)
h(x) = A log(Cx)





;x, y ∈ R++

f(x) = A log(BC |x|)
g(x) = A log(B |x|)
h(x) = A log(C |x|)





x, y ∈ R − {0}

f(x) = A + B; g(x) = A; h(x) = B;
if x, y ∈ R or R − {0} or R++

(29)
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PEXIDER’S EQUATIONS

Theorem 7 The most general system of solutions of

f(x + y) = g(x)h(y); x, y ∈ R (30)

with f continuous at a point is

f(x) = ABeCx; g(x) = AeCx; h(x) = BeCx (31)

where A, B and C are arbitrary non-zero constants,
together with the trivial solutions

f(x) = g(x) = 0;h(x) arbitrary
f(x) = h(x) = 0; g(x) arbitrary.

(32)

Theorem 8 The most general system of solutions of

f(xy) = g(x)h(y); x, y ∈ R or R++ or R−{0} (33)

with f continuous at a point is

f(x) = AB; g(x) = A; h(x) = B
if x, y ∈ R or R − {0} or R++

(34)

f(x) = ABxC

g(x) = AxC

h(x) = BxC





if x, y ∈ R++ (35)

f(x) = g(x) = 0;h(x) arbitrary
f(x) = h(x) = 0; g(x) arbitrary.

(36)
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PEXIDER’S EQUATIONS

f(x) = AB |x|C

g(x) = A |x|C

h(x) = B |x|C





or

f(x) = AB |x|C sgn(x)
g(x) = A |x|C sgn(x)
h(x) = B |x|C sgn(x)





if x, y ∈ R − {0},

f(x) =




AB |x|C x 6= 0
0 x = 0

g(x) =




A |x|C x 6= 0
0 x = 0

h(x) =




B |x|C x 6= 0
0 x = 0





or

f(x) =




AB |x|C sgn(x) x 6= 0
0 x = 0

g(x) =




A |x|C sgn(x) x 6= 0
0 x = 0

h(x) =




B |x|C sgn(x) x 6= 0
0 x = 0





if x, y ∈ R,

(37)
where A, B and C are arbitrary constants.
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TRANSLATION EQUATION

Theorem 9 The general continuous solu-
tion of the translation equation

F [F(x, u), v] = F (x, u + v)
x, F (x, u) ∈ (a, b) ; u, v ∈ (−∞, ∞)

(38)

is
F (x, y) = f [f−1(x) + y] (39)

where f is an arbitrary function which
is continuous and strictly monotonic in
(−∞, ∞), if one of the following conditions
holds:

• (a) F (x, u) is strictly monotonic for each
value of x with respect to u and for un-
countably many values of u with respect
to x.

• (b) F(x, u) is continuous for each value of
u with respect to x and for x = x0 with
respect to u and nonconstant for every
fixed value of x.
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ITERATIVE METHODS

The translation equation has many inter-
esting applications. Let us define the n-th
iterate F(x, n) = gn(x):





g0(x) = x

gn(x) = g[gn−1(x)] for n > 0

Then F (x, n) satisfies translation equation:

gn[gm(x)] = gm+n(x) ⇔
F [F (x,m), n] = F (x,m + n)

Thus:

F(x, y) = f [f−1(x) + y] ; F (x,1) = g(x) (40)

which implies

g[f(x)] = f(x + 1) (41)

Thus, the problem of finding the n-th it-
erate can be solved by solving the equiva-
lent functional equation g[f(x)] = f(x + 1)
or f−1[g(x)] = f−1(x)+ 1, which is a partic-
ular case of the Abel equation.
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SOME METHODS
TO SOLVE FUNCTIONAL EQUATIONS

The most common methods for solving
functional equations are:

1. Replacing variables by given values.

2. Transforming one or several variables.

3. Transforming one or several functions.

4. Using a more general functional equa-
tion.

5. Treating variables as constants.

6. Inductive methods.

7. Iterative methods.

8. Separation of variables.

9. Analytical techniques (differentiation, in-
tegration, etc.).

10. Mixed methods.
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REPLACING VARIABLES
BY GIVEN VALUES

Example 1 (The homogeneous functions) The
general solution of the functional equation

f(yx) = ykf(x) ; x, y ∈ R+, (42)

where f is real and k is constant, is

f(x) = cxk (43)

where c is an arbitrary constant.

Proof: Letting x = 1 in (42) we get f(y) = cyk,
where c = f(1).

Example 2 (Sincov’s equation). The general so-
lution of the functional equation

f(x, y) + f(y, z) = f(x, z) (44)

is
f(x, y) = g(y) − g(x) (45)

where g is an arbitrary function.

Proof: Letting z = 0 in (44) and g(x) = f(x, 0),
we get (45), which satisfies (44).
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TRANSFORMING ONE
OR SEVERAL VARIABLES

Example 3 The general solution of the
functional equation

G(x + z, y + z) = G(x, y) + z (46)

is
G(x, y) = x + g(y − x) (47)

where g is an arbitrary function.
Proof: Letting z = −x in (46) and g(x) =
G(0, x), we get (47).
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TRANSFORMING ONE
OR SEVERAL FUNCTIONS

Example 4 If the functional equation

f(x + y) = f(x) + f(y) + K, (48)

where K is a real constant, is satisfied for every pair
of real numbers x and y and if the function f(x) is
(a) continuous in at least one point, or (b) bounded
by K for small values of x, or (c) bounded in a given
interval, then

f(x) = cx − K, (49)

where c is an arbitrary constant.

Proof: Letting

f(x) = g(x) − K, (50)

the functional equation (48) transforms to

g(x + y) = g(x) + g(y)

which is the Cauchy functional equation, with solu-
tion g(x) = cx. Replacing this in (50) we can check
that (48) holds.
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USING A MORE GENERAL
FUNCTIONAL EQUATION

Example 5 The general solution of the functional
equation

F [G(x, y), G(u, v)] = K[x + u, y + v] (51)

can be obtained from the solution
F (x, y) = k[f(x) + g(y)] , G(x, y) = f−1[p(x) + q(y)],
K(x, y) = k[l(x) + m(y)] , H(x, y) = g−1[r(x) + s(y)],
M(x, y) = l−1[p(x) + r(y)] ,N(x, y) = m−1[q(x) + s(y)],

of the functional equation

F [G(x, y),H(u, v)] = K[M (x, u), N(y, v)] (52)

taking into account that

H(x, y) = G(x, y);M (x, u) = x+u; N(y, v) = y+v.

Example 6 The two functional equations

F (x + y, u + v) = K(M(x, u),N(y, v))
F (F (x, y), z) = F (x, F (y, z)),

and

F [G(x, y),H(u, v)] = K[M (x, u), N(y, v)].

can be solved as particular cases of the above func-
tional equation (52).
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TREATING VARIABLES AS CONSTANTS

Example 7 The continuous (with respect to its first
argument) general solution of the functional equa-
tion

f(x + y, z) = f(x, z)f(y, z) ; x, y, z ∈ R (53)

is
f(x, z) = exp c(z)x (54)

where c is an arbitrary function.

Proof: For each value z, (53) is Cauchy II, the
solution of which is (54) (the constant depends on
z).

Example 8 The general solution of

f(ux, y, z) = ukf(x, y, z) (55)

is
f(x, y, z) = xkc(y, z) (56)

where c is an arbitrary constant.

Since the general solution of f(ux) = ukf(x) is
f(x) = cxk, and for each fixed y and z, Equation
(55) is of this form, then (56) holds.
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SEPARATION OF VARIABLES

Example 9 The general solution of the
functional equation

f−1(g(x) + h(y)) = exp(x) x, y ∈ R (57)

is

g(x) = f(exp(x)) − c ; h(y) = c (58)

where f is an invertible arbitrary function
and c is an arbitrary constant.

Proof: Equation (57) can be written as

g(x) + h(y) = f(exp(x)) ∀x, y ∈ R

and then we get

−g(x) + f(exp(x)) = h(y) = c,

from which we finally obtain (58).
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SOLVING FUNCTIONAL EQUATIONS
BY DIFFERENTIATION

Example 10 To solve the equation

f(x, y) + f(y, z) = f(x, z), (59)

we differentiate with respect to x, y and z,
independently, and we get





f ′
1(x, y) = f ′

1(x, z)
f ′
2(x, y) + f ′

1(y, z) = 0
f ′
2(y, z) = f ′

2(x, z),
(60)

where the subindices refer to partial deriva-
tives with respect to the indicated argu-
ments. From (60), we obtain

f ′
1(x, y) = s′(x) ⇒ f(x, y) = s(x) + g(y)

f ′
2(x, y) = −f ′

1(y, z) ⇒ g′(y) = −s′(y)
⇒ g(y) = −s(y) + k

(61)

and we get f(x, y) = s(x) − s(y)+ k, but sub-
stitution into (59) leads to k = 0. Thus
the general differentiable solution of (59)
becomes

f(x, y) = s(x) − s(y) (62)
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