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SOLUTION OF

Partial Differential Equations

(PDEs)

Mathematics is the Language of Science

PDEs are the expression of processes that occur 
across time & space: (x,t), (x,y), (x,y,z), or (x,y,z,t)
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Partial Differential Equations (PDE's)

A PDE is an equation which 
includes derivatives of an unknown 
function with respect to 2 or more

independent variables



3

Partial Differential Equations (PDE's)
PDE's describe the behavior of many engineering phenomena:

– Wave propagation
– Fluid flow (air or liquid)

Air around wings, helicopter blade, atmosphere
Water in pipes or porous media
Material transport and diffusion in air or water
Weather:  large system of coupled PDE's for momentum, 

pressure, moisture, heat, …
– Vibration
– Mechanics of solids: 

stress-strain in material, machine part, structure
– Heat flow and distribution
– Electric fields and potentials
– Diffusion of chemicals in air or water
– Electromagnetism and quantum mechanics
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Partial Differential Equations (PDE's)

Weather Prediction
• heat transport & cooling
• advection & dispersion of moisture
• radiation & solar heating
• evaporation
• air (movement, friction, momentum, coriolis forces)
• heat transfer at the surface

To predict weather one need "only" solve a very large systems of
coupled PDE equations for momentum, pressure, moisture, heat, 
etc.
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Conservación de energía, masa, 
momento, vapor de agua,

ecuación de estado de gases. 

v = (u, v, w), T, p, ρ = 1/α y q

360x180x32 x nvar

resolución ∝ 1/Δt
Duplicar la resolución espacial  supone incrementar el tiempo 
de cómputo en un factor 16

Modelización Numérica del Tiempo

D+0 D+1 D+2
Condición inicial               H+0 H+24

D+3 D+4 D+5
sábado 15/12/2007 00
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Partial Differential Equations (PDE's)

Learning Objectives

1) Be able to distinguish between the 3 classes of 2nd order, linear 
PDE's.  Know the physical problems each class represents and 
the physical/mathematical characteristics of each.

2) Be able to describe the differences between finite-difference and 
finite-element methods for solving PDEs.

3) Be able to solve Elliptical (Laplace/Poisson) PDEs using finite 
differences.

4) Be able to solve Parabolic (Heat/Diffusion) PDEs using finite 
differences.
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Partial Differential Equations (PDE's)
Engrd 241 Focus:
Linear 2nd-Order PDE's of the general form

u(x,y), A(x,y), B(x,y), C(x,y), and D(x,y,u,,)

The PDE is nonlinear if A, B or C include u, ∂u/∂x or ∂u/∂y,  
or if D is nonlinear in u and/or its first derivatives.

Classification
B2 – 4AC < 0    ––––> Elliptic (e.g. Laplace Eq.)
B2 – 4AC = 0    ––––> Parabolic (e.g. Heat Eq.)
B2 – 4AC > 0    ––––> Hyperbolic (e.g. Wave Eq.)

• Each category describes different phenomena.
• Mathematical properties correspond to those phenomena.

2 2 2

2 2
u u uA B C D 0

x yx y
∂ ∂ ∂

+ + + =
∂ ∂∂ ∂
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Partial Differential Equations (PDE's)

Typical examples include

u u uu(x, y), (in terms of and )
x y

∂ ∂ ∂
∂ η ∂ ∂

Elliptic Equations  (B2 – 4AC < 0) [steady-state in time]
• typically characterize steady-state systems (no time derivative)

– temperature – torsion
– pressure – membrane displacement
– electrical potential

• closed domain with boundary conditions expressed in terms of

A = 1, B = 0, C = 1    ==>   B2 – 4AC = – 4  <  0

2 2
2

2 2

0
u uu u uD(x, y,u, , )x y x y

⎧
∂ ∂ ⎪∇ ≡ + = ∂ ∂⎨−∂ ∂ ⎪ ∂ ∂⎩

 Laplace Eq.
 Poisson Eq.
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Elliptic PDEs
 Boundary Conditions for Elliptic PDE's:

Dirichlet: u provided along all of edge

Neumann: provided along all of the edge (derivative 
in normal direction)

Mixed: u  provided for some of the edge and

 for the remainder of the edge

 Elliptic PDE's are analogous 
 to Boundary Value ODE's

u∂
∂ η

u∂
∂ η
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Elliptic PDEs

Estimate
u(x)
from

Laplace
Equations

u(x=1,y)
or

∂u/∂x
given

on
boundary

u(x,y =0) or ∂u/∂y given on boundary

y

x

u(x,y =1) or ∂u/∂y given on boundary

u(x=0,y)
or

∂u/∂x
given

on
boundary
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Parabolic PDEs

 Parabolic Equations (B2 – 4AC = 0)     [first derivative in time ]
• variation in both space (x,y) and time, t
• typically provided are:

 – initial values:  u(x,y,t = 0)
 – boundary conditions: u(x = xo,y = yo, t) for all t

u(x = xf,y = yf, t) for all t

• all changes are propagated forward in time, i.e., nothing goes 
backward in time; changes are propagated across space at 
decreasing amplitude.
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Parabolic PDEs
 Parabolic Equations (B2 – 4AC = 0)     [first derivative in time ]

• Typical example: Heat Conduction or Diffusion

(the Advection-Diffusion Equation)
2

2
u

x

u u1D : k D(x,u, )
t x

∂

∂

∂ ∂
= +

∂ ∂

2 2

2 2
u u

x y

u u u2D : k D(x, y,u, , )
t x y

∂ ∂

∂ ∂

⎡ ⎤∂ ∂ ∂
= + +⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

A = k, B = 0, C = 0 –>  B2 – 4AC = 0

2k u D= ∇ +
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Parabolic PDEs

Estimate
u(x,t)
from

the Heat
Equation

u(x=1,t)
given

on
boundary
for all t

u(x,t =0) given on boundary
as initial conditions for ∂u/∂t

t

x

u(x=0,t)
given

on
boundary
for all t
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Parabolic PDEs

x=L

• An elongated reactor with a single entry and exit point 
and a uniform cross-section of area A.

• A mass balance is developed for a finite segment Δx
along the tank's longitudinal axis in order to derive a 
differential equation for concentration (V = A Δx).

Δxx=0

c(x,t) = concentration
at time, t, and distance, x.
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Parabolic PDEs

x=LΔxx=0

c c(x) c(x)V Qc(x) Q c(x) x DA
t x x

⎡ ⎤Δ ∂ ∂
= − + Δ −⎢ ⎥Δ ∂ ∂⎣ ⎦

Flow in Flow out Dispersion in

c(x) c(x)DA x k Vc(x)
x x x

∂ ∂ ∂⎡ ⎤+ + Δ −⎢ ⎥∂ ∂ ∂⎣ ⎦
Dispersion out Decay

reaction
2

2
c c c Q cD kc
t t A xx

Δ ∂ ∂ ∂
==> = − −

Δ ∂ ∂∂
As Δt and Δx ==> 0
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Hyperbolic PDEs

 Hyperbolic Equations (B2 – 4AC > 0)    [2nd derivative in time ]

• variation in both space (x, y) and time, t

• requires:
– initial values: u(x,y,t=0),  ∂u/∂t (x,y,t = 0) "initial velocity"
– boundary conditions: u(x = xo,y = yo, t) for all t

u(x = xf,y = yf, t) for all t

• all changes are propagated forward in time, i.e., nothing goes 
backward in time.
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Hyperbolic PDEs

Hyperbolic Equations (B2 – 4AC > 0)     [2nd derivative in time]

• Typical example: Wave Equation

 A = 1,  B = 0,  C = -1/c2 ==>  B2 – 4AC = 4/c2 > 0

 
• Models

 – vibrating string
 – water waves
 – voltage change in a wire

2 2

2 2 2
u u

x t

u 1 u1D : D(x, y,u, , ) 0
x c t

∂ ∂

∂ ∂

∂ ∂
− + =

∂ ∂
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Hyperbolic PDEs

Estimate
u(x,t)
from

the Wave
Equation

u(x=1,t)
given

on
boundary
for all t

u(x,t =0)  and ∂u(x,t=0)/∂t 
given on boundary

as initial conditions for ∂2u/∂t2

Now PDE is second order in time

t

x

u(x=0,t)
given

on
boundary
for all t
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Numerical Methods for Solving PDEs

Numerical methods for solving different types of PDE's reflect the different 
character of the problems.

• Laplace - solve all at once for steady state conditions
• Parabolic (heat) and Hyperbolic (wave) equations.  

Integrate initial conditions forward through time.

Methods
• Finite Difference (FD) Approaches (C&C Chs. 29 & 30)

Based on approximating solution at a finite # of points, usually
arranged in a regular grid.

• Finite Element (FE) Method (C&C Ch. 31)
Based on approximating solution on an assemblage of simply shaped 
(triangular, quadrilateral) finite pieces or "elements" which together 
make up (perhaps complexly shaped) domain.

In this course, we concentrate on FD 
applied to elliptic and parabolic equations.
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Finite Difference for Solving Elliptic PDE's

 Solving Elliptic PDE's:
• Solve all at once
• Liebmann Method:

– Based on Boundary Conditions (BCs) and finite 
difference approximation to formulate system of 
equations

– Use Gauss-Seidel to solve the system
 2 2

2 2y

0u u u uD(x, y,u, , )x x y

∂ ∂

∂ ∂

⎧⎪ ∂ ∂+ = ⎨−
⎪ ∂ ∂⎩

Laplace Eq.
Poisson Eq.
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Finite Difference Methods for Solving Elliptic PDE's
1.  Discretize domain into grid of evenly spaced points
2.  For nodes where u is unknown:

 w/ Δ x = Δ y = h, substitute into main equation

3. Using Boundary Conditions, write, n*m equations for 
u(xi=1:m, yj=1:n) or n*m unknowns.

4. Solve this banded system with an efficient scheme.  Using 
Gauss-Seidel iteratively yields the Liebmann Method.

i 1, j i, j i 1, j 2
2

2 2

u 2u u

x
O( x )

u

x ( )
− +− +

Δ
Δ

∂

∂
= +

2 2
2

2 2 2
i 1, j i 1, j i, j 1 i, j 1 i, ju u u u 4uu u

O(h )
x y h

− + − ++ + + −∂ ∂

∂ ∂
+ = +

i, j 1 i, j i, j 1 2
2

2 2

u 2u u

y
O( y )

u

y ( )
− +− +

Δ
Δ

∂

∂
= +
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Elliptical PDEs

 The Laplace Equation
2 2

2 2y

u u 0
x

∂ ∂

∂ ∂
+ =

 The Laplace molecule

i i+1i-1
j-1

j+1

j

i 1, j i 1, j i, j 1 i, j 1 i, jT T T T 4T 0+ − + −+ + + − =If Δx = Δy then
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Elliptical PDEs
 The Laplace molecule:

T = 0o C

T = 100o C

T = 100o C

T = 0o C

11 12 13 21 22 23 31 32 33T T T T T T T T T

11
12
13
21
22
23
31
32
33

-100T
-T

T
T
T =
T
T
T
T

-4 1 0 1 0 0 0 0 0
1 -4 1 0 1 0 0 0 0
0 1 -4 0 0 1 0 0 0
1 0 0 -4 1 0 1 0 0
0 1 0 1 -4 1 0 1 0
0 0 1 0 1 -4 0 0 1
0 0 0 1 0 0 -4 1 0
0 0 0 0 1 0 1 -4 1
0 0 0 0 0 1 0 1 -4

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥ ⎨ ⎬

⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

100
-200

0
0

-100
0
0

-100

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

The temperature distribution 
can be estimated by discretizing
the Laplace equation at 9 points 
and solving the system of linear 
equations.

i 1, j i 1, j i, j 1 i, j 1 i, jT T T T 4T 0+ − + −+ + + − =

Excel
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Solution of Elliptic PDE's:  Additional Factors
 • Primary (solve for first):
 u(x,y) = T(x,y) = temperature distribution
 • Secondary (solve for second):

heat flux:

obtain by employing:

x y
T Tq k and q k
x y

∂ ∂′ ′= − = −
∂ ∂

i 1, j i 1, jT TT
x 2 x

+ −−∂
≈

∂ Δ
i, j 1 i, j 1T TT

y 2 y
−+ −∂

≈
∂ Δ

then obtain resultant flux and direction:
2 2

n x yq q q= + y1
x

x

q
tan q 0

q
− ⎛ ⎞

θ = >⎜ ⎟
⎝ ⎠

y1
x

x

q
tan q 0

q
− ⎛ ⎞

θ = + π <⎜ ⎟
⎝ ⎠

(with θ in radians)
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Elliptical PDEs: additional factors
i 1, j i 1, j

x
T TTq k k

x 2 x
+ −−∂′ ′= − ≈ −

∂ Δ

i, j 1 i, j 1
y

T TTq k k
y 2 y

+ −−∂′ ′= − ≈ −
∂ Δ

k' = 0.49 cal/s⋅cm⋅°C

At point 2,1 (middle left):
qx ~ -0.49 (50-0)/(2⋅10cm) = -1.225 cal/(cm2⋅s)

qy ~ -0.49 (50-14.3)/(2⋅10cm) = -0.875cal/(cm2⋅s)  

T = 0o C

T = 100o C

T = 100o C

T = 0o C
50.0 71.4 85.7

28.6 50 71.4

14.3 28.6 50

2 2 2 2 2
n x yq q q 1.225 0.875 1.851 cal /(cm s)= + = + = ⋅

y1 1

x

q 0.875tan tan 35.5 180 215.5
q 1.225

− −⎛ ⎞ −⎛ ⎞θ = = = + =⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
o o o
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Solution of Elliptic PDE's:  Additional Factors

Neumann Boundary Conditions (derivatives at edges)
– employ phantom points outside of domain
– use FD to obtain information at phantom point,

T1,j +  T-1,j +  T0,j+1 +  T0,j-1 – 4T0,j = 0   [*]

If given then use 

to obtain

Substituting [*]:

Irregular boundaries
• use unevenly spaced molecules close to edge
• use finer mesh

T
x

∂
∂

1, j i 1, jT TT
x 2 x

−−∂
=

∂ Δ

1, j 1, j
TT T 2 x
x−

∂
= − Δ

∂

1, j 0, j 1 0, j 1 0, j
T2T 2 x T T 4T 0
x + −

∂
− Δ + + − =

∂
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Elliptical PDEs: Derivative Boundary Conditions
 The Laplace molecule:

Insulated ==> ∂T/ ∂y = 0

T = 50o C

T = 100o C

T = 75o C
1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

i 1, j i 1, j i, j 1 i, j 1 i, jT T T T 4T 0+ − + −+ + + − =

5,1 3,1
TT T 2 y
y

∂
= − Δ

∂

0

Derivative (Neumann) BC at (4,1):

3,1 5,1T - TT =
y 2Δy

∂
∂

4,2 4,0 3,1 4,12 2 4 0TT T T y T
y

∂
− + − Δ − =

∂

Substitute into: 4,2 4,0 3,1 5,1 4,14 0T T T T T+ + + − =

To obtain:
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Parabolic PDE's:  Finite Difference Solution

 Solution of Parabolic PDE's by FD Method
• use B.C.'s and finite difference approximations to formulate 

the model

• integrate I.C.'s forward through time

• for parabolic systems we will investigate:
 – explicit schemes & stability criteria
 – implicit schemes
 - Simple Implicit
 - Crank-Nicolson (CN)
 - Alternating Direction (A.D.I), 2D-space
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Parabolic PDE's:  Heat Equation

 Prototype problem, Heat Equation (C&C 30.1):

Given the initial temperature distribution 
as well as boundary temperatures with

2

2
T T1D k Find  T(x,t)
t x

∂ ∂
=

∂ ∂
2 2

2 2
T T T2D k Find  T(x,y,t)
t x y

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

k 'k Coefficient of thermal diffusivity
C

= =
ρ

k' = coefficient of thermal conductivity
C = heat capacity
  = density

⎧⎪
⎨

ρ⎪⎩
where:
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Parabolic PDE's:  Finite Difference Solution

Solution of Parabolic PDE's by FD Method
1. Discretize the domain into a grid of evenly spaces points 

(nodes)
2. Express the derivatives in terms of Finite Difference 

Approximations of O(h2) and O(Δt) [or order O(Δt2)]

2

2
T

x
∂
∂

3. Choose h = Δx = Δy, and Δt and use the I.C.'s and B.C.'s 
to solve the problem by systematically moving ahead in 
time.

Finite 
Differences

2

2
T

y
∂
∂

T
t

∂
∂
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Parabolic PDE's:  Finite Difference Solution

Time derivative:

• Explicit Schemes (C&C 30.2)

Express all future (t + Δt) values, T(x, t + Δt), in 
terms of current (t) and previous (t - Δt) 
information, which is known.

• Implicit Schemes (C&C 30.3 -- 30.4)

Express all future (t + Δt) values, T(x, t + Δt), in 
terms of other future (t + Δt), current (t), and 
sometimes previous (t - Δt) information.
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Parabolic PDE's:  Notation
Notation:

Use subscript(s) to indicate spatial points.
Use superscript to indicate time level:     Ti

m+1 = T(xi, tm+1)
Express a future state, Ti

m+1, only in terms of the present state, Ti
m

1-D Heat Equation:
2

2
T Tk
t x

∂ ∂
=

∂ ∂
2 m m m

2i 1 i i 1
2 2
T T 2T T O( x) Centered FDD

x ( x)
− +∂ − +

= + Δ
∂ Δ

m 1 m
i iT T T O( t) Forward FDD

t t

+∂ −
= + Δ

∂ Δ

Solving for Ti
m+1 results in:

Ti
m +1 = Ti

m +  λ(Ti-1
m − 2Ti

m + Ti+1
m)    with λ = k Δt /(Δx)2

Ti
m +1 = (1-2λ) Ti

m +  λ (Ti-1
m + Ti+1

m )
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Parabolic PDE's:  Explicit method

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

Initial temperature
10 10 15 20 15 10 10 10

10

10

10

10

10

10

10

10

10

10

10

10
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Parabolic PDE's:  Example - explicit method

k  =  0.82 cal/s·cm·oC,  10-cm long rod, 
Δt = 2 secs,    Δx = 2.5 cm (# segs. = 4)

I.C.'s: T(0 < x < 10,  t = 0)  =  0°
B.C.'s: T(x = 0, all t)  =  100°

T(x = 10, all t)  =  50°

with λ = k Δt / (Δx)2 = 0.262

2

2
T Tk
t x

∂ ∂
=

∂ ∂
Example: The 1-D Heat Equation

( )m 1 m m m m
i i i 1 i i 1T T T 2T T+

− += + λ − +

Heat Eqn.
Example

0° C

tt

10
0°

C

50
°C

X = 0 X = 10 cm
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Parabolic PDE's:  Example - explicit method

Starting at  t = 0 secs.  (m = 0),  find results at  t = 2 secs. (m = 1):
T1

1 = T1
0 + λ(T0

0 +T1
0 +T2

0 ) = 0 + 0.262[100–2(0)+0] = 26.2°

T2
1 = T2

0 + λ(T1
0 +T2

0 +T3
0 ) = 0 + 0.262[0–2(0)+0]  = 0°

T3
1 = T3

0 + λ(T2
0 +T3

0 +T4
0 ) = 0 + 0.262[0–2(0)+50]  = 13.1°

From  t = 2 secs. (m = 1),  find results at  t = 4 secs. (m = 2):

T1
2 = T1

1 + λ(T0
1 +T1

1 +T2
1 ) = 26.2+0.262[100–2(26.2)+0] = 38.7°

T2
2 = T2

1 + λ(T1
1 +T2

1 +T3
1 ) = 0+0.262[26.2–2(0)+13.1] = 10.3°

T3
2 = T3

1 + λ(T2
1 +T3

1 +T4
1 ) =13.1 + 0.262[0–2(13.1)+50] = 19.3°

2

2
T Tk
t x

∂ ∂
=

∂ ∂
Example: The 1-D Heat Equation

( )m 1 m m m m
i i i 1 i i 1T T T 2T T+

− += + λ − +
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Parabolic PDE's:  Explicit method

t = 0

t = 2

t = 4

t = 6

Initial temperature
0 °C

Right
Bndry
50°C

Left
Bndry
100°C

T1
1 = T1

0 + λ(T0
0 – 2T1

0 +T2
0 ) = 0 + 0.262[100–2(0)+0] = 26.2°

T2
1 = T2

0 + λ(T1
0 – 2T2

0 +T3
0 ) = 0 + 0.262[0–2(0)+0] = 0°

T3
1 = T3

0 + λ(T2
0 – 2T3

0 +T4
0 ) = 0 + 0.262[0–2(0)+50] = 13.1°

26.2° 0° 13.1°
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Parabolic PDE's:  Explicit method

t = 0

t = 2

t = 4

t = 6

Initial temperature
0 °C

Right
Bndry
50°C

Left
Bndry
100°C

T1
2 = T1

1 + λ(T0
1 – 2T1

1 +T2
1 ) = 26.2 + 0.262[100–2(26.2)+0] = 38.7°

T2
2 = T2

1 + λ(T1
1 – 2T2

1 +T3
1 ) = 0 + 0.262[26.2–2(0)+13.1] = 10.3°

T3
2 = T3

1 + λ(T2
1 – 2T3

1 +T4
1 ) = 13.1 + 0.262[0–2(13.1)+50] = 19.3°

26.2° 0° 13.1°

38.7° 10.3° 19.3°
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Parabolic PDE's:  Stability

We will cover stability in more detail later, but we will show that:

The Explicit Method is Conditionally Stable :

For the 1-D spatial problem, the following is the stability condition:

λ ≤ 1/2 can still yield oscillation (1D)
λ ≤ 1/4 ensures no oscillation (1D)
λ = 1/6 tends to optimize truncation error

We will also see that the Implicit Methods are unconditionally 
stable.

2

2
k t 1 ( x)or t

2 2k( x)
Δ Δ

λ = ≤ Δ ≤
Δ

Excel: Explicit
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Parabolic PDE's:  Explicit Schemes

Summary: Solution of Parabolic PDE's by Explicit Schemes

Advantages: very easy calculations, 
simply step ahead

Disadvantage: – low accuracy, O (Δt) 
accurate with respect to time

– subject to instability; must use "small" Δt's
requires many steps !!!
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Parabolic PDE's:  Implicit Schemes

Implicit Schemes for Parabolic PDEs

• Express Ti
m+1 terms of  Tj

m+1,  Ti
m,  and possibly also Tj

m

(in which  j = i – 1 and i+1 )

• Represents spatial and time domain.  For each new time, 
write m (# of interior nodes) equations and simultaneously 
solve for m unknown values (banded system).
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Simple Implicit Method.   Substituting:

2 m 1 m 1 m 1
2i 1 i i 1

2 2
T T 2T T O( x) Centered FDD

x ( x)

+ + +
− +∂ − +

= + Δ
∂ Δ

2

2
T Tk
t x

∂ ∂
=

∂ ∂
The 1-D Heat Equation:

results in: m 1 m 1 m 1 m
i 1 i i 1 i 2

tT (1 2 )T T T with k
( x)

+ + +
− +

Δ
−λ + + λ − λ = λ =

Δ
1. Requires I.C.'s for case where m = 0: i.e.,  Ti

0 is given for all i.
2. Requires B.C.'s to write expressions @ 1st and last interior 

nodes (i=0 and n+1) for all m.

m 1 m
i iT T T O( t) Backward FDD

t t

+∂ −
= + Δ

∂ Δ
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Parabolic PDE's:  Simple Implicit Method

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

Initial temperature
10 10 15 20 15 10 10 10

10

10

10

10

10

10

10

10

10

10

10

10
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Parabolic PDE's:  Simple Implicit Method

Explicit Method

m

m+1

i-1 i i+1

m

m +1

i-1 i i+1

Simple Implicit Method

( )m 1 m m m m
i i i 1 i i 1T T T 2T T+

+ −= + λ − +

( )m m 1 m 1 m 1
i i 1 i i 1T T 1 2 T T+ + +

− += −λ + + λ − λ

2
twith k for both

( x)
Δ

λ =
Δ



44

Parabolic PDE's:  Simple Implicit Method

t = 0

t = 2

t = 4

t = 6

Initial temperature
0 °C

Right
Bndry
50°C

Left
Bndry
100°C

At the Left boundary:     (1+2λ)T1
m+1 - λT2

m+1 = T1
m + λ T0

m+1

Away from boundary:    -λTi-1
m+1 + (1+2λ)Ti

m+1 - λTi+1
m+1 = Ti

m

At the Right boundary:  (1+2λ)Ti
m+1 - λTi-1

m+1 = Ti
m + λ Ti+1

m+1
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Initial temperature
0 °C

Right
Bndry
50°C

Left
Bndry
100°C

m = 0; t = 0

m = 1; t = 2

m = 2; t = 4

m = 3; t = 6

Parabolic PDE's:  Simple Implicit Method

Let λ = 0.4

T1
1

At the Left boundary:  (1+2λ)T1
1 - λT2

1 = T1
0 + λT0

1       

1.8 T1
1 – 0.4 T2

1 = 0 + 0.8*100 =            40

T2
1

Away from boundary:       -λTi-1
1 + (1+2λ)Ti

1 – λTi+1
1 = Ti

0

-0.4 T1
1 + 1.8 T2

1 – 0.4 T3
1 = 0 =              0

T4
1

At the Right boundary:      (1+2λ)T3
1 – λT2

1 = T3
0 + λT4

1

1.8 Ti
m+1 – 0.4 Ti-1

m+1 = 0 + 0.4*50) =     20

T3
1

-0.4 T2
1 + 1.8 T3

1 – 0.4 T4
1 = 0 =              0

⎧ ⎫⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭

1
1
1

2
1

3
1

4

T1.8 -0.4 0 0 40
T-0.4 1.8 -0.4 0 0

=
0 -0.4 1.8 -0.4 0T
0 0 -0.4 1.8 20T

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭

1
1
1

2
1

3
1

4

T 27.6
T 6.14

=
4.03T
12.0T
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Initial temperature
0 °C

Right
Bndry
50°C

Left
Bndry
100°C

m = 0; t = 0

m = 1; t = 2

m = 2; t = 4

m = 3; t = 6

Parabolic PDE's:  Simple Implicit Method

Let λ = 0.4

T1
2

At the Left boundary:  (1+2λ)T1
2 - λT2

2 = T1
1 + λT0

2       

1.8 T1
2 – 0.4 T2

2 = 23.6+ 0.4*100 = 78.5

T2
2

Away from boundary:       -λTi-1
2 + (1+2λ)Ti

2 – λTi+1
2 = Ti

1

-0.4*T1
2+ 1.8*T2

2 – 0.4*T3
2 = 6.14 =        6.14

T3
1

-0.4*T2
2 + 1.8*T3

2 – 0.4*T4
2 = 4.03 =       4.03

⎧ ⎫⎡ ⎤ ⎧ ⎫⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭

2
1

2
2

2
3

2
4

T1.8 -0.4 0 0 78.5
T-0.4 1.8 -0.4 0 6.14

=
0 -0.4 1.8 -0.4 4.03T
0 0 -0.4 1.8 32.0T

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭

2
1

2
2

2
3

2
4

T 38.5
T 14.1

=
9.83T
20.0T

23.6 6.14 4.03 12.0

T4
1

At the Right boundary:      (1+2λ)T3
2 – λT4

2 = T3
1 + λT4

2

1.8*T3
2 – 0.4*T4

2 = 12.0 + 0.4*50 = 32.0
Excel: Implicit
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Parabolic PDE's:  Crank-Nicolson Method
Implicit Schemes for Parabolic PDEs

Crank-Nicolson (CN) Method (Implicit Method)
Provides 2nd-order accuracy in both space and time.
Average the 2nd-derivative in space for tm+1 and tm. 

2 m m m m 1 m 1 m 1
2i 1 i i 1 i 1 i i 1

2 2 2
T 1 T 2T T T 2T T O( x)

2x ( x) ( x)

+ + +
− + − +⎡ ⎤∂ − + − +

= + + Δ⎢ ⎥
∂ Δ Δ⎢ ⎥⎣ ⎦

m 1 m
2i iT T O( t )

t t

+∂ −
= + Δ

∂ Δ
T

m 1 m 1 m 1 m m m
i 1 i i 1 i 1 i i 1T 2(1 )T T T 2(1 )T T+ + +
− + − +−λ + + λ − λ = λ + − λ − λ

Requires I.C.'s for case where m = 0:  Ti
0 = given value, f(x)

Requires B.C.'s in order to write expression for T0
m+1 & Ti+1

m+1

(central difference in time now)
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Parabolic PDE's:  Crank-Nicolson Method

tm

tm+1

Initial temperature
0 °C

Right
Bndry
50°C

Left
Bndry
100°C

tm+1/2

xi-1 xi xi+1

m 1 m 1 m 1
i 1 i i 1

m m m
i 1 i i 12(1 ) 2(1 TT )TT T T+
− +

+ +
− +−λ + + λ − λ = λ + − λ − λ

Crank-Nicolson
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Parabolic PDE's:  Implicit Schemes

Summary:  Solution of Parabolic PDE's by Implicit Schemes 

Advantages:
• Unconditionally stable.   
• Δt choice governed by overall accuracy.  

[Error for CN is O(Δt2) ]
• May be able to take larger Δt fewer steps

Disadvantages:
• More difficult calculations, 

especially for 2D and 3D spatially
• For 1D spatially, effort ≈ same as explicit 

because system is tridiagonal.
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Stability Analysis of Numerical Solution to Heat Eq.

To find the form of the solutions, try:

Consider the classical solution of the Heat Equation:
2

2
T Tk
t x

∂ ∂
=

∂ ∂

atT(x, t) e sin( x)−= ω

Substituting this into the Heat Equation yields:
- a T(x,t) = - k ω2 T(x,t)

OR a = k ω2

2k tT(x, t) e sin( x)− ω⇒ = ω

Each sin component of the initial temperature distribution 
decays as 

exp{- k ω2 t)
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Stability Analysis

with zero boundary conditions

First step can be written: 
{T1} = [A] {T0} w/ {T0} = initial conditions

Second step as: 
{T2} = [A] {T1} = [A]2{T0}

and mth step as:
{Tm } = [A] {Tm-1} = [A]m{T0}  

(Here "m" is an exponent on [A])

{ }m m m m m T
1 2 i nwith T T ,T , ,T , ,T⎢ ⎥= ⎣ ⎦L L

Consider FD schemes as advancing one step with a 
"transition equation":

{Tm+1} = [A] {Tm} with [A] a function of λ = k Δt / (Δx)2
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Stability Analysis

{Tm } = [A]m{T0}

• For the influence of the initial conditions and any rounding 
errors in the IC (or rounding or truncation errors introduced 
in the transition process) to decay with time, it must be the 
case that || A || < 1.0

• If || A || > 1.0, some eigenvectors of the matrix [A] can grow 
without bound generating ridiculous results.  In such cases 
the method is said to be unstable.

• Taking r =  || A || = || A ||2 = maximum eigenvalue of [A] for 
symmetric A (the "spectral norm"), the maximum 
eigenvalue describes the stability of the method.
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Stability Analysis
Illustration of Instability of Explicit Method  (for a simple case)

Consider 1D spatial case:  Ti
m+1 = λTi-1

m + (1- 2λ)Ti
m + λTi+1

m

Worst case solution: Ti
m = r m(-1) i (high frequency x-oscillations 

in index i) 
Substitution of this solution into the difference equation yields: 

r m+1 (-1) i = λ r m (-1) i-1 + (1-2λ) r m (-1) i + λ r m (-1) i+1

r = λ (-1) -1 + (1-2λ) + λ (-1) +1

or r = 1 – 4 λ
If initial conditions are to decay and nothing “explodes,” we need:

–1 <  r  < 1     or  0  < λ < 1/2. 
For  no oscillations we want:

0 <  r  < 1 or 0  < λ < 1/4. 
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Stability of the Simple Implicit Method

Consider 1D spatial:

Worst case solution:

m 1 m 1 m 1 m
i 1 i i 1 iT (1 2 )T T T+ + +
− +−λ + + λ − λ =

( )im m
iT r 1= −

Substitution of this solution into difference equation yields: 

( ) ( ) ( ) ( ) ( )i 1 i i 1 im 1 m 1 m 1 mr 1 1 2 r 1 r 1 r 1− ++ + +−λ − + − λ − − λ − = −

r [–λ (–1)–1 +  (1 + 2λ) – λ (–1)+1]  =  1

or r = 1/[1 + 4 λ]
i.e., 0 <  r < 1  for all  λ > 0
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Stability of the Crank-Nicolson Implicit Method
Consider:

Worst case solution:

Substitution of this solution into difference equation yields: 

m 1 m 1 m 1 m m m
i 1 i i 1 i 1 i i 1T 2(1 )T T T 2(1 )T T+ + +
− + − +−λ + + λ − λ = λ + − λ + λ

( )im m
iT r 1= −

( ) ( ) ( ) ( )i 1 i i 1m 1 m 1 m 1r 1 2 1 r 1 r 1− ++ + +−λ − + + λ − − λ − =

( ) ( ) ( ) ( )i 1 i i 1m m mr 1 2 1 r 1 r 1− +λ − + − λ − + λ −

r [–λ (–1)–1 +  2(1 + λ) – λ (–1)+1]  = λ (–1)–1 +  2(1 – λ) + λ (–1)+1

or r = [1 – 2 λ ] /  [1 + 2 λ]

i.e., | r | < 1  for all  λ > 0
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Stability Summary, Parabolic Heat Equation

Roots for Stability Analysis of Parabolic Heat Eq.

-1.00

-0.50

0.00

0.50

1.00

0 0.25 0.5 0.75 1 1.25

λ

r

r(explicit)
r(implicit)
r(C-N)
analytical
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Parabolic PDE's:  Stability
Implicit Methods are Unconditionally Stable :

Magnitude of all eigenvalues of [A] is < 1 for all values of λ.
Δx and Δt can be selected solely to control the overall accuracy.

Explicit Method is Conditionally Stable :

Explicit, 1-D Spatial:

λ ≤ 1/2 can still yield oscillation (1D)
λ ≤ 1/4 ensures no oscillation (1D)
λ = 1/6 tends to optimize truncation error

Explicit, 2-D Spatial: 

(h = Δx = Δy)

2

2
k t 1 ( x)or t

2 2k( x)
Δ Δ

λ = ≤ Δ ≤
Δ

2

2
k t 1 hor t

4 4kh
Δ

λ = ≤ Δ ≤
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Parabolic PDE's in Two Spatial dimension

Explicit solutions :
Stability criterion

2 2

2 2
T T T2D k Find  T(x,y,t)
t x y

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

2 2( x) ( y)t
8k

Δ + Δ
Δ ≤

2

2
k t 1 hif h x y or t

4 4kh
Δ

= Δ = Δ ==> λ = ≤ Δ ≤

Implicit solutions :   No longer tridiagonal
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Parabolic PDE's: ADI method

Alternating-Direction Implicit (ADI) Method

• Provides a method for using tridiagonal matrices for solving 
parabolic equations in 2 spatial dimensions.

• Each time increment is implemented in two steps:

first direction second direction
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Parabolic PDE's: ADI method

• Provides a method for using tridiagonal matrices for solving 
parabolic equations in 2 spatial dimensions.

• Each time increment is implemented in two steps:

first half-step second half-step
xi-1 xi xi+1

yi
yi+1

yi-1
tγ

xi-1 xi xi+1

yi
yi+1

yi-1
tγ+1/2

tγ+1Explicit
Implicit

ADI example


